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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

In semi-automated manufacturing, an increasing amount of intelligent mobile robots operate in close proximity to human workers. Considering 
future positions of humans allows to further improve the efficiency in terms of throughput of Autonomous Mobile Robots (AMR) and Automated 
Guided Vehicles (AGV). The longer the prediction horizon, i.e. the more position values of humans can be predicted in the near and distant 
future, the more a robot can adjust its route accordingly and optimize the process. This paper discusses the challenges of human motion trajectory 
prediction in manufacturing and presents a schedule-based approach that uses real-time schedule data obtained from Manufacturing Execution 
Systems (MES). Schedule-awareness in human motion trajectory prediction extends semantic mapping approaches and effectively reduces the 
number of probable destinations by considering which process steps are next for the currently produced goods. With a reduced set of destinations, 
the performance of forward-planning trajectory prediction can be improved. For evaluation, a commercial MES is used together with an Ultra-
wideband-based Real-Time Locating System (RTLS) for obtaining position data of humans. On this basis, a naive Bayes classifier utilizes MES-
schedule and real-time position data to predict human motion intentions. Abstract activity modeling ensures that only a few training data sets are 
required for deployment, thus making this approach suitable for rapidly changing manufacturing environments such as in flexible manufacturing. 
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1. Introduction 

Due to major advances in the robustness of Autonomous 
Mobile Robots (AMR) and Automated Guided Vehicles 
(AGV), their deployment is predicted to grow rapidly [1–3]. 
The achievable transport throughput falls far short of the 
performance of fixed systems such as conveyor belts [4], but 
mobile robots address a different user group with high demands 
on flexibility and easy integration into semi-automated 
brownfield manufacturing plants. But especially in mixed 
operation, where the traffic area is shared by humans and 
mobile robots, the transport throughput is particularly low, as 
robots are only allowed to move much slower than technically 
possible due to very strict safety requirements [4]. 

The human motion prediction approach discussed here 
contributes to better consideration of the environment in robot 
control, also referred to as human-aware navigation [5]. By 
using additional environmental, robot-external sensing and 
algorithms for trajectory prediction of humans, robots can 
better understand human behavior and take it into account in 
their path finding [3, 6]. In addition to eliminating congestion 
or blockage situations between human workers and robots, it is 
also conceivable to use this approach to increase the average as 
well as maximum speed of mobile robots while still 
maintaining a high level of safety and worker well-being. 

The addressed research question of this paper is: How can 
the underlying motivation of a human worker's movement be 
better understood? The described manufacturing-schedule-
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As discussed in [7, 10–12], the applications of predicted 
trajectories are mainly in the fields of automotive and robotics. 
In both fields, the objective is to understand the movement of 
humans as precisely as possible in order to obtain more time 
for action in the system control to achieve optimal results. In 
robotics, the focus is on path optimization that requires 
predictions with wide prediction horizon. Here, trajectory 
prediction is mostly used in parallel with existing safety 
routines. In the area of manufacturing, the focus is on 
improving human-robot collaboration with mobile robots [6, 
19, 23] and robot arms [14, 20, 24].  

2.3. Trajectory Prediction with Modeling of Action Intentions  

Planning-based trajectory prediction methods are based on 
the assumption that humans behave rationally. Current 
methods are often limited to the replication of simple action 
rules such as following marked paths, avoiding obstacles, or 
moving together as a group [7, 15–18, 21]. In psychology there 
are more profound models for the derivation of action 
intentions, which are based on the work of Atkinson, Fishbein, 
Ajzen, Kuhl and Bratman, among others. Analogous to the 
planning-based trajectory prediction methods, the key is the 
assumption of a predominantly rational behavior [25]. 
Important for artificial intelligence research and engineering 
applications in general is the belief-desire-intention(-action) 
theory developed by Bratman [26]. The action of a human, such 
as the movement of a human, is observable and measurable. 
The intentions for an action and the reasons that lead to a 
movement are not directly measurable but can be modeled. A 
variety of modeling depths is possible, ranging from modeling 
of basic intentions, such as avoiding collisions with obstacles 
[7, 18], up to sophisticated desire-fulfilment intention 
modelling [7, 19, 22]. In the literature, the term "intention" is 
used for all kinds of planning-based trajectory prediction 
approaches. The approach discussed in this paper uses assigned 
tasks data for intention prediction. This information is vastly 
available in manufacturing via Manufacturing Execution 
Systems (MES). Such systems control and document the flow 
of goods within factories. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Manufacturing-Schedule-based Destination Prediction 

