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Abstract—The transition from monolithic software to 
microservices promises advantages in scalability and continuous 
development, accompanied by the challenge of correctly 
understanding and efficiently addressing errors in distributed, 
service-based systems. Incidents in these systems can incur 
substantial costs, necessitating rapid root cause analysis (RCA) 
to restore normal operations. Conventional RCA methods, while 
offering assistance, demand significant manual effort and prove 
challenging as well as time-consuming even for experienced 
engineers. In response to recent advances in the area of machine 
learning, this paper explores novel approaches to enhance the 
speed and interpretability of RCA in service-based systems. 
Based on a structured literature review, current trends and 
research gaps are extracted. In addition, a concept is developed 
to improve the real-time behavior and comprehensibility of 
RCA results. The feasibility of the concept is evaluated on the 
basis of a value proposition and stakeholder analysis. By 
integrating generative AI to generate root cause explanations 
and propose mitigating actions, this study seeks to advance the 
interpretability of RCA results. In combination with 
improvements to RCA efficiency and real-time processing this 
reduces the cost and complexity associated with service-based 
systems. 

Keywords—Root Cause Analysis, service-based, real-time, 
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I. INTRODUCTION 

Classic monolithic software architectures consist of 
closely linked processes executed as a single application. 
This results in an executable that is easy to deploy and test in 
one centralized place. However, in the event of load peaks, 
the entire application must be scaled accordingly to handle 
extra traffic, even if the load is only concentrated on one 
process within the system. Moreover, the growing 
complexity of such monolithic code bases makes it 
increasingly difficult to implement modifications and keep 
track of the code. Additionally, maintenance and updates to 
the functionality always require new releases of the entire 
application. [1] 

In order to meet the increasing demand for connectivity, 
scalability and continuous development, modern cloud 
solutions rely on microservices architecture. This involves 
dividing a complex system into individual systems that are as 
small and independent as possible. System functions are 
realized through communication between the required 
services. This separation makes it easier to scale individual 

services, develop them further or even replace them during 
operation. [2] 

However, the advantages of microservices architectures 
also bring new challenges. Due to the huge number of 
services involved and the continuous development of 
individual components, errors can occur. These errors are 
then difficult to localize and understand so suitable repair 
measures can be initiated. [3] Incidents in large service-based 
cloud systems can be very expensive, especially in the direct 
customer environment or if production comes to a standstill. 
[4] In these cases, service providers should be able to react 
quickly to restore normal operation. [5] Errors in the form of 
downtime can, according to the Ponemon Institute [6], 
amount to almost $9,000 per minute, which is why fast, 
efficient and precise methods for root cause analysis (RCA) 
offer great savings potential for companies. 

Conventional methods for RCA already offer the 
possibility of simplifying the analysis steps. However, they 
still require significant time and effort for manual 
examinations of data sources such as logs and traces and are 
a challenge even for experienced engineers.[7] 

New approaches to real-time processing of log and trace 
data offer the opportunity to accelerate RCA and greatly 
reduce response times for affected teams. In combination 
with recent advancements in machine learning, it is possible 
to move beyond reactive strategies towards predictive 
approaches that already recognize potential problems and 
warn of failures in a timely manner. For this reason, this 
thesis examines methods that improve the real-time 
capability of RCA and enable engineers to better understand 
and predict incidents.  

The main objective of this research is to investigate such 
approaches that utilize artificial intelligence (AI) for real-
time processing of log and trace data to improve RCA in 
dynamically evolving service-based systems. The integration 
of AI techniques is intended to improve the efficiency and 
accuracy of problem detection and resolution. It also aims to 
enable proactive troubleshooting by predicting incidents and 
ultimately increase the overall reliability and performance of 
these systems. In a further section, this research will examine 
the proposed methods in terms of technology transfer and 
economic aspects. The aim is to evaluate the value 
proposition of the technology and its potential for use in an 
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industrial environment. This includes identifying the specific 
stakeholders and presenting the opportunities and risks for the 
technology in practice. 

