
Cybersecurity in Machine Learning and Artificial
Intelligence for Self Driving Vehicles

A proposal for an unified and open source test framework

Igor Kunjavskij
Seminar Intelligent cyber-physical Systems

University of Stuttgart
Stuttgart, Germany

st100959@stud.uni-stuttgart.de

Abstract—This report summarizes the key methodologies ap-
plicable for attacks on Convolutional Neural Networks deployed
in self driving vehicles. Furthemore, the need for an open
source framework specifically designed to test such networks for
robustness against these attacks is demonstrated. This need stems
from the fact that solutions available so far only cover very
generic scenarios of adversarial attacks. Hence these tools are
not suited to specifically secure Convolutional Neural Networks
deployed in in self driving vehicles. All in all the development of
such a framework would benefit all parties that are involved in
the market of autonomously driving vehicles.

Index Terms—Cybersecurity, Machine Learning, Artificial In-
telligence, Adversarial Machine Learning Attacks, Data Poison-
ing, Model Stealing, Autonomous Cars, Convolutional Neural
Network

I. INTRODUCTION

Machine leaning has brought in recent years tremendous
progress to any field that has found an application for it. In this
regard the field of autonomous driving is no exception. With a
market value of nearly 818.6 billion USD in 2019, the ongoing
success of this branch continues. More and more companies
ranging from start-ups to traditional automotive corporations
have decided to move into that market, offering solutions such
as components, modules, systems or complete vehicles [1].

Some key players operating in the autonomous vehicle mar-
ket distributing fully integrated solutions, as in autonomous
vehicles, include Audi AG, BMW AG, Daimler AG (Mercedes
Benz), Ford Motor Company, General Motors, Google LLC,
Honda Motor Corporation, Nissan Motor Company, Tesla, Inc.
and the and Toyota Motor Corporation [2]. Although every
provider listed integrates it’s own unique suite of sensors, one
sensor type that is found in the vehicles of every provider
is the optical sensor. The data gathered by these sensors is
usually processed by Convolutional Neural Networks, a class
of deep learning methods which has become dominant in
various computer vision tasks [3]. Unfortunately research has
proven throughout recent years that such Neural Networks can
get compromised using various techniques depending on the
end goal of the attacker.

II. PROBLEM STATEMENT: SELECTED CYBERSECURITY
THREATS IN CONVOLUTIONAL NEURAL NETWORKS

Over the years numerous techniques have been discovered
that can be utilized to compromise Neural Networks. For
this report three such approaches have been selected that
seemed most promising when applied to Convolutional Neural
Networks that are deployed in self driving vehicles. These are

• Adversarial Attacks
• Data Poisoning Attacks
• Model Extraction Attacks
and each type of attack targets a Neural Network at a differ-

ent stage in its life-cycle as depicted in Fig. 1 [4]. Adversarial
Attacks and Model Extraction Attacks usually target models
at the deployment stage when they are already receiving input
from their production environment. Data Poisoning Attacks on
the other hand target the training data set that is used when
creating a model.

Fig. 1. Overview of attack vectors [4].

A. Adversarial Attacks
One of the most predominant attack techniques that has

been utilized so far when tampering with Neural Networks
is the Adversarial Attack. This term summarizes a whole set
of different approaches that eventually all aim at generating
inputs that will throw off a Neural Network, causing it to
misclassify a given input. In the case of a Convolutional Neural
Networks this input is an image that has either been altered
in a malicious manner or contains elements that are harmful
to the performance of the Neural Network.



At it’s core the possibility for such attacks is rooted in
the fact that the training data that is provided to supervised
learning algorithms is sampled from an incomplete segment of
the theoretical distribution space. This concept is also depicted
in Fig. 2, illustrating the theoretical data population that is used
to develop a model and its relationships with the training and
test data distribution spaces.

Fig. 2. Adversarial space as a result of imperfect representation in training
data [8].

When a model is deployed in the real world and faces
so far unseen test data, the test set drawn from the test
data distribution could contain a segment of data whose
properties are not captured in the training data distribution.
These segments are also referred to as ”adversarial space”.
Attackers can exploit pockets of adversarial space between the
data manifold fitted by a model and the theoretical distribution
space to fool models.

Usually the expectation is that training and test data are
drawn from the same distribution space and that all character-
istics of the theoretical distribution are covered by the trained
model. This unfortunately is usually not the case [8]. Hence
this discrepancy between expectation and reality is causing the
aforementioned “blind spots” in machine learning algorithms

Nowadays there are numerous ways to find such ”blind
spots”. One of the first approaches that has been utilized for
that purpose is the ”Fast Gradient Sign Method” [5].