3. Manufacturing-Schedule-based Trajectory Prediction 

As discussed in [6], the unlocking of significant 
optimization potential in the area of mobile robotics also 
requires the most anticipatory sensing of the dynamic robot 
environment possible. In semi-automated manufacturing, 
moving workers are part of the environment of mobile robots 
must appropriately consider by them.  
The in this publication discussed schedule-based approach 
represents an enhancement to existing planning-based-methods 
that focus on a wide prediction horizon [7]. The basic 
assumption of planning-based methods that humans act in a 
goal-oriented and rational manner is also valid in 
manufacturing, but here is another decisive advantage. Existing 
methods from the field of automotive and pedestrian prediction 
model the rationality of pedestrians in their goal fulfillment as 
a cost function [7]. However, due to the anonymity between 
traffic participants, no in-depth personal data can be used 
except for the current state of movement as well as basic rules 
such as “preference to marked paths”. As discussed in Section 
2.3, mostly basic intentions are modeled and used so far to 
improve the quality of trajectory predictions and movement 
intentions are modeled and understood in a very rudimentary 
way. In manufacturing, on the other hand, human workers are 
not anonymous strangers, and their goals are known based on 
the assumption that human workers movements are heavily 
influenced by their current tasks. Specifically, current orders 
and assignments are digitally managed by the MES. The use of 
such information about orders and assignments represents a 
deeper modeling of sophisticated desire-fulfilment intentions 
that is still justifiable under labor law. The schedule-based 
concept therefore makes it possible to further improve the 
quality of trajectory predictions by providing a more accurate 
understanding of why someone is moving. 

The concept is shown in Figure 2. In addition to the current 
positions of workers, a semantically extended map is also 
required as input. Furthermore, in order to better capture the 
reasons why a movement is necessary, schedule information 
from the MES is evaluated. The usual work shift and break 
times are also known to the system. 
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based approach is based on the analysis of the current order 
situation, which allows conclusions to be drawn about the 
current and future tasks of a human worker. This knowledge is 
then used to draw conclusions about necessary position 
changes, i.e. the motivation of movements. 

This paper addresses manufacturing and the presented 
schedule-based approach uses data from a Manufacturing 
Execution System (MES). The approach can also be applied to 
warehousing and used together with Warehousing Execution 
Systems (WES) or Warehouse Control System (WCS). 

The remainder of this paper is structured as follows: 
Section 2 is dedicated to the discussion of human motion 
trajectory prediction approaches. In Section 3 the schedule-
based approach is proposed and the realization requirements are 
discussed. The Festo MES4 forms the basis for the realization 
that was used for evaluation, which is presented in Section 4. 
Finally, conclusion and outlook follow in Section 5. 

2. Basics and Related Work 

2.1. Trajectory Prediction of Humans 

Trajectory prediction involves predicting the movements of 
other autonomous units. Trajectory prediction is often used to 
improve the trajectory planning of mobile robots. Trajectory 
planning is about determining a possible movement trajectory 
for a robot or ego-vehicle. 

