Engineering of Automated Systems with Mechatronic Objects

On Cyber-Physical Systems, intelligent Units, Industrie 4.0 Components and other granular and decentralized elements in automation engineering

Institute of Industrial Automation Technology and Software Engineering (IAS)

Prof. Dr.-Ing. Michael Weyrich
27. May 2014
Abstract: Automation technology has trigged a lot of changes in manufacturing, automotive and urban life. Today we seem to be gradually approaching tipping points which might trigger disruptive innovation in the future.
In automation engineering, many industrial automation systems are configured rather than designed. There is a tendency towards so-called mechatronic objects or intelligent units which are envisioned as building blocks for the design of automation systems. This presentation discusses research questions to identify such objects / units, their configuration and coordination using multi-agent systems.
Institute of Industrial Automation and Software Engineering (IAS); Faculty of Computer Science, Electrical Engineering and Information Technology of Stuttgart University

Research and Teaching of the Institute is focused on software systems for automation engineering and is based on our background in information technology, software and electronics.

We are researching towards applications of automated manufacturing, automotive and consumers products.
Resume

Education in the area of mechatronics
- Studies of Electronic Engineering and Control Engineering at University of Applied Science (Saarbrücken), Ruhr University (Bochum) and University of Westminster (London)
- Doctorate, RWTH (Aachen) in Mechanical Engineering

Daimler
- Member of the exchange group research and technology
- Digital Factory Powertrain and Head of Function CAx Process Chain Production
- Head of Department Engineering Services, Bangalore (India)

Siemens Automation & Drives /Motion Control
- Head of Department, direct Report to Head of Business Unit

University Professor
- Chair of Manufacturing Automation, University of Siegen
- Institute of industrial Automation Technology and Software Engineering, University of Stuttgart
Contents

• Vision

• State-of-the-Art: Technologies in Automotive

• Research activities
 – Example of Smart Factory and Agent-based control
 – Identification of Mechatronic Objects
 – Moving Design to Runtime

• Conclusion
Contents

- Vision

- State-of-the-Art: Technologies in Automotive

- Research activities
 - Example of Smart Factory and Agent-based control
 - Identification of Mechatronic Objects
 - Moving Design to Runtime

- Conclusion
Vision: Mechatronic Objects / Smart Units / Intelligent Nodes

Future Trend: The Internet of Things and Services is automating the world.

Assumption 1: Objects are more and more enabled by means of communication

Assumption 2: New services are arising using networked information

- Unified interfaces for networking semantics
- Integrated Know-how inside objects
- Configuration instead of development
- Knowledge based Engineering
- Virtual Evaluation
- Libraries with basic module / building blocks
- Requirement definition aided by architectural assistant

Source of picture: Internet Mapping Project
Smart, networked Systems as a game-changer: New ways of cooperation among distributed and intelligent units. Interaction with human in a hybrid reality.
Contents

• Vision

• State-of-the-Art: Technologies in Automotive

• Research activities
 – Example of Smart Factory and Agent-based control
 – Identification of Mechatronic Objects
 – Moving Design to Runtime

• Conclusion
Networking Technology of the Car changes the process of Development

› The number of ECU (Electronic control units), signals and bus systems is increasing

› Complexity of Electric / Electronics and software increases due to driver assistant systems and connected cars

› Process improvement and quality management in development (AUTOSAR Standard)

› Model-based development and simulation (SiL, HiL)

Example Daimler (E class)
Example Automotive Software Development
Management of Electric / Electronic and Software Complexity aided by Design Tools

Definition of Requirements

Logical structuring into blocks

Design of Software Architecture

Implementation of Software Components

Design of Electric / Electronic Hardware
Development of
- ECUs
- Circuit diagrams
- Wire harness
- Etc.

Hardware Design and spacial distribution

© 2014 IAS, Stuttgart University
Contents

• Vision

• State-of-the-Art: Technologies in Automotive

• Research activities
 – Example of Smart Factory and Agent-based control
 – Identification of Mechatronic Objects
 – Moving Design to Runtime

• Conclusion
Examples for Smart Units

“Smart Units“ are conceived by engineers and dedicated towards special application thereby fulfilling a particular customer value

“Intelligent Bin“ requests for a refill on its own

› iBin is counts the parts using an integrated camera

› The system interacts with the Cloud for part logistics

Source: Fraunhofer IML, Prof. Dr. Michael ten Hompel
(Partial) Decentralization of the Architecture

› The level structure in automation (so-called automation pyramid) is dissolving

› Decentralized services are self-organizing and any hierarchy becomes blurred

› Real-time Systems remain however for some time on the bottom field level in the close future
Case Study: “Industrie 4.0” Demonstrator

Cooperation between university institutes of the Automation Community

Application Scenario “My Yogurt“

› **Individual Product Configuration:**
 Customers can order various amounts and flavors of yogurt via the internet. The yogurt is produced using different machines nationwide.

› **Diagnosis of the distributed machinery:**
 In the event of system failure of similar machines, an inquiry can be launched to obtain information on how the incident was resolved at another system. This approach can also be deployed for preventive maintenance.
Case Study: What is special?