This method uses the gradient of the underlying model
to find adversarial examples. The original input image x
is hereby manipulated by adding or subtracting a small
perturbation to each pixel. Whether the perturbation is added
or subtracted depends on whether the sign of the gradient
for a pixel is positive or negative. Adding perturbation in the
direction of the gradient means that the image is intentionally
altered so that the model classification fails. Using the
Fast Gradient Sign Method an adversarial example can be
obtained by calculating a perturbation in the following manner

η = εsign(∇xJ(θ, x, y)) (1)

where ∇xJ(θ, x, y) is the gradient of the models loss
function with respect to the original input image x, y is the
target associated with x and θ are the parameters of the model
that should be compromised. To make sure the perturbations
added stay within a certain range, the parameter ε is which
usually ranges between 0 and 1.

Afterwards this perturbation η has to be added to the
original input to obtain an adversarial example x̃ as in

x̃ = x+ η. (2)

This perturbed input will now cause the targeted model to
make a wrong prediction.

An example of this process is also depicted in Fig. 3. In
this example an adversarial input is generated to be applied to
GoogLeNet on ImageNet. By adding a vector whose elements
are very small, but have an equal sign as the sign of the
elements of the gradient of the cost function with respect to
the input, the classification of the image is changed. Here an
ε of 0.007 is used. The original image is correctly classified
as a panda with 57.7% confidence, whereas the adversarial
example is classified as a gibbon with 99.3% confidence. The
adversarial attack hence is a success.

+ 0.007× =

x sign(∇xJ(θ,x, y))
x+

εsign(∇xJ(θ,x, y))
“panda” “nematode” “gibbon”
57.7%

confidence
8.2%

confidence
99.3 %

confidence
Fig. 3. Demonstration of Fast Gradient Sign Method [5].

Obviously the human eye can’t tell the difference between
the original and the perturbed image which is important. This
way it is possible to alter for example real world images in a
way that will throw off a Neural Network but still won’t be
perceptible. There are also ways to regularize the generated
perturbations to for example fit a specific shape or color
scheme to make the production of these in the form of patches
or other objects that can be placed in the real world more
feasible [11].

Of course just as attack techniques are continuously de-
veloped, concurrently new defensive techniques are coming
up to mitigate these attacks. So far one defensive technique
that turned out to be effective even when the attacker has
knowledge about the defensive technique that is deployed is
the ”Barrage of Random Transforms” [14]. This technique
is a defense based on applying image transformations before
feeding the input image into the model. The defense works by
randomly selecting a set of transformations and a random order
in which the image transformations are applied. In addition,
the parameters for each transformation are also randomly
selected at run time. Unfortunately this technique has quite



a strong impact on the performance of a model, since it
drops the accuracy for example on a data set such as the
Fashion-MNIST data set by 15% [13]. Next to this accuracy
drop, which is already unacceptable for models deployed
in self driving cars, the fact that such transformations are
additionally computationally quite expensive further hinders
they’re deployment.

So far these have all been academic examples that have been
carried out in laboratory conditions. Concerning adversarial
attacks on systems deployed in production, these have been
carried out as well on several occasions. One such example is a
study conducted by researches from McAfee Labs in 2020. In
this study the aforementioned researchers managed to fool the
camera system aboard Tesla’s Model X and Model S vehicles.
Just by placing a bit of black electrical tape measuring about 5
cm on a traffic sign depicting a 35mph speed limit, as shown in
Fig. 4, they managed to cause a misclassification of this sign
as 85mph. As a result both Tesla models accelerated upon
misreading this sign [6].

Such approaches as outlined just now assume that the
model that should be fooled is available at hand and it’s
parameters are all known. This implication is usually mitigated
either by training a surrogate model using classifications of
the original model as ground truth labels. Or by utilizing a
very similar model to generate adversarial examples. Both
approaches unfortunately work reasonable well without even
having the original model parameters at hand [4].

Fig. 4. Speed limit sign that was compromised by McAfee Labs [6].

B. Data Poisoning Attacks

Data Poisoning Attacks on the other hand aim at manipu-
lating data that is used to train a model. Usually the attacker
carries out a so called ”flip-label attack”, i.e., modifies both the
training data and the corresponding ground-truth labels. This is
done to make the model misclassify inputs that contain certain
features chosen by the attacker, for example a marker on a
traffic sign. But to conduct this attack an adversary would need
direct access to the training data. Furthermore, upon auditing
this data this mislabeling would be identified immediately.
Another so called ”clean-label” attack also alters images in the
training data set without making changes to the ground truth
labels. This is done with the intent to cause misclassifications

only with specific kind of images. But just as with the previous
approach, direct access to the training data is required.