Trajectory prediction, as illustrated in Figure 1, is useful for 
all location-dependent optimization problems [7]. The earlier 
and the more accurately an automated system senses its 
environment, the more optimization scope there is. In the 
problem domain of manufacturing, this applies to scenarios 
with many autonomous movements, e.g. especially in job shop 
and matrix production scenarios. Note that trajectory prediction 
is relevant when there are autonomous mobile systems in the 
vicinity. In a fully automated human-less factory, trajectory 
prediction is for example only necessary if there are no 
interfaces between mobile robots from different manufacturers. 
This could occur due to vendor dependency reasons but is 
unrealistic from a technical and research perspective. 
Therefore, a much better example of a real autonomous system 
without digital interfaces is a human. For human workers, it 
requires trajectory prediction methods to enable automated 
systems to reason about future locations of the autonomous 
human workers in a factory [6]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Trajectory Prediction of a Human Worker 

The prediction of a trajectory represents a data processing 
procedure, from inputs a prediction is generated as output. 
What form inputs and outputs have is handled differently. In 
any case, the location and often also past location values are 
required as input [7]. The measurement of the spatial location 
of humans can be done by different sensor technologies. 
Commonly, calibrated cameras are used to determine the 
location, direction and speed of movement [7]. Real-Time 
Locating Systems (RTLS), which are increasingly used in 
manufacturing, are a possible alternative [6]. RTLS are 
considered to be the Swiss army knife in the field of flexible 
and networked industrial automation and data-driven 
optimization, since highly dynamic position data of products, 
tools, machines and human workers contain a lot of 
information about the current production process [8, 9]. 

The output, a predicted trajectory, is usually a tuple series of 
{timestamp, predicted motion state} [7]. The motion state 
contains information about the predicted location and 
optionally further information like the velocity or the direction 
of a motion. For the description of the location prediction it is 
usual to give coordinates as well as information about the 
uncertainty, often probability distributions are specified [7]. 

2.2. Planning-based Trajectory Prediction approaches 

Trajectory prediction is possible using so-called planning-
based methods that are a sub-category of trajectory prediction 
approaches. The approach discussed in this paper is an 
enhancement to planning-based methods, but this should not be 
confused with trajectory planning approaches. Trajectory 
planning handles the problem of determining a motion 
trajectory for robots or ego-vehicles. Planning-based trajectory 
prediction is about predicting the movement of others.   

In research area of trajectory prediction, surveys [7, 10–12] 
contribute to the harmonization of terminology. Closely related 
is location-, position-, destination- and route-prediction. 

According to [7], there are three main categories of 
trajectory prediction methods. Physics-based approaches 
reproduce the conservation of momentum at their core and are 
thus very lean and efficient white-box models, but allow only 
very short prediction horizons [6, 7, 13, 14]. Along with 
planning-based approaches, pattern-based approaches are very 
popular today. They are black-box models that use machine 
learning methods to derive predictions from data [7, 15–17]. 
Planning-based approaches are based on the assumption of a 
goal-oriented, rational movement behavior of humans [7, 18–
22]. The better the motivation of a movement can be 
understood, the more precise the prediction can be. Approaches 
from this area focus primarily on the area of human motion 
prediction with wide prediction horizons. Realizations are 
often a hybrid of white-box models and the use of machine 
learning for parameter optimization. In addition to the state of 
motion, maps with information about static obstacles or so-
called semantically extended maps with additional information 
about Points-Of-Interest (POI, e.g. doors, working spaces, etc.) 
are used to enable modeling of rules like “avoid obstacles” or 
“follow a path”. In addition to static contextual cues, modeling 
social forces (rules like “stay together”) can improve trajectory 
prediction. [7] 
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learning for parameter optimization. In addition to the state of 
motion, maps with information about static obstacles or so-
called semantically extended maps with additional information 
about Points-Of-Interest (POI, e.g. doors, working spaces, etc.) 
are used to enable modeling of rules like “avoid obstacles” or 
“follow a path”. In addition to static contextual cues, modeling 
social forces (rules like “stay together”) can improve trajectory 
prediction. [7] 
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When evaluating the destination prediction, the focus is on 
the achievable reduction of uncertainty regarding the actual 
destination of human movement. The more precisely the 
destination can be predicted, the better forward-planning-based 
trajectory predictions will be. The prerequisite is the definition 
of a set of Points-Of-Interest (POI) on the semantically 
extended map of the laboratory. For better comparison, 
“schedule-based destination prediction” is compared with “no 
destination prediction” and “motion state-based prediction”. 