 

II. METHODOLOGY 

A systematic literature review (SLR) is a method of 
comprehensively identifying, evaluating, and summarizing 
existing research relevant to a particular research question or 
topic. The aim of an SLR is to provide a comprehensive and 
neutral overview of a field of research and to record the 
current state of research as comprehensively as possible. It 
can also be used to identify gaps in research on a particular 
topic. Conducting an SLR consists of several steps, which are 
described in the following sections. 

A. Defining a research question 

The first step in conducting a systematic literature review 
is to define the research question and establish inclusion and 
exclusion criteria. These so-called "requirements" determine 
the basis on which research studies are classified as relevant 
for addressing the specified research question. Furthermore, 
exclusion criteria can also be defined. These criteria help to 
maintain the objectivity of the review and ensure that the 
selected studies are in line with the research question. Five 
requirements were defined for this study. 

1) Real-time behavior 

This requirement evaluates the selected timeslot 
used for assessment in RCA. Depending on the 
approach this can range from static slots to event-
driven selection or even real-time updates to the 
system model preserving historical data. 

2) Scope of the analysis 

Depending on the system, it may be challenging 
to gain visibility into specific services. Therefore, it 
is essential to evaluate the granularity and level of 
detail provided by each approach. 

3) Interpretability of the results 

Also considered as an important aspect is the 
presentation and interpretability of analysis results. 
Improvements may include the generation of root 
cause explanations or suggestions for corrective 
actions.  

Approaches should simplify RCA and enhance 
ease of use, reducing efforts for service personnel. 
Additionally, the integration of expert knowledge or 
feedback is considered as it can improve decision-
making in the long run. 

4) Intelligence and proactivity of the approaches 

Proper implementation of modern AI methods 
can significantly enhance the results of RCA. 
Integrating such methods is expected and can 
improve modern tools' ability to detect patterns in 
massive amounts of data. This could eventually lead 
to a shift from reactive analysis to proactive and 
predictive strategies. 

5) Adaptability 

Lastly, adaptability is examined as a criterion for 
inclusion. Approaches that can be easily or 

automatically adapted can be used in multiple 
environments. These agile approaches minimize the 
need for custom-tailored solutions for each use case, 
ensuring their relevance and long-term impact. 

B. Develop and validate the search strategy 

Once the research question and the requirements have 
been defined, a systematic search strategy is developed to 
identify relevant literature in the databases. The search for 
this paper queried the electronic databases IEEE Xplore, 
SpringerLink, ACM Library, and Scopus using a specially 
developed search string. A small amount of gray literature 
was also included. 

The search string consists of keywords, Boolean 
operators, and specific subject terms that effectively narrow 
down the search to a particular subject area. The query was 
revised and refined through several iterations until the desired 
scope of results was achieved. The terms of the query 
remained mostly the same between revisions, but the Boolean 
operators linking them differed slightly with each new 
version. 

Fig. 1. SLR methodology 

Final version of the search string: n=1040 hits with 
416 hits between 2020-2023 

("Root Cause Analysis" OR RCA) AND (causality 
mining OR "site reliability engineering" OR SRE OR 
observability) AND (service-based OR distributed) AND 
(systems OR infrastructure) 

C. Screening for inclusion 

All identified articles underwent a screening process to 
determine their eligibility for inclusion in the review. The 
screening process involved two stages: title and abstract 
screening, followed by full-text assessment. The software 
tool ASReview Lab was used to efficiently narrow down a 
collection of 416 papers to a more manageable subset of 54 
for in-depth analysis. To utilize this tool the user inputs data 
into the adaptive learning algorithm of the tool by labeling 
the literature as “relevant” or “not relevant” based on their 
title and abstract. ASReview Lab then utilizes this data to 
prioritize the most applicable articles to feed to the user. Once 
no more relevant literature can be identified in the feed, the 
user can conclude the search. [8] ASReview Lab enabled 
efficient screening of the literature, resulting in a focused and 
relevant set of papers for full-text analysis. 