Since companies usually keep their training data sets off
limits, such attacks become infeasible.

Yet another recently published approach manages to still
temper with the training data without having direct access
to it [7]. Since autonomous driving systems need to be
trained online on data collected in the production environment,
such data has to be gathered continuously to improve the
performance of trained models for various subsystems. An
example for this is Waymo, since it’s autonomous vehicles
have so far been driven for more 32.2 million kilometers on
public roads to achieve this [9].

To temper with the training data, the attacker needs to
modify the surroundings in the environment that is used to
train the car. These modification have to be on the one hand
subtle enough so that they blend in with the surroundings, but
also on the other hand perceptible enough so that the sensors
of the car clearly distinguish them. These modifications are
then correlated with target concepts that are supposed to be
learned, such as the classification of traffic light phases. Most
importantly these modifications should have no causal relation
with the concepts to be learned. Since it is very difficult to
train deep neural networks to only pick up causal relations,
the vehicle will very likely learn to see the introduced modi-
fications as cues to the target concept.

Thus the vehicle can be thrown off during deployment when
these modifications are changed altogether again.

Such an attack differs from the data poisoning attacks
outlined beforehand as only physical modifications are applied
to the training environment without modifying the training data
set directly. Furthermore, since the physical modifications are
permanent, they will remain also during the deployment of
a vehicle. Finally, the target is to cause all the data to be
misclassified at test time, not just a few inputs. So far the
feasibility of such an attack has been proven in simulations
using traffic lights with billboard image placed next to them
and is depicted in Fig. 5.

The scenario used to demonstrate the attack and hence to
corrupt the traffic signal classifier of an autonomous vehicle,
which is based on a Convolutional Neural Network, assumes
that this classifier has already been trained in a town A. Now
it should be retrained online in town B, since retraining might
be required for example because the traffic signals in town B
are different in shape or appearance from those in town A. As
is common practice in the industry, the autonomous vehicle is
trained using extensive road tests first. Afterwards a human
expert provides manual ground-truth labels to the gathered
data. This human is assumed to be uncompromised and should
honestly label the encountered traffic signals. Presuming these
facts, the attack is then conducted in two stages.

In the first stage, advertising space on electronic billboards
is installed or purchased near a subset of traffic signals in town
B. Billboards are used in this example scenario, since real-
world evidence suggests that billboards are quite frequently
located on or near traffic intersections. During the training



period, three distinct images are displayed on the billboards
synchronized with the traffic light phases. The intention here
is to correlate the signs shown to the traffic signal classifier of
the autonomous vehicle with the different phases of the traffic
lights.

In the second stage, when trained vehicles are deployed in
the field, the order of the images on the billboard is switched.
Experiments show that a naively trained traffic signal classifier
attacked this way is severely compromised, even if only a
small fraction of traffic signs in town B are ”poisoned” with
billboards.

Fig. 5. Setup for poisoning a model by introducing spurious correlations in
the physical environment [7].

What makes this scenario particularly malicious is the fact
that it is quite hard to detect it.

C. Model Extraction Attacks

Model extraction attacks are so far considered one of the
most dreaded attacks by the industry [15]. This stems on
the one hand of course from the fact that a lot of resources
are usually used to create such a model, hence the theft of
this intellectual property causes tremendous financial damage.
What’s worse on the other hand, is the fact that all the attacks
outlined so far and others not mentioned here become way
easier to carry out. Usually such an attack is carried out by
querying the target model using synthetic or surrogate data as
depicted in Fig. 6. This way a labeled data set is constructed
using the predictions of the model to be stolen. Afterwards this
labeled data can be used to train a surrogate or clone model
should replicate the the targeted model [12].

Fig. 6. Model Stealing Attack [12].

But an even easier way to obtain a model is just to purchase
the autonomous vehicle and then to gain access to the model
that is deployed in it. Researchers from Keen Security Labs

in China gained access to the Neural Network running on
a Tesla Model S and used it to train adversarial patches.
They afterwards placed these patches on the road to create a
“fake lane”, so that the Tesla Model S steered away from the
appropriate driving lane into the opposing lane on a test course.
In a real-life scenario oncoming traffic would be driving there,
causing an a fatal crash for all parties involved [10]. Creating
these patches is fairly easy once the parameters of the model
to be fooled are obtained. This is what makes this kind of
attack particularly bad, since it facilitates the execution of
other attacks to a great extent.

