

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

32nd CIRP Design Conference

Situational Risk Assessment Design for Autonomous Mobile Robots

Manuel Müllera, Golsa Ghasemia,*, Nasser Jazdia, Michael Weyricha

aUniversity of Stuttgart, Pfaffenwaldring 47, 70550 Stuttgart, Germany

* Corresponding author. Tel.: +49-711-685-67320. Fax: +49-711-685-67302. E-mail address: golsa.ghasemi@ias.uni-stuttgart.de

Abstract

The emerging autonomous mobile robots promise a new level of efficiency and flexibility. However, because these types of systems operate in

the same space as humans, these mobile robots must cope with dynamic changes and heterogeneously structured environments. To ensure safety

new approaches are needed that model risk at runtime. This risk depends on the situation and that is a situational risk. In this paper, we propose

a new methodology to model situational risk based on multi-agent adversarial reinforcement learning. In this methodology, two competing groups

of reinforcement learning agents, namely the protagonists and the adversaries, fight against each other in the simulation. The adversaries represent

the disruptive and destabilizing factors, while the protagonists try to compensate for them. The situational risk is then derived from the outcome

of the simulated struggle. At this point, the system’s Digital Twin provides up-to-date and relevant models for simulation and synchronizes the

simulation with the real asset. Our risk modeling differentiates the four steps of intelligent information processing: sense, analyze, process, and

execute. To find the appropriate adversaries and actors for each of these steps, this methodology builds on Systems Theoretic Process Analysis

(STPA). Using STPA, we identify critical signals that lead to losses when a disturbance under certain conditions or in certain situations occurs.

At this point, the challenge of managing the complexity arises. We face this issue using training effort as a metric to evaluate it. Through statistical

analysis of the identified signals, we derive a procedure for defining action spaces and rewards for the agents in question. We validate the

methodology using the example of a Robotino 3 Premium from Festo, an autonomous mobile robot.

© 2022 The Authors. Published by ELSEVIER B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

 Keywords: Situational Risk Assessment; Digital Twin; Design Approach; Complexity; System Theoretic Process Analysis (STPA)

1. Introduction

The emerging autonomous mobile robots promise a new

level of efficiency and flexibility. They are used to connect the

respective workstations flexibly and allow for dynamically

adding, removing, and changing manufacturing processes.

They do not need specific work areas but share the same floor

with other vehicles and workers. Because these types of

systems operate in the same space as other vehicles and

humans, these mobile robots have to cope with dynamic

changes and heterogeneously structured environments.

Therefore, they rely on the characteristics of autonomous

systems, namely “(1) systematic process execution, (2)

adaptability, (3) self-governance and (4) self-containedness“

[1], and artificial intelligence. However, in order to ensure

safety, new design patterns are required. The risk of these

systems is no more predominantly defined by the reliability of

the components but rather on the scenario and how well the

system is prepared to handle it. Therefore, the safety evaluation

has to focus on the situation the system is in rather than globally

trying to rate the reliability and conclude to safety – a paradigm

shift.

In this paper, we propose a novel design approach as a

situational risk assessment allowing for runtime risk assessment

based on the situation, the system is currently in. We use the

idea of system theoretic process analysis and derive

reinforcement learning-based fault injectors, so-called

adversaries. These adversaries learn to apply worst-case

disturbances reasonable for the respective situation and

challenge the system in simulation. If the system is able to

survive these disturbances, it can be considered safe. In order to

execute this simulation, we exploit the Digital Twin with its

main properties: synchronization with the asset, model

orchestration, and simulation capability [2]. In this way, we

http://www.sciencedirect.com/science/journal/22128271
https://creativecommons.org/licenses/by-nc-nd/4.0
mailto:golsa.ghasemi@ias.uni-stuttgart.de
https://creativecommons.org/licenses/by-nc-nd/4.0

2 Manuel Müller et al./ Procedia CIRP 00 (2022) 000–000

ensure that the simulation is always up-to-date and represents

the real system and its environment.

Section 2 introduces several related works on this topic. We

continue in Section 3 with the design pattern for the adversaries

and explain how to choose the appropriate ones and train them.

In Section 4, we tackle the topic of complexity management.

Then, we present a case study in Section 5 and finally draw the

conclusion and outlooks in Section 6.