D. Extract data 

Data extraction is the final step in collecting relevant 
information from each included study. In this research, data 
extraction consisted of reading the most relevant papers and 

 



 

 

identifying research gaps while becoming more familiar with 
the topic. Additionally, the goal of this study was to create a 
hypothetical product to address the challenges of current 
approaches to RCA. For this reason, the extraction process 
was streamlined to find connections between research gaps 
and proposed solutions. This was later combined with a 
search for more specific literature needed for the use case and 
proposed concept. 

III. RESEARCH-GAPS 

As mentioned in the introduction service-based systems 
are abundant and used in all cloud environments to provide 
the expected quality of service. The importance of efficient 
methods and tools for anomaly detection and root cause 
analysis. This section outlines the identified research gaps 
related to RCA that were identified during the data extraction 
phase of this structured literature review. 

A. Interpretability 

Understanding the results of today's state-of-the-art tools 
is often a challenge, even for experienced personnel. Current 
software solutions for root cause analysis are often difficult 
to set up, and the results can be hard to interpret. [9, 10] 

This means that a significant amount of knowledge and 
time is required to inspect an issue in depth, even after the 
responsible service has been identified. In a highly diverse 
tech stack, knowledge is spread across many teams. This 
creates a knowledge gap between the different analysts which 
can result in more delay gathering all the necessary 
information to understand an anomaly. [3] 

One of the biggest challenges with current RCA 
approaches is presenting the data to the responsible expert. 
While many approaches can quickly provide context for 
observed anomalies, they lack significant guidance after the 
analysis. 

B. Scope 

The selection of the correct scope of analysis in the case 
of a failure is very important for effective RCA. The accuracy 
and relevance of the results depend on the inclusion of the 
defining data for an observed anomaly. 

Due to the large number of services in such service-based 
environments, it is difficult to select the right set of data in 
the analysis that is representative of the current state of the 
system. At the same time, it is important to keep the data 
included into the analysis to a minimum to maintain a certain 
level of efficiency, especially when real-time behavior is 
desired. [11] 

This careful selection process ensures that RCA remains 
targeted, comprehensive, and capable of providing actionable 
insights for troubleshooting and optimization. 

C. Real-time analysis 

Traditional methods, often rely on the analysis of static 
models or periodic evaluations of the system state. As a 
result, they struggle to keep up with the real-time demands of 
modern systems, leading to delays in problem identification 
and resolution. Moreover, the sheer volume of data generated 
in dynamic environments pose a significant hurdle, 
contributing to additional latency. [12] 

Additionally, the integration of diverse data sources, such 
as logs, traces, and metrics, requires cohesive real-time 
analytics strategies to evaluate information from multiple 

channels effectively. The need to adapt to sudden spikes in 
traffic (scalability) further complicates the real-time analytics 
landscape. [10] Overcoming these challenges requires 
innovative approaches. 

D. Proactive analysis 

Not only do current approaches fail to detect and 
understand complex systems in real-time, as a result they also 
face limitations in proactively detecting potential failures 
before they manifest themselves inside the system. This is 
primarily due to conventional tools operating reactively, 
starting the analysis after an anomaly has been detected and 
analyzing historical metrics. This retrospective process 
inhibits their ability to foresee or even prevent potential 
failures beforehand. 

Furthermore, the delay between data collection and 
analysis as described in the section above contributes to the 
failure to detect issues pre-emptively. The lack of adaptability 
to evolving environments and unforeseen circumstances 
further limits their predictive capabilities. The 
interdependencies, scale, and constant changes in system 
configurations make it challenging to develop predictive 
models that capture the full spectrum of potential failure 
scenarios. 

 

IV. PROPOSED APPROACH 

This section is intended to convey the proposed concept 
for a more intelligent and user-friendly RCA tool by 
combining ideas, concepts and implementations found across 
the different research papers. It is however important to note, 
that this is only a concept that was required for this research 
paper, but no proof-of-concept was implemented. 