III. STAKEHOLDER ANALYSIS

The previous chapter introduced very real threats that are
all feasible nowadays. These threats target especially parties
such as Test Engineers, Competitors, Customers and Computer
Vision Engineers, as they are all involved in the implications
that an attack on a computer vision pipeline of a vehicle might
have. These parties are stakeholders as depicted in Fig. 7,
ordered in categories according to their interest and power
to protect a computer vision system.

Fig. 7. Stakeholder diagram for proposed testing framework.

Competitors, as in other participants on the market, have not
much influence on the development process of the computer
vision pipeline of another company, nor do they show much
interest in furthering the advancements of a competitor. Still
they are included in the list of stakeholders, since if the model
of one company has been compromised using one of the
attacks outlined in this report, then it is very likely that models
of other participants on the market will follow suit very soon.

Next the customer of such an autonomous vehicle is of
course very interested in the safety and security of all com-



ponents that are included, but has little power to influence the
development of these components.

The most important party involved is the Computer Vision
Engineer that is working on the computer vision pipeline. On
the one hand no other party has more influence on the security
of the computer vision pipeline that is deployed, but on the
other hand the Computer Vision Engineer is also the party held
accountable for any misbehavior of an autonomous vehicle that
might be caused by it.

Lastly the Test Engineer usually has a lot of say in the
development process of an autonomous vehicle and the same
amount of interest in the security of the computer vision
pipeline as the Computer Vision Engineer. But since the Test
Engineer is eventually not the one writing the algorithms
used in an autonomous vehicle, the interest in securing these
algorithms is slightly higher with the Computer Vision Engi-
neer, making this party the main Stakeholder. So eventually
it should be the task of the Computer Vision Engineer that
the Convolutional Neural Network deployed in an autonomous
vehicle is secure.

IV. EXISTING SOLUTIONS

To make sure that the Convolutional Neural Network de-
ployed in an autonomous vehicle is secure, a Computer Vision
Engineer might first have a look at the tools out there to see if
someone has already tackled that problem before. As with any
threat in cybersecurity, the research community has of course
put effort into addressing the risks that have been outlined
so far in this report. For that several frameworks have been
released by various parties, these include:

• Cleverhans - A Tensorflow Library to test existing deep
learning models versus known attacks

• foolbox - Python Library to create adversarial examples,
implements multiple attacks

• TrojAI- Python Library for generating backdoored and
trojaned models at scale for research into trojan detection

• Adversarial Robustness Toolkit (IBM ART) - Python
Library for Machine Learning Security

• Advertorch - Python toolbox for adversarial robustness
research whose main functions are implemented in Py-
Torch

These frameworks offer in general good testing capabilities
for the attacks outlined in this report, but only in a generic
setting. This means conditions that are encountered when
deploying Neural Networks in an autonomous vehicle, such as
sensor noise or the feasibility of certain perturbations, are not
considered. So eventually the only option left to a Computer
Vision Engineer is to recreate a testing framework from scratch
or to try and alter one of the tools outlined here in a way that
makes it applicable to the problem at had.

V. DISCUSSION AND VALUE PROPOSITION

As outlined until this point, a Computer Vision Engineer
would need to reinvent the wheel even if other companies have
already tackled this problem. But so far companies developing
and distributing autonomous vehicles have shown little interest

to reveal their development process and the ways in which they
have secured their computer vision systems. Even more so, this
way the main strategy used by most companies boils down to
”security through obscurity”, meaning that a potential attacker
is supposed to be held at bay by not knowing what defense
strategy might be deployed. This strategy has little chances to
prevail, since so far attackers have quite successfully fooled
Convolutional Neural Networks even without knowledge of
the defense strategies that are used [13]. So overall the tools
that are available to a Computer Vision Engineer are on the
one hand not suited to tackle the problem of securing the
computer vision pipeline of an autonomous vehicle. On the
other hand knowledge that might be available in companies is
”siloed” and there is little to no exchange about that between
competitors, upholding a strong mindset of such knowledge
being strictly proprietary.

And still the main issue remains that once the Convolutional
Neural Network of one company has been compromised,
others will very likely follow. Since this is an issue affecting
every company on the market and every such company will
have to deal with this issue at some point in time, joining
forces to tackle that issue might be the best option. For
this reason the establishment of an open source framework
targeting the testing of Neural Networks deployed in self
driving vehicles is proposed.

The Computer Vision Engineer in every company develop-
ing self driving cars usually is one of the main enablers of safe
and secure autonomous driving, advancing the establishment
of autonomous vehicles overall. But next to all the hardship
that comes along developing accurate computer vision models,
testing these against all the attacks outlined in this report is
almost infeasible for a single Engineer.

