Research and Teaching at IAS

2018

Prof. Dr.-Ing. Michael Weyrich
History

since 2013
Institute of Industrial Automation and Software Engineering
Professor M. Weyrich

1995 – 2015
Institute of Industrial Automation and Software Engineering
Professor P. Göhner

1970 – 1995
Institute of Control Systems Engineering and Process Automation
Professor R. Lauber

1935 – 1970
Institute of Electrical Installations
Professor A. Leonhard
Institute of Industrial Automation and Software Engineering (IAS)
Faculty of Computer Science, Electrical Engineering and Information Technology of the University of Stuttgart

Research and teaching at the Institute focuses on the topic of **Software Systems for Automation Engineering**.

We see ourselves as a **bridgehead to Product and Plant Automation** in the research disciplines of **Information Technology, Software Technology and Electronics**.

Prof Weyrich was appointed to the University of Stuttgart in April 2013.
Information about IAS

- Institute members
 - Head of institute: 1
 - Research staff: 15
 - Faculty support staff: 5
 - Apprentices: 2

- PhD graduates per annum: ~2

- Undergraduate Projects and Diploma-/Master Theses per annum: ~90

- Exams per annum: >>1000

- Publications per annum: 20-25

- Student Assistants per annum: 40-50
Lectures at the Institute

- Industrial Automation I (German)
- Industrial Automation II (German)
- Technologies and Methodologies of Software Systems I (German)
- Technologies and Methodologies of Software Systems II (German)
- Software Engineering for Real-Time Systems
- Industrial Automation Systems
- Introduction to Computer Science II (German)
- Lecture Series: Software and Automation
- Reliability and Safety of Automation Systems (German)
- Software Engineering Internship
- Industrial Automation Internship

Courses for Degree Programmes

- B. Sc. Elektrotechnik und Informationstechnik
- B. Sc. Mechatronik
- B. Sc. Medizintechnik
- B. Sc. Erneuerbare Energien
- B. Sc. Technische Kybernetik
- B. Sc. Technikpädagogik
- B. Sc. Informatik

- M. Sc. Elektrotechnik und Informationstechnik
- M. Sc. Mechatronik
- M. Sc. Medizintechnik
- M. Sc. Information Technology
- M. Sc. Nachhaltige Elektrische Energieversorgung
- M. Sc. Technikpädagogik
- M. Sc. Verkehrsingenieurwesen
Research at IAS
The research of Automation Technology is based on applications in the manufacturing industry, automotive and urban life.

Institute of Industrial Automation and Software Engineering (IAS)
- Intelligent Automation Systems
- Reliability of Industrial Automation Systems
- Complexity control of cyber-physical systems
Research area: Intelligent Automation Systems

Intelligent automation systems offer opportunities in the area of optimization, flexibility and networked information management.

- Autonomous integration of automation components (Self-X)
- Optimization of automation systems based on process data (Machine Learning, Big Data, Data Analytics)
- Distributed control methods for coordination
- Assistance systems to support the engineering process
Research area: Complexity control of cyber-physical systems

Digital twins, networking and cooperation enable novel engineering and work processes. At the same time, the complexity of cyber-physical systems is increasing due to software and IT.

- Model-driven development of distributed plant controls
- Model-based test of dynamically changing software and hardware systems
- Digital twin and its applications
- Human-machine cooperation in a hybrid reality
Research area: Reliability of Industrial Automation Systems
The quality of automated systems in terms of improving reliability and availability is a key issue in automation.

- Assessment and evaluation of the reliability of automated systems in the Internet of Things
- Fault management and automatic reconfiguration to increase availability
- Test of automated systems and anomaly detection
Model processes at IAS

The model processes are used to represent special automation technology and to demonstrate the capabilities of software systems.
DFG-Project FlexA
Flexibility of assembly and handling machines using multi-agent systems

Requirements:
- Methodical support of the planner in the flexibility process
- Generation and evaluation of adaptation options based on given requirements

Core technologies:
- Product-, process-, resource-model of the machine
- Agent-based assistance system

Approach
- Description of the machine using a model, agents represent components of the machine
- Automated evaluation of production requests
- Generation and evaluation of adaptation options using the model of the machine
- Decision support and assistance in the flexibility planning process
DFG-Project GekoProAg
Decentralized Multiphysics simulation of coupled problems

Requirements:
- Intelligent problem decomposition and cooperation for decentralized simulation
- Improvement of the simulation configuration

Core technologies:
- Software agents
- Simulation
- Case-Based Reasoning

Approach
- Separate consideration of different physical effects
- Software agents for the coordination and exchange of boundary conditions
- Optimization of the simulation configuration using case-based reasoning
- Assisting the engineer in performing Multiphysics simulations on networked PCs
DFG-Project DEPIAS
Decentralized self-organized planning of intralogistics systems with the help of agents

Requirements:
- Support of the planner in the rough planning phase of intralogistics systems

Core technologies:
- Multi-Agent System
- Self-organization

Approach
- Planning of material flow systems is modelled as a dialog-based process and applied to an agent system
- Agents represent resources and try to integrate them into the planned material flow system
- Determination of possible constellations for the material flow system to be planned
BMWi-Project EMuDig40
Data analytics in quality assurance

Requirements:
- Analysis of process data for compliance with defined quality characteristics
- Real-time recommendations to the worker

Core technologies:
- PLC-based data acquisition
- Feature extraction
- Data Analytics (online/offline)

Motivation
- Sensor data contains information about the plant and process status and can be used to improve the process quality

Approach
- Systematic extraction of unknown relationships and patterns
- Data acquisition and integration, dimension reduction, data analysis, recommendations
 ➢ Data-driven quality optimization
Digital Twin
Synchronization of digital models with the real manufacturing cell

Requirements:
- Cross-domain synchronization of engineering models with a real manufacturing cell in operation

Core technologies:
- Engineering and simulation models
- Robot / PLC code analysis
- Decision Tree in Assistance System

Approach
- Discipline-specific change detection in automation technology (anchor points)
- Consistency check between detected anchor points using a decision tree
- Software-assisted synchronization of changes in the Digital Twin
- Time and cost savings in engineering during the operational phase
Cooperation with the following companies

- AUDI AG
- Daimler AG
- Deutsche Accumotive GmbH & Co. KG
- Hirschvogel Umformtechnik GmbH
- iss (Innovative Software Services GmbH)
- Robert Bosch GmbH
- Siemens AG
- SMS group GmbH
- Vector Consulting GmbH
- Vector Informatik GmbH
- OTTO FUCHS KG
Maker Space
IAS supports various start-up companies

<table>
<thead>
<tr>
<th>Company</th>
<th>Project Description</th>
<th>Duration</th>
<th>Funding Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKU</td>
<td>Create technologies that combine power generation with efficient control systems.</td>
<td>Juni 2014 – Mai 2015, Juni 2015 – Mai 2016</td>
<td>EXIST, Junge Innovatoren</td>
</tr>
</tbody>
</table>
Thank you!

Prof. Dr.-Ing. Michael Weyrich

e-mail michael.weyrich@ias.uni-stuttgart.de
web www.ias.uni-stuttgart.de
phone +49 (0) 711 685-67301
fax +49 (0) 711 685-67302

University of Stuttgart
Institut für Automatisierungstechnik und Softwaresysteme
Pfaffenwaldring 47
70550 Stuttgart