A. Event Handler 

As a first step, all approaches must recognize anomalies 
in the system. Since the detection process is not considered in 
this paper, it is only necessary to determine how to act after 
an anomaly has been detected. In manual processes, these 
steps involve a great deal of experience and expertise on the 
part of the responsible experts. These experts always define 
their action steps depending on the observed anomaly. 
However, there are often internal working guidelines for 
predefined recommendations based on the error at hand. 
Chen et al. [7] try to integrate expert knowledge by imitating 
this decision-making process with "incident handlers". 
Although these incident handlers must be created manually, 
they offer a way of influencing the system and incorporating 
knowledge into the analysis, and they can also carry out 
simple and repetitive remedial measures quickly, efficiently 
and automatically. [7] 

The proposed approach can incorporate these handlers to 
prepare all data for processing with LLMs. They can also 
reduce unnecessary computation time for recurring problems 
and submit the finalized prompts to an LLM. 

 

B. Data fusion 

In their research Yu et al. [10] incorporate an interesting 
technique in the RCA. They argue that the amount and 
heterogeneity of the system data contributes heavily to the 
duration and inaccuracy observed in many approaches. Many 
parts of this multimodal data cannot be used sufficiently by 



 

 

the approaches because they cannot process them. This is 
why the authors suggest pre-processing the data in one step. 
Instead of passing on the raw data for analysis, an "event" is 
created after an anomaly is detected. This event combines the 
heterogeneous data into a uniform format with uniform 
timestamps. This new representation allows for more 
information to be used in the analysis while also providing a 
standardized format. [10] 

This method appears to be particularly advantageous for 
the subsequent combination with LLMs, which above all 
require good prompt engineering. This event representation 
therefore serves as the first preparation step in order to 
optimally prepare the data and extract as much information 
as possible. 

C. Incremental learning 

One of the components of RCA approaches is usually the 
creation of a digital representation of the underlying structure 
of a system. This is usually done with a graph representation 
where the vertices represent objects like nodes or events and 
the edges are used to model their relations to each other. This 
helps maintain a view of the system and allows for the use of 
graph theory to improve root cause discovery. 

To deal with the issue of static models and time slot 
selection Wang et al. [12] propose incremental graph 
building. The process consists of three main steps. 

1) Trigger point detection 

2) Incremental graph learning 

3) Root cause localization 

This means that the proposed framework monitors the 
System KPIs nearly in real-time and once a change has been 
detected in the state or communication of the system the next 
step is triggered. In this step the model needs to distinguish 
between relations that have remained the same and the new 
relations introduced in the current batch of data. After this 
extraction of changes is finished, the information can be 
merged into the existing graph. This results in a continuously 
updated representation of the system, and it creates the 
possibility for online RCA and much faster root cause 
discovery times. 

This approach brings improvements to current state-of-
the-art methods by enabling online RCA in real-time. 
According to the authors it can improve efficiency 
dramatically by only updating based on changes in the 
system. Another advantage is the consideration of all 
available historic data instead of fully retraining and refitting 
a new model for every anomaly on a selected batch of data. 
[12] 

Incorporating this strategy for the creation of real-time 
graph models would therefore increase efficiency and 
response time of the proposed concept. 

D. Graph pruning 

To expand on the incremental graph building described in 
the previous section and improve efficiency even further 
graph pruning could also be incorporated. 

Ding et al. [13] describe an approach that utilizes 
reinforcement learning to learn a pruning policy. This policy 
can be used to effectively eliminate redundant information 
from the dependency graph. Not all services are affected or 

even relevant in the context of a failure and subsequent RCA. 
If this redundant information can be eliminated from the data 
before further processing, without affecting the analysis, it 
can save time and resources. Various characteristics of root 
causes and trace data are used to determine the relevance of 
components and data in the analysis step. They can be 
arranged in three groups. [13] 

1. Latency-based: 
Different latency metrics are used to determine 
whether a service is affected. 

2. Anomaly-based: 
Based on the number and type of anomalies only 
services with high anomaly indicators are 
considered further. 

