

University of Stuttgart

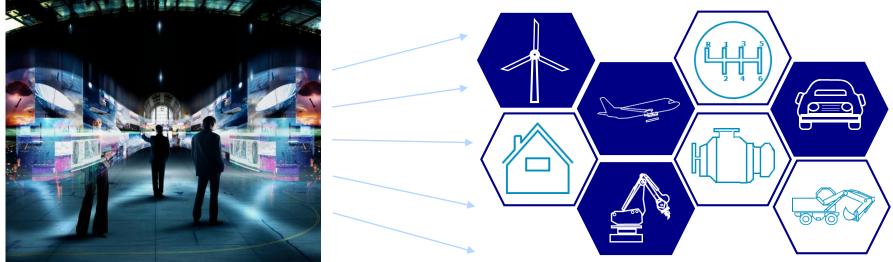
Institute of Industrial Automation and Software Engineering


Prof. Dr.-Ing. Dr. h.c. M. Weyrich

Co-Simulation of Automation Systems in the Internet-of-Things

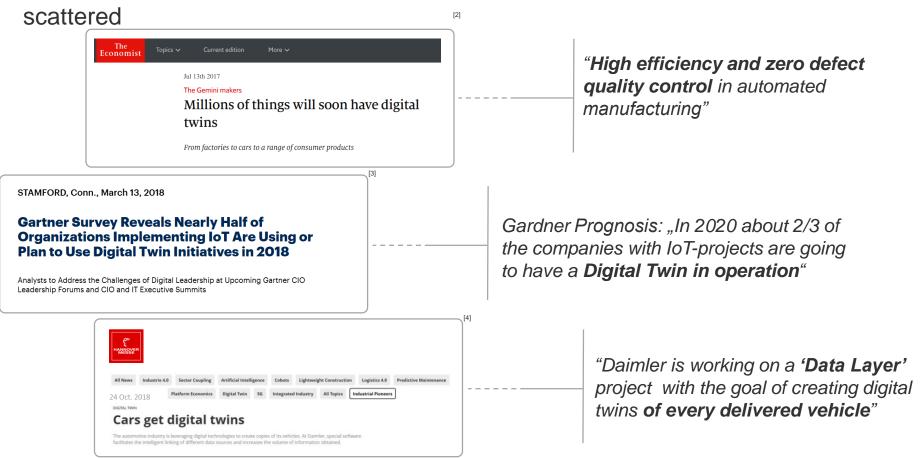
State-of-the-Art and Approaches

Stuttgart, 04.04.2019



Contents

- Vision and Potential of Co-Simulation
- State-of-the-Art and our Research approach
- Hurdles and future Challenges


Simulation: Bringing a connected Reality into the Digital Space

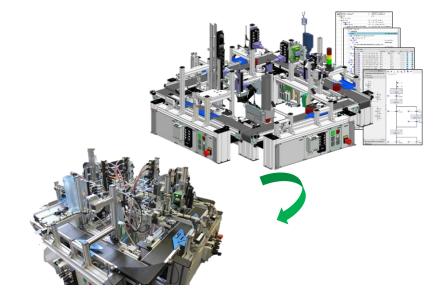
Digital technologies are revolutionizing value chains, organizational structures and creating new technical Features in almost all industries.

Co-Simulation in the Internet-of-Things change the way how systems work

Digital Twins are a virtual representation of the physical system which can be

Value Add of Co-Simulation based on Digital Twins

In future, various simulations will utilize In Design time and run in parallel to a real system in operation

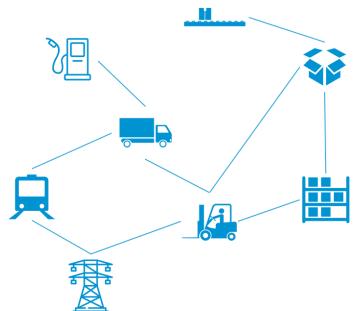

During Engineering and Design:

- prevent design errors and serious defects
- improves safety and usability
- speeds up market launch

During Operation:

- prevent down times
- Gain productivity by optimization
- Quality control

Digital Twins: co-simulated models to cover various aspects


For Instance: a Logistics Network with connected Subsystems

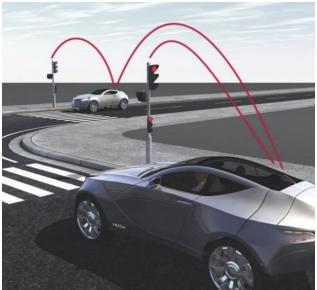
Co-Simulation aggregates all networked data and thus enables analysis of the entire system during operation

- A joint simulation of all individual subsystems is useful for prognosis
- Companies need to deploy various simulation tools to cover them all

A joint (co-)simulation, needs to cope with systems which are

- in a *different location* (special distributed / decentral) and
- from *different vendors* (heterogynous IT)

Internet-of-things systems are organized in a decentralized way, consisting of components such as transport systems, loading facilities and warehouses


For Instance: Automated Driving of Connected Cars

Co-simulation support decision making of Autonomous Systems which act in a dynamic (i.e. changing) environment.

- More and more artificial intelligence is used to enable autonomous behavior
- 5G enable seamless connections during runtime, like Car2X

A joint (co-)simulation need to incooperate

- Autonomy of decision making
- Dynamics of participants, i.e. changing participants

Tasks are solved cooperatively by autonomously interconnecting systems which join and leave a simulation

Co-Simulation Approaches

Different concepts can be used in various domains for the purposes of simulation.

. . .

High Level Architecture

Federating (combat) simulation

IEEE standard for distributed simulation and co-simulation developed by the US Department of Defense mainly for flight simulation.

IT Middleware and Architectures

IT to interconnect multiple (Co-)Simulation

OSGi: Java object communication framework for coupling software during runtime.

OPC UA is a service-oriented architecture mainly used for industrial automation.

© 2019, IAS, Universität Stuttgart

Functional Mock-up Interface

A tool independent standard to support co-simulation and model exchange, mainly used in the automobile design and manufacturing sector.

- Improves the exchange of simulation models between suppliers and OEMs, deployed world-wide
- FMI is *supported by over 100 tools*, such as MATLAB Simulink, OpenModelica, CANoe
- Is based on XML and C-Headers

However, dedicated to "offline" simulation, i.e. *no simulation can be integrated during runtime*

Research approach: Software-Agents build a Co-Simulation-Framework

A "Plug-and-Simulate" Framework for co-simulation during runtime is under research, in which simulation can be added during runtime.

Dynamic integration while in operation

Agents *encapsulate simulation tools* and enable them to be integrated into a Co-Simulation during runtime.

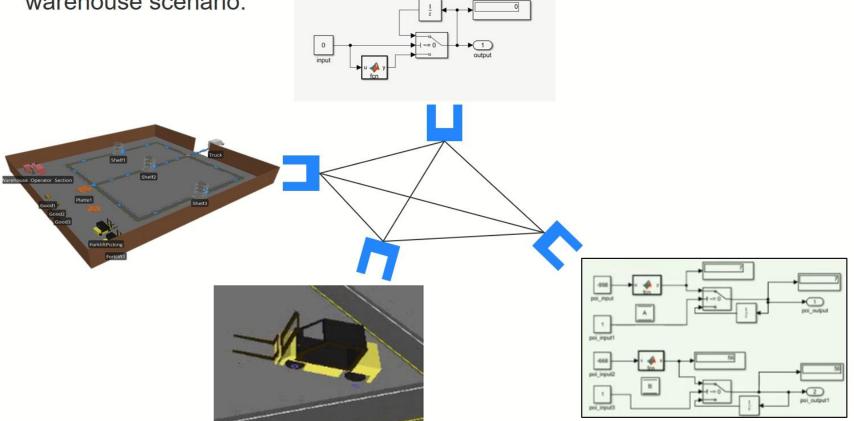
All other Co-Simulation can run and do not have to be paused or stopped, but need to give up their lead.

Smooth "plug-in" despite heterogeneous interfaces

An agent-wrapper encapsulates simulation tools, i.e. all *tools with open interfaces can be used* for Co-Simulation.