Requirements
› Configuration of products with interactive resource allocation
› Diagnosis to improve reliability
› Reliable and easy to use by operators
› Re-configurable in the sense of interoperability, adaptivity and ad-hoc cooperation

Technology
› Scheduling, Modelling of Processes
› Apps for human machine communication
› Service-oriented Architecture
› Network Management - Web Based Enterprise Management
› Cloud-Services for validation of embedded systems

Source: [Christian Diedrich, OvGU]
Case Study: Manufacturing Management and Scheduling

Decentral System Topology coordinated by an online marked place concept

› Scheduling and job distribution
› Resource allocation and subcontracting
› Consideration of special aspects such as energy efficiency
› Quick integration of sub components (I40 Components) into the system

$T_1, T_2, \ldots, T_n : \text{dezentral I40 Components}$
Decentralization of Architecture

- Hierarchies are fading and borders become blur
- Decentralized services are partially self-organised by agents

Assignment of production jobs

Re-configuration

Diagnosis

Documentation

Quality Control

Condition Monitoring

Services for human machine Communication (Apps)

Coordination layer:
Agents with directory of services and data processing

Field Level (Real time level): Process Control, Sensors, Actuators etc.
Contents

• Vision

• State-of-the-Art: Technologies in Automotive

• Research activities
 – Example of Smart Factory and Agent-based control
 – Identification of Mechatronic Objects
 – Moving Design to Runtime

• Conclusion
How to identify the Modules?

Top-down analysis of existing systems to identify base elements of existing systems

› Consideration of the domain’s mechanical design, electronics and software

› Modules should fulfill a defined functionality

› Products or de-facto standardized subsystems which are efficient and well evaluated
Grouping by sorting the structure diagonal

Based on the optimized structure of the DSM groups of components, a defined object can be identified.

Components listed in „line“ and „column“ have a relationship

Group of components after optimization of the matrix form an object
Identification of Modules using the Design Structure Matrix (DSM)

Is this component depended to the other component to fulfill a function?

Elements are grouped together as modules

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>2</td>
</tr>
<tr>
<td>Desired</td>
<td>1</td>
</tr>
<tr>
<td>Indifferent</td>
<td>0</td>
</tr>
</tbody>
</table>
Modularization for Engineering

A Web-Tool is available for data processing, clustering and value analysis

- Bill of material
- I/O listings
- CAD data
- Third party products

Encapsulated knowledge

Knowledge
BoM
E/E
Software

Utility value

Clustering
P-Median model

Definition of module by DSM

<table>
<thead>
<tr>
<th></th>
<th>K 1</th>
<th>K 3</th>
<th>K 4</th>
<th>K 5</th>
<th>K 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K 5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Software tool

Java, PHP, MySQL; Open Model Sphere

Basic Design

Information
- Function
- Module
- Value
 - Manufacturing
 - Engineering
Evaluation and Optimization

Modelling and simulation is based on function and modules

Concept is modeled based on functions

Selection of Objects

Load dependent assessment of energy efficiency

Re-composition, dimensioning and synthesis

okay?

Structure ready

Library of Mechatronic Objects

Analysis for energy consumption
Contents

• Vision

• State-of-the-Art: Technologies in Automotive

• Research activities
 – Example of Smart Factory and Agent-based control
 – Identification of Mechatronic Objects
 – Moving Design to Runtime

• Conclusion
„Moving Design to Runtime“

Smart engineering through learning and self-configuration

Method: Configuration of automation systems through an agent-based Configuration of preconceived Components.
=> Flexible and Re-configurable

Challenge of learning from the perspective of the engineer
• Keep system compliant with changing requirements

(auto-configuration, learning)

Boundaries
Learning Architecture
(Example of industrial image processing)

Layer 1
Execution layer
- Image processing with classifier
- Product recognition
- Camera-guided robot

Layer 2
Adaption layer
- Observation for parameter adjustment (open loop control)

Layer 3
Optimization
- Simulation-based optimization of models (closed loop control)

System target
- Products / Work pieces
- Automation system
- Image Processing
- Classifier
- Parameter adjustment
- Observer
- Quality
- Sorted Products
- Optimization
- Simulation

© 2014 IAS, Stuttgart University
Citation of the DFG SPP: Organics Computing

1. OC means: Move design time decisions to runtime!
2. „Self“ is nothing magic, it has to be done.
3. Principle of non-critical complexity
4. No decentralization at any cost!
5. OC is about agents situated in a real world
 - Cognitive agents
 - Social agents
Contents

• Vision

• State-of-the-Art: Technologies in Automotive

• Research activities
 – Example of Smart Factory and Agent-based control
 – Identification of Mechatronic Objects
 – Moving Design to Runtime

• Conclusion
Seamless integration of Automation Technology

Information technology has reached a stage from which disruptive changes of existing paradigms can be expected.

- **Coordination of the Internet of Things**
 - New concepts for architecture and middleware

- **M2M Machines**
 - Can communicate with other devices, new standards for fieldbuses and wireless networks may come up

- **Autonomous Decisions**
 - Self-management and self-adjustments in the sense of independent action

- **Human Machine Interface (HMI)**
 - Seamless integration of SmartPhone and Apps

- **Intelligent Data Processing**
 - Sensors aggregate data and report the semantics of system conditions

- **Knowledge Processing**
 - Computer based modelling of knowledge with deductive reasoning

- **Virtual Engineering**
 - Design and evaluation of systems in an augmented reality

© 2014 IAS, Stuttgart University
Research (...@IAS)

Revolving around the application domain

Leading questions:

- How to compose automated systems effectively?
 - Control of Decentralized Systems / Multi-agent systems as a control paradigm
 - Identification methodologies for new Mechatronic Objects
 - Adaptation and learning

- How to ensure dependability and safety of systems?
 - Evaluation, Test of systems (level of maturity etc.)