3. Correlation-based: 
Lastly correlation metrics are used to determine 
whether observed anomalies/ latencies are likely to 
be related. 

By implementing these preprocessing steps into the 
proposed concept, the incremental graph building could be 
even more efficient and would only need to be triggered if a 
change is deemed relevant. Not only will it be more efficient 
but if implemented correctly, the relevant part of system 
could be analyzed in more detail without using too much 
computing resources. 

E. Explanation generation 

Now that the discussion of pre-processing is complete, it 
is time to introduce the core of the proposed method. As 
previously stated in the introduction, the approach will utilize 
modern AI methods to present the results more effectively 
and enhance their interpretability. For instance, LLMs have 
demonstrated significant potential in identifying patterns in 
vast amounts of data. This step in the concept is designed to 
process the prepared data and automatically generate 
explanations and suggestions for experts. Chen et al. propose 
a procedure that aims to automate the diagnostic process, 
relieving responsible engineers of diagnosis and enabling 
immediate reaction and mitigation. 

The following procedure is suggested in connection with 
the methods explained in this chapter. Figure 2 shows an 
overview of the concept. 

1. Incident handler queries and collects the necessary 
data using data fusion or responds with immediate 
action if possible. 

2. Incremental Graph building is used to have an 
accurate representation of the system state and 
possibly of event causalities. [3] 

3. The incident handler triggers an automatic 
summation of the text and traces collected by the 
handler. This reduces noise and results in better 
predictions. [7] 

4. An event is created with all the information 
collected and the summary and the LLM is 
prompted to make a prediction for possible root 
causes with an explanation and mitigation 
suggestion. [7] 

This procedure improves the readability of the results and 
makes it easier for less experienced personnel to understand 
the situation and take immediate action.  

One aspect that still needs to be tackled in this context is 
the interaction of dependency graphs and LLMs. The graphs 



 

 

offer the possibility of incorporating external knowledge into 
the decision-making process of the LLM. However, this 
approach, as well as the generative AI methods, is still quite 
new and there is still little research in this area. However, 
novel approaches can already be found as to how this problem 
could be solved and how domain-specific knowledge can be 
introduced. [14, 15] 

 

Fig. 2. Proposed concept overview  

V. VALUE PROPOSITION AND STAKEHOLDER ANALYSIS 

After Chapter 3 identified a research gap in the area of 
RCA, the following section focuses on offering a possible 
solution by utilizing recent advances in the area of real-time 
root cause discovery, generative AI, and efficiency 
optimizations. Therefore, this chapter first introduces the new 
approach XPRED and its potential stakeholders. Then, the 
information about both the approach and the stakeholders, 
especially the potential customers, is combined by a value 
proposition. The solution is validated by analyzing whether 
there is a problem-solution fit. 

Checking the feasibility of new technologies and research 
results is a crucial step in the innovation process to ensure 
that new ideas can be implemented in practice. Feasibility 
analyses must include technical, economic, and operational 
considerations. This validation process reduces the risk of 
investing resources in concepts that are not technically 
feasible, financially viable or impractical. The aim of this step 
is to harmonize technological advances with market 
requirements in order to create successful solutions from 
novel concepts. 

The proposed concept was developed from identified 
research gaps in the area of RCA for service-based systems. 
The focus is on improving interpretability, real-time analysis, 
and operational efficiency by integrating LLMs. Root cause 
analysis within service-based architectures generally faces 
the challenge of deciphering complicated system behavior 
and usually involves many manual steps. While existing 
solutions on the market advertise a wide range of functions 
and AI analyses, their initial setup is often complicated, and 
their use requires a great deal of expertise. Nevertheless, 
recognizing patterns and causalities often falls largely on the 
responsible engineers. 

It is precisely this complexity that the proposed system 
addresses by incorporating advanced LLMs to make the 
analysis more understandable and the results more 
interpretable. These LLMs, such as ChatGPT, have already 
shown great potential in processing textual information. This 
can provide the user with targeted insights into the underlying 
data and recognize patterns in the case of recurring errors. In 

addition, the natural language capabilities of these models are 
used to generate comprehensible summaries of incidents and 
thus make the results of the analyses easier to understand. 