2. Background

In the field of safeguarding autonomous systems, there are

mainly three approaches: formally proving the absence of

critical behavior, trying to improve robustness and to show

superhuman performance, and analyzing the autonomous

systems in certain scenarios. One approach of the first category

is working with set-based methods like [3] claiming to provide

provable safe navigation. However, formal proving requires

strong assumptions and is computationally expensive. The

second approach is taken especially in the domain of

reinforcement learning. The community celebrated

breakthroughs in superhuman performance in playing Go [4].

One particularly interesting approach is the auto-curriculum

[5], where two types of reinforcement learning agents, called

protagonist and adversary play against each other in order to

improve self-supervised. This approach was transferred to the

technical domain, building robust adversarial reinforcement

learning [6]. Several approaches extend this original idea, e.g.

using model-checking-based falsification as adversaries [7],

considering model uncertainties [8], or even including the

policy’s variance into the optimization process [9]. However,

as studies from the autonomous driving domain show, it is hard

to show superhuman performance in dynamically changing and

heterogeneously structured environments [10]. The design

approach we propose belongs to the third category.

Conventionally as addressed in the PEGASUS project, a list of

relevant scenarios is defined and tested [11]. As Hata et al. [12]

propose, fuzzy methods combined with deep learning-based

semantic segmentation helps interpolating between scenarios.

However, if trying to make a claim for any possible scenarios,

similarly to the proving approach strong assumptions are

needed.

The complex environment regarding the higher complexity

of input data, complex software due to required complex logic,

and non-deterministic behavior all factors show the importance

of analyzing the complexity of safety [13]. So, the

unpredictability of the behavior of autonomous systems causes

a complexity increase of simulation techniques [14] Making

complex decisions and meeting many requirements brings a

new class of complexity problems for software of autonomy

[15]. In [16], runtime validation is proposed as an approach for

addressing the complexity problem.

We, therefore, follow a novel approach. As [17] suggests,

we determine the risk at runtime based on the situation, the

system is currently in. As this is a concrete situation, we just

need to consider scenarios, which can arise from the given

situation, limiting it to a handy set. However, in contrast to

[17], the proposed design pattern aims to set up a reinforcement

learning-based system that derives the risk from the outcome

of simulated development of the current situation rather than a

rule-based approach. Moreover, like [18], we determine the

risk in a probabilistic sense. Our overall architecture is

presented in [19]. Our design approach is based on the idea of

environment-centric judgment starting from control-theoretic

modeling [20]. Therefore, we use the System Theoretic Process

Analysis [21] rather than component-centric safety analysis.

Moreover, we rely on the Digital Twin as the information

source, with the main properties: synchronization with the

asset, model orchestration, and simulation capability [2]. It

models the system and its environment. In our work, we focus

on the simulation capability but need the other parts as well.

Indeed, it is a challenge in itself to build a good Digital Twin.

Kousi et al. [22]therefore investigate the use of digital world

modeling in hybrid production systems, Staczek et al. [23]

show the important role of DT technology to test the operating

environment of an autonomous mobile robot and early

detection of design defects. In [24, 25], we contribute

guidelines of building system’s Digital Twin and its

environment and address the challenges of synchronization.

Summing up the state of the art, there is a research gap in

designing systems that determine the situational risk at runtime.

Therefore, we contribute a novel design approach for building

these systems (Section 3). As this comes at the cost of

computational complexity, we consider this arising issue

regarding the learning models and run time validation in

Section 4 and introduce the drivers of complexity as a

preliminary step for managing complexity.

3. Situational Risk Assessment

Digital Twin as a digital representation of a physical asset is

a new concept to address the challenges of having flexible

systems with shorter life cycles by providing the required

information. It consists of data and models of the system to

simulate, predict and optimize the system processes in the

virtual environment [2]. As introduced in the latter section, our

analysis is based on the system theoretic process analysis

(STPA) [21]. The Digital Twin provides the STPA with the

needed information, specifically the control-theoretic models

as well as context information and relations to other models.

The STPA results in a set of scenarios, where a control action

potentially leads to a hazard. By taking the Digital Twin’s

information model, all inputs involved in processing the

respective control actions reveal the basis of unexpected inputs.