With “no destination prediction”, no POI can be excluded 
for forward-planning; trajectories must be calculated to all 
POI-defined destinations. Usually the number of POI is limited 
and the probability that one of the predicted trajectories is 
correct is equal or less to one divided by the size of the POI set, 
the uncertainty is at maximum. 

A destination prediction can also be computed purely on the 
basis of the current motion state. The prerequisite for this, 
however, is real-time location data with little noise for the most 
accurate possible representation of the motion state. In 
addition, a movement must already have started in order to be 
able to make predictions about the destination. The extent to 
which the number of possible destinations can be narrowed 
down with the motion state-based prediction of the destination 
depends strongly on the individual layout of the laboratory (or 
factory). This can work well for layouts with POI that are far 
apart from each other, but it does not work if many POIs are 
close together as then all POI represent reasonable destinations. 

The concept of schedule-based destination prediction 
presented in this paper is independent of the individual layout 
of the laboratory (or factory). In contrast to the prediction 
depending purely on the movement state, it is also possible to 
consider uncertainty regarding the consistency of a decision for 
a movement destination. During evaluation in the IAS Cyber-
Physical Production Lab, four POI are considered as shown in 
Figure 3. The result diagram in Figure 3 illustrates that without 
destination prediction the average prediction reliability is 0.25, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Realization and Evaluation Results 

one to the size of the POI set. The pre-trained schedule-based 
destination prediction achieves a much better prediction 
reliability of 0.8 by considering schedule data from the MES. 
The prediction reliability describes the average probability of 
the most likely predicted movement destination. With four 
possible movement destinations, 0,25 means maximum 
uncertainty, and 0,8 means that it is possible to really predict a 
certain destination thanks to MES schedule-data. By taking 
additional data sets into account, the schedule-based 
destination prediction learns over time even better how human 
workers usually decide. If decisions are always non-rational, 
i.e. if the schedule is always deliberately disregarded, the 
prediction reliability drops. This is an indication of modeling 
error, e.g. of the absence of important influencing factors in the 
modeling of human movement motivation. However, if the 
modeling is correct and rational decisions are made, the 
prediction reliability increases. 

5. Conclusion and Outlook 

High-precision trajectory prediction is an enabling 
technology for natural human-robot collaboration, where 
robots can not only observe but also anticipate behavior. The 
prediction of movement destinations helps robots to understand 
human movement. This is beneficial in scenarios where mobile 
robots such as AMR or AGV and humans maneuver closely 
together, e.g. especially in job shop and matrix production 
scenarios. 

Unlike to other application areas of trajectory prediction, 
human workers in manufacturing are not anonymous strangers 
and their movements are usually directly motivated by their 
tasks. The manufacturing-schedule-based trajectory prediction 
approach discussed in this paper is an intuitive method to 
answer the research question of how to better understand the 
motivation behind the movements of a human worker. 
Schedule data from Manufacturing Execution Systems (MES) 
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With perfect adherence to a planned schedule, the 
destination of every human worker movement could be 
predicted without uncertainty. However, humans are 
characterized by their autonomous behavior and their ability to 
intelligently extend, shorten, interchange, etc. tasks and 
assignments. As a result, planned schedules are never fully 
adhered to and the concept must be capable of dealing with 
uncertainty when considering schedule information for 
improved trajectory predictions. 

