

Engineering of Automated Systems with Mechatronic Objects

On Cyber Physical Systems, intelligent Units, Industrie 4.0 Components and other granular and decentralized elements in automation engineering

Institute of Industrial Automation Technology and Software Engineering (IAS), University of Stuttgart

> Prof. Dr.-Ing. Michael Weyrich 07.07.2014

Institute of Industrial Automation and Software Engineering (IAS); Faculty of Computer Science, Electrical Engineering and Information Technology of Stuttgart University

Research and Teaching of the Institute is focused on software systems for automation engineering and is based on our background in information technology, software and electronics.

We are researching towards applications of automated manufacturing, automotive and consumers products.

Contents

- Vision
- State-of-the-Art: Technologies in Automotive
- Research activities
 - Example of Smart Factory and Agent-based control
 - Identification of Mechatronic Objects
 - Moving Design to Runtime
- Conclusion

Contents

• Vision

- State-of-the-Art: Technologies in Automotive
- Research activities
 - Example of Smart Factory and Agent-based control
 - Identification of Mechatronic Objects
 - Moving Design to Runtime
- Conclusion

Vision: Mechatronic Objects , Smart Units / Intelligent Nodes **Future Trend:** The Internet of Things and Services is automating the world.

Mechatronic Objects, Cyber-physical Systems, ...

Smart, networked Systems as a game-changer: New ways of cooperation among distributed and intelligent units. Interaction with human in a hybrid reality.

Contents

- State-of-the-Art: Technologies in Automotive
- Research activities
 - Example of Smart Factory and Agent-based control
 - Identification of Mechatronic Objects
 - Moving Design to Runtime
- Conclusion

Networking Technology of the Car changes the process of Development

- The number of ECU (Electronic control units), signals and bus systems is increasing
- Complexity of Electric / Electronics and software increases due to driver assistant systems and connected cars
- Process improvement and quality management in development (AUTOSAR Standard)
- Model-based development and simulation (SiL, HiL)

Example Daimler (E class)

Contents

- State-of-the-Art: Technologies in Automotive
- Research activities
 - Example of Smart Factory and Agent-based control
 - Identification of Mechatronic Objects
 - Moving Design to Runtime
- Conclusion

Examples for Smart Units

"Smart Units" are conceived by engineers and dedicated towards special application thereby fulfilling a particular customer value

"Intelligent Bin" requests for a refill on its own

- iBin is counts the parts using an integrated camera
- The system interacts with the Cloud for part logistics

(Partial) Decentralization of the Architecture

- The level structure in automation (so-called automation pyramid) is dissolving
- Decentralized services are self-organizing and any hierarchy becomes blurred
- Real-time Systems remain however for some time on the bottom field level in the close future

Case Study: "Industrie 4.0" Demonstrator

Cooperation between university institutes of the Automation Community

Application Scenario "My Yogurt"

 Individual Product Configuration: Customers can order various amounts and flavors of yogurt via the internet. The yogurt is produced using different machines nation wide.

> Diagnosis of the distributed machinery:

In the event of system failure of similar machines, an inquiry can be launched to obtain information on how the incident was resolved at another system. This approach can also be deployed for preventive maintenance.

Case Study: What is special?

Requirements

- Configuration of products with interactive resource allocation
- > Diagnosis to improve reliability
- Reliable and easy to use by operators
- Re-configurable in the sense of interoperability, adaptivity and ad-hoc cooperation

Technology

- Scheduling, Modelling of Processes
- Apps for human machine communication
- > Service-oriented Architecture
- Network Management Web
 Based Enterprise Management
- Cloud-Services for validation of embedded systems

Decentralization of Architecture

- Hierarchies are fading and borders become blur
- Decentralized services are partially self-organised by agents

• Vision

- State-of-the-Art: Technologies in Automotive
- Research activities
 - Example of Smart Factory and Agent-based control
 - Identification of Mechatronic Objects
 - Moving Design to Runtime
- Conclusion

How to identify the Modules?

Top-down analysis of existing systems to identify base elements of existing systems

- Consideration of the domian's mechanical design, electronics and software
- Modules should fulfill a defined functionality
- Products or de-facto standardized subsystems which are efficient and well evaluated

Elements Small units e.g. from a bill of materials

Is this component depended to the other component to fulfill a function?