Note that this analysis is not requiring for a manual search of

scenarios where these constellations of unexpected control

actions might occur. These unexpected inputs are produced by

adversaries. The adversaries are reinforcement learning agents

injecting faults in terms of disturbances and environment

features. They are therefore designed based on the relevant

signals, the potential losses, and optionally loss scenarios. The

relevant signals define the action space where the losses and

ideally the loss scenarios form the basis of the adversary’s

reward function. Then, the adversaries are trained in the Digital

 Author name / Procedia CIRP 00 (2019) 000–000 3

Twin’s simulation environment. They get a reward if they

manage to cause the control actions leading to hazards in the

simulation. We suggest sampling over the possible values of

the input vectors thus building a look-up table of trained

policies with different strengths. The fault injection (i.e. the

actions) of the adversaries now manipulates the original signals

thus destabilizing the system in simulation. The strongest fault

injection must be chosen such that the adversary always wins

in terms of destabilizing the system to cause a hazard.

However, especially in the interplay of different adversaries,

weaker adversaries will also be able to cause hazards. The

question of risk is now: how likely is a disturbance strong

enough to force the system to fail? In order to determine this

question at runtime, the monitored space is considered. For this

reason, we instantiate Monitored Space Observation. Fig. 1

visualizes this analysis. It is exemplified in Section 5.

Note that the Monitored Space Observation does not only

consider how much of the coverable area is covered in the

respective situation but also which quality the signal has. These

two dimensions cause different types of adversaries. In the first

case, the adversaries try to hide important information within

the uncovered space in the latter case they try to exploit the

signal uncertainty in order to manipulate the outcome. Taking

the mobile robot as an example, uncovered space might occur

when obstacles shadow the sensors. In this case, the adversary

simulates other vehicles or human workers in the unseen field

crossing the mobile robot’s trajectory. In the case of signal

uncertainty, e.g. imprecise estimation of the orientation, the

adversary manipulates the orientation such that the mobile

robot crashes into an obstacle rather than driving around them.

In this way, the STPA points to several agents. We suggest

following the divide-and-conquer principle and identifying

more but simpler adversaries. The adversaries then all have

different action spaces according to the various models, the

Digital Twin organizes. However, for each adversary, the goal

remains the same: injecting a fault such that the system runs

into a loss. Therefore, some patterns occur.

To analyze these patterns, we cluster the adversaries in the

MAPE scheme [26] (“Monitore” is replaced with “Sense” to

avoid confusion with the monitored space). Moreover, we

differentiate between the adversaries exploiting limited

observation range and those exploiting limited precision. Fig.

2 depicts the design pattern of the adversaries.

The sense adversaries disturb the preprocessing of the raw

sensor signals. One classic example is simultaneous

localization and mapping (SLAM). The adversaries in this

cluster mainly focus on the precision of the signals. The Digital

Twin provides statistical analytics for this purpose. The action

spaces range from a light barrier signal, where the adversary

just manipulates the signal intensity to complex image

manipulation in the sense of adversarial examples [27]. In order

to avoid sparse reward issues, the adversaries observe the

effects in the next layer as intermediate goals. For example, the

reward is provided when fault injection leads to the

misdetection of an object. Again it is a service of the Digital

Twin that provides the loss matrix of the respective

misclassifications. In dead, in the following analysis part

typically object detection takes place. It takes the point map of

the step sense and extracts objects from it using pattern

recognition. The patterns and the transformation models from

point cloud to 3d object are retrieved from the Digital Twin.

The result is an object map building the environmental

understanding of the system. As manipulations in the data

leading to misclassifications are already covered in the

previous step, the fault injection in the analysis step focuses on

the observation range. In our example of the mobile robot, the

adversaries try to hide obstacles in the unobserved area in order

to provoke collisions. We suggest building object classes like

moving obstacles, static obstacles, etc., and representing each

group by an adversary. As in the previous step, we recommend

using intermediate goals for easing the training of the

adversaries. In this case, the time, and injected obstacle that

remain undetected serves as criteria. Moreover, as a

simplification, the training process can provide reward already

if the planned trajectory intersects an introduced object, saving

time for simulating the execution of the planned trajectory.