The core of the concept of schedule-based destination 
prediction is therefore a naive Bayes classifier for modeling the 
uncertainty regarding the movement destination of human 
workers. As illustrated in Figure 2, the naive Bayes classifier is 
composed of the model and the knowledge base. The 
knowledge base includes all transition probabilities, which can 
be either manually specified or learned from data. The learning 
process can be frozen if the results are satisfactory, or it can be 
continued continuously at runtime. The naive Bayes classifier 
is selected for its ability to combine white-box modeling with 
black-box machine learning. As the state space is limited, the 
complexity is still manually manageable. If training data are 
not yet available, this classifier can be also used on the basis of 
expertly selected transition probabilities. A more general 
neural network-based classifier is a valid alternative that 
requires much more training data before it is operational. 

The knowledge base stores the conditional transition 
probabilities of the naive Bayes classifier. Figure 2 shows the 
model built on top of this describing all possible transitions. 
The intuitive approach to transition modeling is to consider the 
semantically extended map and model each Point-Of-Interest 
(POI, e.g. each workspace) as a separate node with transitions 
between all nodes. However, this leads to two problems. On the 
one hand, this results in a large number of nodes and a 
correspondingly large number of transition probabilities must 
be determined. Furthermore, changes in the layout of a factory 
that lead to the creation of new and the deletion of old POI are 
a problem. In flexible semi-automated manufacturing that is 
addressed here, workflows frequently change. As a result, the 
positions of the POI as well as the transition probabilities 
change, the naive Bayes classifier would have to be trained 
anew each time. 

To counteract this and thus increase practical relevance, the 
model shown in Figure 2 is therefore used. Instead of modeling 
every POI as a node, we abstract between only four nodes: 
Work-Shift-End and Break follow the logic of modeling POI as 
node, for those two for example the door to the break room or 
the changing room. In contrast, Last/Current Task and New 
Task abstract all the other POI. Instead of modeling each 
workstation as a separate node, however, a distinction is only 
made as to whether the current activity is being continued or 
whether it is being terminated and a new activity is being 
started. The resolving of the activity to the location is done 
using the information of the Manufacturing Execution System, 
which provides data on the schedule of the production process 
as well as the allocation of resources and thus the location.  

Based on the known time for work start, the known time 
periods work shift and break, the production schedule, the 
location of Points-Of-Interest and the transition probabilities, 
the destinations of human worker movements are predicted 

using the naive Bayes classifier. Consideration of other 
contextual information is possible and is discussed in 
Section 5. Knowledge about the probable destination of a 
movement is a big step towards trajectory prediction as from 
there on forward-planning methods, that are based on 
pathfinding algorithms, can be used to determine and predict 
efficient routes between the current location and the predicted 
movement destination. The more accurately the movement 
destinations are predicted, the more confident predictions about 
the actual movement of human workers can be provided. 

4. Realization and Evaluation 

For any kind of trajectory prediction current position data is 
required. Which technology provides position data is 
secondary, but realistic for the addressed problem domain of 
manufacturing is the use of an Ultra-wideband-based (UWB) 
Real-Time Locating System (RTLS) [8, 9]. This technology 
also provides via a MQTT-interface the position data in the 
context of this publication [27]. The use of the schedule-based 
destination prediction method also requires a forward-planning 
algorithm for trajectory prediction. An [28]-oriented A*-based 
approach is used, which is implemented in Python. The 
forward-planning algorithm requires the current position and a 
single or a set of movement destinations for trajectory 
prediction.  

The schedule-based destination prediction enhancement 
discussed in this publication then provides better predictions 
regarding the destination of a human movement. Therefore, 
additional schedule data is needed, which is obtained from a 
Manufacturing Execution System (MES). All of the required 
software is realized in Python as a Django web application 
which is run on a local server-PC. 

The evaluation was carried out on the one hand data-based 
and on the other hand with real-time data during tests in the 
IAS Cyber-Physical Production Lab that is shown in Figure 3. 
As already described in [29], modules of the Festo Cyber-
Physical Factory platform are installed there. In total, there are 
five workstations. Each workstation is controlled by a PLC. 
The entire production system is controlled and managed by the 
Festo MES4 [30], which provides an SQL-based interface for 
accessing schedule data. 