Tools do not have to obey a specific Co-Simulation-Framework.

Agent-based Co-Simulation based on an Open IT-Architecture


Simulations are coupled and synchronized by Software-Agents to enable "Plugand-Simulate".

- Agent-system provides an IT-Architecture, by which the data exchange between the Co-Simulationparticipants is enabled.
- Synchronization of the Co-Simulation-participants is also enabled by this Architecture. © 2019, IAS, Universität Stuttgart

Example: Co-Simulation of a Smart Warehouse

The Framework connects MATLAB and Unity models during runtime simulating a warehouse scenario.

Future Scenarios of Co-Simulation

More than 200 experts from the manufacturing domain share our assessment of co-simulation.

Experts were ask by TU Dresden [10] and claim:

- The future engineering is to a *high degree integrated* and simulation is an important basis.
- During the operation the virtual factory runs parallel to continuously optimize it.
- System integrators indicate a strong need for process models, simulation libraries, modeling standards and open interfaces.

However,

Motivation (business model) for open interfaces and control of the lead (simulation flow) is required.

Links and Bibliography

[1] Siemens AG, Pictures of the Future: https://www.siemens.com/innovation/en/home/pictures-of-the-future/digitalization-and-software/simulation-and-virtual-reality-trends.html

[2] https://www.economist.com/business/2017/07/13/millions-of-things-will-soon-have-digital-twins

[3] https://www.gartner.com/en/newsroom/press-releases/2018-03-13-gartner-survey-reveals-nearly-half-of-organizations-implementing-iot-are-using-or-plan-to-use-digital-twin-initiatives-in-2018

[4] https://www.hannovermesse.de/en/news/cars-get-digital-twins-102017.xhtml

[5] https://www.elektroniknet.de/markt-technik/automotive/zuverlaessige-analyse-und-test-von-car2x-funktionen-mit-canoe-car2x-80932.html

[6] https://fmi-standard.org/

[7] https://www.ieee.org/

[8] https://www.osgi.org/

[9] https://opcfoundation.org/about/opc-technologies/opc-ua/

[10] M. Oppelt, M. Barth, M. Graube and L. Urbas, "Enabling the integrated use of simulation within the life cycle of a process plant: An initial roadmap: Results of an in-depth online study," 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, 2015, pp. 49-55

Further Literature

Jung, T.; Jazdi, N.; Weyrich, M.: A Survey on Dynamic Simulation of Automation Systems and Components in the Internet of Things. 22nd IEEE International Conference on Emerging Technologies And Factory Automation, Limassol, Cyprus, 2017

Jung, T.; Weyrich, M.: Synchronization of a "Plug-and-Simulate"-capable Co-Simulation of Internet-of-Things-Components. 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, Gulf of Naples, Italy, 2018

Jung, T.; Jazdi, N.; Weyrich, M.: Dynamische Co-Simulation von Automatisierungssystemen und ihren Komponenten im Internet der Dinge VDI-Kongress Automation 2018, Baden-Baden, 2018

Jung, T.; Shah, P.; Weyrich, M.: Dynamic Co-Simulation of Internet-of-Things-Components using a Multi-Agent-System. 51st CIRP Conference on Manufacturing Systems, Stockholm, Sweden, 2018

Jung, T.; Jazdi, N.; Weyrich, M.: Dynamische Co-Simulation von Automatisierungssystemen und ihren Komponenten im Internet der Dinge - Prozessorientierte Interaktion von IoT-Komponenten. 15. Fachtagung EKA – Entwurf komplexer Automatisierungssysteme, Magdeburg, 2018

© 2019, IAS, Universität Stuttgart

University of Stuttgart Institute of Industrial Automation and Software Engineering

Thank you!

Prof. Dr.-Ing. Dr. h.c. Michael Weyrich

e-mail michael.weyrich@ias.uni-stuttgart.deweb www.ias.uni-stuttgart.dephone +49 (0) 711 685-67301fax +49 (0) 711 685-67302

University of Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Pfaffenwaldring 47 70550 Stuttgart