The following planning stage involves the Guidance

Protagonist, a stabilizing reinforcement learning agent to plan

a cost map which is used by the subsequent execution step as a

setpoint for the controller. In our case, the protagonist

determines safety areas around the respective object types

using the Digital Twin’s object models combined with the loss

models. The reward function contains a strong negative reward

for collisions and a small negative reward for extending the

length of the trajectory thus balancing risk vs. efficiency. The

adversary counteracts the protagonist by calculating critical

trajectories for the moving obstacles forcing collisions. This

type of adversary is trained with the previously calculated

trajectory of the guidance planning and the object map as an

input. This object map contains the attribute of the objects

marking them as movable. The adversary then step by step

moves the obstacles towards the mobile robot in order to

provoke a collision. This process is simulated in the Digital

Twin, but not mirrored to the asset. The action space for each

of the obstacles depends on their physical properties like max.

speed etc. These properties again provide the Digital Twin. In

this case, no simplification can be applied since the system’s

reaction on eventually tracking and estimating the behavior of

the moving obstacles has to be taken into account. This aspect

is taken into account in the execution step. In this step, a

Fig. 1. Design Process for Monitored Space Observer and Adversaries

4 Manuel Müller et al./ Procedia CIRP 00 (2022) 000–000

controller generates the mobile robot’s trajectory based on the

cost map of the planning steps. One option of implementing

this controller is model predictive control. As the risks of

limited observation range are already covered by the planning

adversary, this adversary again belongs to the group of

precision adversaries. One example of the execution adversary

is the simulation gap adversary. It is to expect that even the

Digital Twin takes care of the up-to-dateness of the models, a

simulation gap will remain. This simulation gap misleads the

controller such that the actions chosen by the control do not

really result in the calculated outcome. The respective

adversary exploits these imprecisions. In the case of the mobile

robot, it manipulates for example the orientation angle such

that the robot deviates from the planned course. Naturally, the

controller will eventually detect and compensate for the

deviation. Depending on the strength of the adversary and the

dead time of the controller, a collision may still occur.

As previously discussed, the concrete risk is evaluated within a

series of simulated experiments according to the current

situation. The adversaries exist in different strengths (i.e.

different action spaces). The monitored space observation

selects the currently suiting adversary in real-time from the

measured parameters: signal precision and observation range.

The monitored space observation therefore statistically

analyzes the incoming data for its variance and the observed

area at the different levels. Table 1 shows an example analysis

of the respective fields. Therefore, the presented risk

assessment methodology uses the Digital Twin to provide data

and models for STPA to ascertain the scenarios leading to

hazards and system failure. The confrontation between

adversaries and protagonists as destabilizing and stabilizing

reinforcement learning agents provides vulnerable and safe

areas around the respective object. The introduced Monitored

Space Observation is used to select the strength and coverage

of fault injection processes. This evaluation scenario brings

about a situational risk area reorganization mobile robot.

Building all these adversaries provides on the one hand more

and more precise modeling of various risk factors. However,

this comes at cost of increased complexity. The analysis of this

complexity is discussed in the following section.

Table 1. Observed parameters of monitored space observation in the

respective processing stages

Processing

stage

Observed

category

Observed parameter

Sense Signal variance Distribution of the signals

Analyze Observed area of

the sensory

Regions in the map covered by

sensory

Plan Observable

behavior of

obstacles

Predictability of the obstacle’s

behavior. Unrecognized obstacles

are treated completely

unpredictable.

Execute Simulation gap,

model

inprecisions

Deviation from the simulated

outcome to the measured one.

4. Complexity analysis

The aforementioned approach suggests training multiple

reinforcement learning agents for fault injection and then

assessing the risk. While executing the policies at runtime is

computationally lightweight, training the policies requires

certain computational power. Therefore, we propose how to

improve the quality of the fault injection process against the

required effort, i.e. apply complexity management. Fig. 3

visualizes the complexity drivers.

From intuition, it is clear that safety increases with finding

critical situations more efficiently which correlates with the

power of the adversaries. The adversaries’ power increases

with the granularity of the action space, the number of agents

trained together, and the number of training epochs.

Generalization increases with the number of different scenarios

involved in the training process, e.g. different maps containing

different types of objects, different trajectories, etc. Moreover,

the engineering effort decreases, less preprocessing is required

for the input data, and trending to high dimensional input

spaces. However, all these parameters increase the complexity

and consequently the training effort. In order to limit this effort,

we introduce a complexity budget. The complexity budget

defines the amount of acceptable complexity up to which the

system remains manageable. This complexity budget is

determined from the use cases, the engineering, and the design-

time risk assessment. We have to define first, how much we are

Fig.