The schedule-based destination prediction module therefore 
receives current information via MQTT and SQL. Non-
variable information such as work shift times, break times and 
the semantically extended map of the lab are stored in a 
PostgreSQL database. The naive Bayes classifier is 
implemented in python and embedded in a Django 
environment. The request for a trajectory prediction is first 
answered with an uncertain prediction of possible destinations 
before the full trajectory is predicted using forward-planning 
methods. The uncertain prediction of possible destinations uses 
the map of the lab, the data from the Festo MES4, and the real-
time position data from the UWB RTLS during testing in the 
IAS Cyber-Physical Production Lab. To reduce temporal 
uncertainty, it is assumed that trajectory predictions are only 
requested and calculated after the movement of a worker 
started. The starting time of a movement is not predicted, this 
requires more information e.g. from task progress monitoring.  
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With perfect adherence to a planned schedule, the 
destination of every human worker movement could be 
predicted without uncertainty. However, humans are 
characterized by their autonomous behavior and their ability to 
intelligently extend, shorten, interchange, etc. tasks and 
assignments. As a result, planned schedules are never fully 
adhered to and the concept must be capable of dealing with 
uncertainty when considering schedule information for 
improved trajectory predictions. 

The core of the concept of schedule-based destination 
prediction is therefore a naive Bayes classifier for modeling the 
uncertainty regarding the movement destination of human 
workers. As illustrated in Figure 2, the naive Bayes classifier is 
composed of the model and the knowledge base. The 
knowledge base includes all transition probabilities, which can 
be either manually specified or learned from data. The learning 
process can be frozen if the results are satisfactory, or it can be 
continued continuously at runtime. The naive Bayes classifier 
is selected for its ability to combine white-box modeling with 
black-box machine learning. As the state space is limited, the 
complexity is still manually manageable. If training data are 
not yet available, this classifier can be also used on the basis of 
expertly selected transition probabilities. A more general 
neural network-based classifier is a valid alternative that 
requires much more training data before it is operational. 

The knowledge base stores the conditional transition 
probabilities of the naive Bayes classifier. Figure 2 shows the 
model built on top of this describing all possible transitions. 
The intuitive approach to transition modeling is to consider the 
semantically extended map and model each Point-Of-Interest 
(POI, e.g. each workspace) as a separate node with transitions 
between all nodes. However, this leads to two problems. On the 
one hand, this results in a large number of nodes and a 
correspondingly large number of transition probabilities must 
be determined. Furthermore, changes in the layout of a factory 
that lead to the creation of new and the deletion of old POI are 
a problem. In flexible semi-automated manufacturing that is 
addressed here, workflows frequently change. As a result, the 
positions of the POI as well as the transition probabilities 
change, the naive Bayes classifier would have to be trained 
anew each time. 

To counteract this and thus increase practical relevance, the 
model shown in Figure 2 is therefore used. Instead of modeling 
every POI as a node, we abstract between only four nodes: 
Work-Shift-End and Break follow the logic of modeling POI as 
node, for those two for example the door to the break room or 
the changing room. In contrast, Last/Current Task and New 
Task abstract all the other POI. Instead of modeling each 
workstation as a separate node, however, a distinction is only 
made as to whether the current activity is being continued or 
whether it is being terminated and a new activity is being 
started. The resolving of the activity to the location is done 
using the information of the Manufacturing Execution System, 
which provides data on the schedule of the production process 
as well as the allocation of resources and thus the location.  

Based on the known time for work start, the known time 
periods work shift and break, the production schedule, the 
location of Points-Of-Interest and the transition probabilities, 
the destinations of human worker movements are predicted 

using the naive Bayes classifier. Consideration of other 
contextual information is possible and is discussed in 
Section 5. Knowledge about the probable destination of a 
movement is a big step towards trajectory prediction as from 
there on forward-planning methods, that are based on 
pathfinding algorithms, can be used to determine and predict 
efficient routes between the current location and the predicted 
movement destination. The more accurately the movement 
destinations are predicted, the more confident predictions about 
the actual movement of human workers can be provided. 