Another advantage of the proposed solution lies in its 
ability to provide real-time insights, a crucial feature in the 
context of dynamically evolving systems. The continuous 
updating of the underlying graph makes it possible to capture 
this dynamic development of the system. On the other hand 
the graph does not have to be rebuilt for each incident which 
makes the analysis more efficient and avoids problems 
associated with the choice of a fixed time slot for viewing the 
system data. 

By utilizing these technologies, the proposed approach 
facilitates the immediate identification of emerging issues 
and enables quick and informed decision making to mitigate 
potential disruptions. This real-time analytics capability is 
critical to minimizing downtime and optimizing the overall 
performance of service-based architectures. In addition, the 
inclusion of LLMs increases the accuracy and depth of root 
cause analysis. These language models not only improve 
interpretability, but also enable a better understanding of 
complex patterns and anomalies within the system. It is 
essential that the use of LLMs is in line with a scientific and 
data-driven approach. This ensures that the diagnostic 
process is underpinned by robust methods and empirical 
evidence. 

To sum up, the proposed approach provides a 
comprehensive and efficient solution to the challenges 
associated with RCA in service-based systems. It goes 
beyond traditional methods and provides a platform that not 
only identifies problems but also systematically interprets 
them, thus improving the overall resilience and reliability of 
service-based architectures. This offers great opportunities in 
connection with a possible implementation of this System in 
the automotive sector. Particularly in the area of car-to-x 
communication and the associated cloud management, a 
comprehensive stakeholder analysis is essential in order to 
identify the various players and their interests in the 
successful introduction and use of this innovative technology. 

First and foremost, car manufacturers are the most 
important players in this scenario. The integration of this 
software into their infrastructure gives manufacturers an 
advanced tool to quickly diagnose and solve problems related 
to car-to-x communication. In particular, the real-time 
analysis and interpretation capabilities of the software offer 
the automotive industry the opportunity to improve vehicle 
connectivity and prepare the communication infrastructure 
for new technologies such as autonomous driving and 
intelligent traffic management. The product is designed to 
make complex systems easier to maintain and generally more 
manageable. Making the operation of such systems more 
accessible can encourage further innovation by reducing 
companies' concerns about downtime. 

In this environment, technology integrators and software 
developers in automotive groups are the key players. The 
proposed system is designed for interoperability and seamless 
integration and presents a valuable tool for developers who 
want to improve Car-to-X communication capabilities in 
their applications and maintain the necessary infrastructure. 
Early adopters who are testing and introducing new 
technologies in their companies must be addressed in 
particular. 



 

 

The software is also a useful tool for automotive service 
providers and maintenance teams. Its advanced root cause 
analysis features enable quick and accurate diagnosis of 
communication faults, facilitating optimized maintenance 
procedures and minimizing vehicle downtime. This has a 
direct impact on operational efficiency and customer 
satisfaction. 

The end users, the drivers and passengers of connected 
vehicles, are also an important stakeholder group. The 
software improves their overall experience by ensuring the 
reliability of car-to-x communication, which is essential for 
functions such as traffic alerts, navigation optimization and, 
above all, enhanced safety features. Improving the 
interpretability and real-time analysis of communication 
issues, contributes to a safer and more efficient driving 
experience, meeting the growing expectations of modern 
consumers for high connectivity and functionality. 

In summary, the success of the proposed system in the 
automotive sector, especially in the context of Car-to-X 
communication, requires a nuanced understanding of the 
various stakeholders and their respective interests. Car 
manufacturers, regulators, service providers, end users and 
technology integrators can all benefit from the advancement 
of reliability of service-based systems. Making these 
complex and dynamically evolving systems more accessible 
for companies catalyzes advances in modern service-based 
cloud systems and contributes to the realization of a 
connected and intelligent ecosystems in many domains. 
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