2. Design Pattern of the Adversaries

Fig. 3. Complexity Budget. Analysis from Design Phase, namely use

case, engineering and risk assessment to estimate the complexity

 Author name / Procedia CIRP 00 (2019) 000–000 5

willing to pay in order to further improve safety. This budget is

limited by practical as well as economical arguments like the

time spent for training, the required engineering effort, etc. In

our case, we use the training complexity of reinforcement

learning as a reference and measure it in training epochs. We

count the epochs with respect to the already optimized policy

as depicted in Tabel 3. We generate an exchange process for

example to engineering effort, as further optimization in the

engineering process can optimize the needed number of

epochs. From the use cases, stable states can be derived, where

the risk is known to be neglectable, e.g., when the mobile robot

is docked to a working station in a charging- or entering a

waiting position. These stable states determine the length of

epochs since the runtime risk assessment simulates the

activities between two stable states. Moreover, the agents are

trained for the environmental conditions, the use case focuses

on determining the variation of the expected situation and

therefore, the number of test setups. From the engineering, the

input optimization determines whether the agents get a map as

bitmap or object position, etc. thus influencing complexity.

Moreover, by selecting the architecture of the agents, we

indirectly define convergence speed and the number of epochs

we need for training. Finally, design time risk assessment

provides as output the number of agents, as well as the groups

of agents as common cause analysis. Table 3 provides a

reference value of how much complexity is put into the

complexity budget in the following case study.

5. Case Study

For our case study, we consider Robotino 3 Premium by

Festo, a mobile robot. Its goal is to deliver intermediate

products to the workstations of a matrix production system. For

this setup, we perform a simplified STPA in order to define our

adversaries. The result of the STPA is depicted in Table 2.

Here, we consider the two control signals move and rotate,

which can lead to two different kinds of losses: blocking the

process and colliding. The collision is the worse loss and the

only safety-critical one. For this reason, we give priority to

collisions.

Table 2. Results of STPA. STPA identifies different loss scenarios

Control

action

Wrongly

provided

Wrongly not

provided

Wrong timing

Move Robot crashes

into an obstacle

Production

process blocked

Crash or process

blocked

Rotate Deviation from

plan leads into

crash

Deviation from

plan leads into

crash

Deviation from

plan leads into

crash

The next step is to derive the appropriate adversaries for the

four layers: Sense, Analyze, Process, and Execute. As in STPA,

losses are always allocated in the Execute part, we start with

this part. We identify that a deviation in the rotation might lead

to leafing the planned route and therefore crash. For this reason,

we build an adversary manipulating the robot’s orientation.

Through backpropagate using the digital twin, we find a

prediction of moving obstacles influencing the movement from

the processing layer. Based on that, we insert an adversary

manipulating the trajectories of moving obstacles. Another

layer above, we learn from the Digital Twin, that the object

model is essential for movement prediction. However, the

mobile robot does not know all objects from the beginning. It

has to discover them during runtime. Therefore, if obstacles are

not in the field of view of the robot, it will not recognize them.

The Analyze-Adversary exploits this property and inserts

obstacles at the unobserved areas. Intentionally, the mobile

robot detects the obstacle too late and crashes. The Sense-

Adversary’s manipulation points in the same direction, but

even one layer above. It disturbs the input signal, e.g. the

camera signal. The camera is used to identify the respective

objects. Therefore, by adding adversarial noise, a

misclassification takes place, which eventually leads to a crash

with the respective object. Table 3 summarizes the adversaries,

their parameters, and a reference value of the complexity.