4. Realization and Evaluation 

For any kind of trajectory prediction current position data is 
required. Which technology provides position data is 
secondary, but realistic for the addressed problem domain of 
manufacturing is the use of an Ultra-wideband-based (UWB) 
Real-Time Locating System (RTLS) [8, 9]. This technology 
also provides via a MQTT-interface the position data in the 
context of this publication [27]. The use of the schedule-based 
destination prediction method also requires a forward-planning 
algorithm for trajectory prediction. An [28]-oriented A*-based 
approach is used, which is implemented in Python. The 
forward-planning algorithm requires the current position and a 
single or a set of movement destinations for trajectory 
prediction.  

The schedule-based destination prediction enhancement 
discussed in this publication then provides better predictions 
regarding the destination of a human movement. Therefore, 
additional schedule data is needed, which is obtained from a 
Manufacturing Execution System (MES). All of the required 
software is realized in Python as a Django web application 
which is run on a local server-PC. 

The evaluation was carried out on the one hand data-based 
and on the other hand with real-time data during tests in the 
IAS Cyber-Physical Production Lab that is shown in Figure 3. 
As already described in [29], modules of the Festo Cyber-
Physical Factory platform are installed there. In total, there are 
five workstations. Each workstation is controlled by a PLC. 
The entire production system is controlled and managed by the 
Festo MES4 [30], which provides an SQL-based interface for 
accessing schedule data. 

The schedule-based destination prediction module therefore 
receives current information via MQTT and SQL. Non-
variable information such as work shift times, break times and 
the semantically extended map of the lab are stored in a 
PostgreSQL database. The naive Bayes classifier is 
implemented in python and embedded in a Django 
environment. The request for a trajectory prediction is first 
answered with an uncertain prediction of possible destinations 
before the full trajectory is predicted using forward-planning 
methods. The uncertain prediction of possible destinations uses 
the map of the lab, the data from the Festo MES4, and the real-
time position data from the UWB RTLS during testing in the 
IAS Cyber-Physical Production Lab. To reduce temporal 
uncertainty, it is assumed that trajectory predictions are only 
requested and calculated after the movement of a worker 
started. The starting time of a movement is not predicted, this 
requires more information e.g. from task progress monitoring.  
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is useful for modeling rational human movement behavior 
motivated by order and assignment fulfillment. And better 
predictions of movement destinations increase the quality of 
trajectory prediction.  

For implementation, interfaces to a Real-Time Locating 
System (RTLS) and to an MES are required to obtain real-time 
data about the current position of a worker as well as his or her 
current and next tasks. Since MES and RTLS are widely used 
in manufacturing, the presented approach has a high practical 
relevance as it is an enhancement that can be easily integrated. 

In manufacturing, trajectory prediction methods become 
important due to the increasing use of Automated Guided 
Vehicles (AGV) and Autonomous Mobile Robots (AMR). The 
very low speed of mobile robots in semi-automated scenarios, 
where robots operate in close proximity to workers, is currently 
still necessary to ensure safety. With significantly improved 
situation understanding, AGV and AMR can move faster and 
smarter and thus improve their operation efficiency. The 
schedule-based approach discussed in this paper improves the 
situation understanding of robots by enabling them to better 
understand the motivation behind a human movement. 

Future work will address the use of additional contextual 
information to more precisely model the motivation for 
movements and especially the reasons for not adhering the 
planned schedule. Therefore, it is promising to take person-
related data into account. Approaches from the field of Human-
Digital Twin [31] promise a possibility for a data protection-
compliant realization. For the reuse of context information, 
context middleware is suggested [32]. 
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