Fig. 8. Value Proposition for an open source testing framework.

As shown in Fig. 8, by using an open source framework
developed in cooperation by companies facing the same issue,
it would be possible to take advantage of the knowledge that
every company is bringing along. Furthermore, this would
automate and ease the process of testing Convolutional Neural
Networks tremendously, making the necessity to reinvent the
wheel obsolete.



VI. CONCLUSION

This analysis in this report has shown that there are very
relevant attack scenarios out there that are feasible in the pro-
duction environment that autonomous vehicles usually operate
in. But on the other hand there are no existing open source
solutions specifically created for autonomous vehicles to test
the robustness of them against these attacks. A Stakeholder
analysis revealed that especially in the sector of self driving
vehicles all involved parties should have great interest to co-
operate and to conduct measures in an unified manner against
these attacks. Further systematical analysis with the help of
a Value Proposition Canvas has shown that the most obvious
solution to this issue would be an open source framework
tackling the outlined security issues. Compared to the invested
resources in this market sector and it’s valuation of close to
a thousand billion USD, developing such a framework should
be relatively inexpensive and furthermore quite lucrative. All
in all the need for an open source tool that allows all market
participants to secure their solutions surely exists.

REFERENCES

[1] Ltd, R. A. M. (2020). Autonomous Cars Global Market Opportunities
and Strategies to 2030: COVID-19 Growth and Change. Research and
Markets ltd 2021.

[2] Grand View Research, Inc., Autonomous Vehicle Market Size, Share &
Trends Analysis Report By Application (Transportation, Defense), By
Region (North America, Europe, Asia Pacific, South America, MEA),
And Segment Forecasts, 2021 - 2030, March 2020

[3] Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural
networks: an overview and application in radiology. Insights Imaging
9, 611–629 (2018).

[4] M. Xue, C. Yuan, H. Wu, Y. Zhang and W. Liu, ”Machine Learning
Security: Threats, Countermeasures, and Evaluations,” in IEEE Access,
vol. 8, pp. 74720-74742, 2020

[5] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining
and harnessing adversarial examples.” ICLR 2014.

[6] Povolny, S., & Trivedi, S. (2020, February 19). Model Hacking
ADAS to Pave Safer Roads for Autonomous Vehicles. McAfee Blogs.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-
adas-to-pave-safer-roads-for-autonomous-vehicles/

[7] Patel, Naman & Krishnamurthy, Prashanth & Garg, Siddharth & Khor-
rami, Farshad. (2020). Bait and Switch: Online Training Data Poisoning
of Autonomous Driving Systems.

[8] Chio, C. & Freeman, D. (2018). Machine Learning and Security:
Protecting Systems with Data and Algorithms. O’Reilly UK Ltd.

[9] “Waymo self-driving vehicles cover 20 million miles
on public roads,” Reuters, 07-Jan-2020. [Online]. Avail-
able: https://www.reuters.com/article/us-autonomous-waymo-
idUSKBN1Z61RX.

[10] Huddleston, T. (2019, April 3). These Chinese hackers tricked
Tesla’s Autopilot into suddenly switching lanes. CNBC.
https://www.cnbc.com/2019/04/03/chinese-hackers-tricked-teslas-
autopilot-into-switching-lanes.html

[11] Cao, Yulong & Xiao, Chaowei & Yang, Dawei & Fang, Jing & Yang,
Ruigang & Liu, Mingyan & Li, Bo. (2019). Adversarial Objects Against
LiDAR-Based Autonomous Driving Systems.

[12] Yuan, Xiaoyong & Ding, Lei & Zhang, Lan & Li, Xiaolin & Wu,
Dapeng. (2020). ES Attack: Model Stealing against Deep Neural Net-
works without Data Hurdles.

[13] Mahmood, Kaleel & Gurevin, Deniz & van Dijk, Marten & Nguyen,
Phuong. (2020). Beware the Black-Box: on the Robustness of Recent
Defenses to Adversarial Examples.

[14] Raff, Edward & Sylvester, Jared & Forsyth, Steven & Mclean, Mark.
(2019). Barrage of Random Transforms for Adversarially Robust De-
fense. 6521-6530. 10.1109/CVPR.2019.00669.

[15] R. S. Siva Kumar et al., ”Adversarial Machine Learning-Industry
Perspectives,” 2020 IEEE Security and Privacy Workshops
(SPW), San Francisco, CA, USA, 2020, pp. 69-75, doi:
10.1109/SPW50608.2020.00028.