Table 3. Example Adversaries for the different layers with their action spaces

and complexity after optimization

Layer Adversary’s

Goal

Input space Action

space

Complexity

Sense Image

manipulation

Image size Noise

matrix

~50,000 eq.

epoch[27]

Analyze Position

obstacles in

unobserved

area

Field of

View, List of

Objects

Object

type,

position

~50,000 eq.

epoch

Process Manipulate

trajectory of

moving

obstacles

Field of

View, List of

Objects, Ego

perception

Movement

Direction

~16,000 eq.

epoch

Execute Manipulate the

orientation of

the robot

Grayscale

map

(bitmap)

Deviation

in Angles

~ 60,000 eq.

epoch

We define for our complexity budget a limit of 200,000

equivalent epochs (eq. epoch), which corresponds to ca. 36 h

of training on our hardware. The equivalent epochs directly

correlate with the runtime behavior, since one epoch represents

one simulation run. A budget of 200,000 eq. epoch therefore

directly corresponds with a computational effort of 648 ms,

which is acceptable for our robot’s high-level planning. Then

we naively set up the adversaries ending up a factor between 2

and 10 above our complexity budget. By reducing the

granularity of the execute adversary to fife angles and

optimizing the training environment, directly implementing it

in OpenGL and c/c++, we managed to reach the results

provided in the table and thus kept our budget.

The above case study successfully exemplifies the

application of our design process. Moreover, reference values

for the respective adversaries are provided. Indeed, the

adversaries have to be designed individually for the respective

system. However, this design process provides guidance in

setting up a situation-based runtime risk assessment for mobile

robots. In principle, it is transferrable to other domains as well.

6 Manuel Müller et al./ Procedia CIRP 00 (2022) 000–000

6. Conclusion and Future Work

This paper presents a methodology enabling to find out the

situational risk for mobile robots operating in dynamically

changing and heterogeneously structured environments. The

presented risk assessment methodology uses Digital Twin to

provide data and models for System Theoretic Process

Analysis to ascertain the scenarios leading to system failure.

Moreover, the Digital Twin’s model management capability, as

well as its synchronization property, are used at runtime in

order to simulate the system’s current situation accurately.

Multi-Agent Adversarial Reinforcement Learning forces self-

play between two competing kinds of agents, namely

Adversary and Protagonist. Like prosecutors and defense

attorneys in court, both sides present evidence that argues for

or against the safety of the system: the adversaries by fault

injection and the protagonists by coping with it. Circumstances

determine the strength of the parties and thus the outcome of

the confrontation, i.e. the situational risk. The Monitored Space

Observation provides the information of the circumstances in

terms of statistical signal property. The methodology is

validated in a case study using Robotino 3 Premium by Festo.

By focusing on the situational risk instead of the overall risk,

this approach contributes to solve the scenario explosion.

However, shifting the risk assessment to runtime causes

additional software complexity. The complexity issue of

required learning for this methodology is considered and

investigated the factors that affect the required effort to

simulate. However, more studies in situative risk assessment

and complexity management in intelligent software-defined

systems are required. For this reason, in future work, we are

going to further study the complexity of intelligent software-

defined systems and situational risk assessment at runtime.

References

[1] M. Müller, T. Müller, B. Ashtari Talkhestani, P. Marks, N. Jazdi, and

M. Weyrich, “Industrial autonomous systems: a survey on definitions,

characteristics and abilities,” at - Automatisierungstechnik, vol. 69, no.
1, pp. 3–13, 2021.

[2] B. Ashtari Talkhestani et al., “An architecture of an Intelligent Digital

Twin in a Cyber-Physical Production System,” at -
Automatisierungstechnik, vol. 67, no. 9, pp. 762–782, 2019.

[3] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An

Efficient Reachability-Based Framework for Provably Safe
Autonomous Navigation in Unknown Environments,” in 2019 IEEE

58th Conference on Decision and Control (CDC), 2019, pp. 1758–

1765.
[4] D. Silver et al., “Mastering the game of Go with deep neural networks

and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[5] B. Baker et al., “Emergent Tool Use From Multi-Agent Autocurricula,”
Sep. 2019. [Online]. Available: https://arxiv.org/pdf/1909.07528

[6] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust

Adversarial Reinforcement Learning,” International Conference on
Machine Learning, pp. 2817–2826, 2017. [Online]. Available: http://

proceedings.mlr.press/v70/pinto17a.html

[7] X. Wang, S. Nair, and M. Althoff, “Falsification-Based Robust
Adversarial Reinforcement Learning,” in 2020 19th IEEE International

Conference 2020, pp. 205–212.

[8] K. Zhang, T. A.O. SUN, Y. Tao, S. Genc, S. Mallya, and T. Basar,
“Robust Multi-Agent Reinforcement Learning with Model

Uncertainty,” Advances in Neural Information Processing Systems, vol.