		Image acquisition	Parts handling	Control	l elements without
		module	module	module	
	Matrix after clustering:	28 31 29 5 21 7	6 20 32 17 15 3	9 26 2	allocation to modules
	Camera-interface	28 1 1 0 2 0 0 0	0 0 0 0 0 0	0000	
nts	Image sensor	25 1 1 0 2 0 0 0	/ <u>/ 0 0 0</u> 0 0 0 /	0 1 0	0 2 0 0 2 0 0 0 0 0 0 0 0 0
	Drive testing part rotation	31 0 0 1 0 0 0 0		<u></u>	0 0 0 0 2 0 0 0 0 0 0 0 0 0
n	Image analysis software	29 2 2 0 1 0 0 0		0 0 2 0 0	0 0 0 0 2 0 0 0 0 0 0 0 0
	Screw-gripper	5 0 0 0 0 1 2 0		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
l of	arol lifting-turn-unit	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Drive Lifting				
iais	Control illumination				
	Control Rotary indexing table				
	Control testing part rotation				
	HMI				
	PLC			0 0 0 0 0	
	Drive for Rotary indexing table	3 0 0 0 2 0 2	2 0 2 0 0 0 1	0 0 0 0	2 0 0 1 1 1 0 1 0 0 0 0 0
	Pneumatics testing system	9 0 0 0 0 2 0 0	0 0 0 0 0 0 0	1 0 0 0 0	0 0 2 1 0 1 2 0 1 0 0 0 0 0
	Lifting-turning-unit	4 0 0 0 0 2 2 2	2000000	0 1 0 0	1 0 0 2 0 0 0 1 0 0 0 0 0
	Illumination	26 0 1 0 2 0 0 0	0200000	0 0 1 0 0	0 1 0 0 2 0 0 0 2 0 0 0 0 0
nent	Adaptor testing part	2 0 0 1 0 2 0 0	0002000	0 0 0 1 5	2 0 1 0 0 0 0 1 0 0 0 0 0
	Rotary indexing table		0 0 2 0 🐧 0 2	0 1 0 2	1 0 0 0 0 0 0 1 0 0 0 0
led	Camera body	24 1 2 0 0 0 0 0	0 0 0 0 0 0 0	0 0 1 0 0	0 1 0 0 0 0 0 2 0 0 0 0 0
	Guidance for sorting of testing part		0 0 0 0 0 0 0 0	2 0 0 1 0	0 0 1 0 0 0 0 2 0 0 0 0 0
othor	Digital I/O	22 0 0 0 0 2 1 2		1 0 0 0 0	
JUIEI	Electronic units			$\frac{0}{1}$ $\frac{0}{2}$ $\frac{1}{2}$ $\frac{0}{2}$ $\frac{0}{2}$ $\frac{0}{2}$	
nont 느	Control software				
nent					
l a					
	IDC motor centrifugal feeder		0 0 0 0 0 0 0 0/		$0 \ 0 \ 0 \ 1_{1} \ 1 \ 1 \ 2 \ 0 \ 0 \ 1 \ 1 \ 0 \ 2$
n?	Frame of centrifugal feeder	13 0 0 0 0 0 0 0	0000000		0 0 0 0 0 0 0 2 2 1 1 2 1
	Drum	11 0 0 0 0 0 0 0	000000/		0 0 0 0 0 0 0 1 0 2 1 2
	Driveshaft of centrifugal feeder	10 0 0 0 0 0 0 0	000000	β o o d α	
			Inspection	Sip	porting and Parts feeding
Interaction	Weight		support module	e Sam	tau modulo modulo
Required	2				Flements are
Desired	1	mechtronical modu	ıle distribu	ited links	Elements die
Desired	<u>L</u>	standalone module	intersec	ctional link	arouned together
Indifferent	0			T	grouped together
					as modulos

Modularization for Engineering

A Web-Tool is available for data processing, clustering and value analysis

• Vision

- State-of-the-Art: Technologies in Automotive
- Research activities
 - Example of Smart Factory and Agent-based control
 - Identification of Mechatronic Objects
 - Moving Design to Runtime
- Conclusion

"Moving Design to Runtime"

Smart engineering through learning and self-configuration

Method: Configuration of automation systems through an agentbased Configuration of preconceived Components. => Flexible and Re-configurable

Challenge of learning from the perspective of the engineer

Keep system compliant with changing requirements

• Vision

- State-of-the-Art: Technologies in Automotive
- Research activities
 - Example of Smart Factory and Agent-based control
 - Identification of Mechatronic Objects
 - Moving Design to Runtime
- Conclusion

Seamless integration of Automation Technology

Information technology has reached a stage from which disruptive changes of existing paradigms can be expected

Research (...@IAS)

Revolving around the application domain

Leading questions:

- How to compose automated systems effectively?
 - Control of Decentralized
 Systems / Multi-agent systems
 as a control paradigm
 - Identification methodologies for new Mechatronic Objects
 - Adaptation and learning
- How to ensure dependability and safety of systems?
 - Evaluation, Test of systems (level of maturity etc.)