33, pp. 10571–10583, 2020.
[9] X. Pan, D. Seita, Y. Gao, and J. Canny, “Risk Averse Robust

Adversarial Reinforcement Learning,” in 2019 International

Conference on Robotics, pp. 8522–8528.

[10] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?,”

Transportation Research Part A: Policy and Practice, vol. 94, pp. 182–

193, 2016.
[11] Szenarien für entwicklung, absicherung und test von automatisierten

fahrzeugen, 2017. [Online]. Available: https://www.uni-das.de/images/

pdf/veroeffentlichungen/2017/13.pdf
[12] A. Hata, R. Inam, K. Raizer, S. Wang, and E. Cao, “AI-based Safety

Analysis for Collaborative Mobile Robots,” in 2019 24th IEEE

International Conference on Emerging Technologies and Factory
Automation (ETFA), 2019, pp. 1722–1729.

[13] P. Helle, W. Schamai, and C. Strobel, “Testing of Autonomous Systems
- Challenges and Current State-of-the-Art,” INCOSE International

Symposium, vol. 26, no. 1, pp. 571–584, 2016.

[14] D. Harel, A. Marron, and J. Sifakis, “Autonomics: In search of a
foundation for next-generation autonomous systems,” PNAS, vol. 117,

no. 30, pp. 17491–17498, 2020.

[15] P. Feth, D. Schneider, and R. Adler, “A Conceptual Safety Supervisor
Definition and Evaluation Framework for Autonomous Systems,” in

Computer Safety, Reliability, and Security: 36th International

Conference, SAFECOMP 2017, Trento, Italy, September 13-15, 2017,
Proceedings / Stefano Tonetta, Erwin Schoitsch, Friedemann Bitsch,

Cham, 2017, pp. 135–148.

[16] J. Rushby, “Runtime Certification,” in Runtime Verification, Berlin,
Heidelberg, 2008, pp. 21–35.

[17] G. Hagele and A. Sarkheyli-Hagele, Eds., Situational risk assessment

within safety-driven behavior management in the context of UAS, 2020.
[18] J. C. Pereira and G. B. Alves Lima, “Probabilistic risk analysis in

manufacturing situational operation: application of modelling

techniques and causal structure to improve safety performance,” Int. J.
Prod. Manag. Eng., vol. 3, no. 1, p. 33, 2015.

[19] M. Müller, N. Jazdi, and M. Weyrich, “An Approach for Context-

Sensitive Situational Risk Evaluation of Autonomous Systems,” in 26th
IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA) 2020 (accepted).

[20] Y. Luo, Y. Yu, Z. Jin, and H. Zhao, “Environment-Centric Safety
Requirements for Autonomous Unmanned Systems,” in 2019 IEEE

27th International Requirements Engineering Conference (RE), 2019,

pp. 410–415.

[21] N. Leveson, Engineering a safer world: Systems thinking applied to

safety. Cambridge, Massachusetts: The MIT Press, 2017. [Online].

Available: https://library.oapen.org/handle/20.500.12657/26043
[22] N. Kousi, C. Gkournelos, S. Aivaliotis, C. Giannoulis, G. Michalos, and

S. Makris, “Digital twin for adaptation of robots’ behavior in flexible

robotic assembly lines,” Procedia Manufacturing, vol. 28, pp. 121–126,
2019.

[23] P. Stączek, J. Pizoń, W. Danilczuk, and A. Gola, “A Digital Twin

Approach for the Improvement of an Autonomous Mobile Robots
(AMR's) Operating Environment-A Case Study,” Sensors, vol. 21, no.

23, p. 7830, 2021.

[24] M. S. Müller, N. Jazdi, and M. Weyrich, “Self-improving Models for
the Intelligent Digital Twin: Towards Closing the Reality-to-Simulation

Gap,” in 14 th IFAC Worksop on Intelligent Manufacturing Systems,

Tel Aviv, 2022 (accepted).
[25] D. Braun, W. Schloegl, and M. Weyrich, “Automated data-driven

creation of the Digital Twin of a brownfield plant,” in 2021 26th IEEE

International Conference on Emerging Technologies and Factory
Automation (ETFA), 2021, pp. 1–7.

[26] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, pp. 41–50, 2003.
[27] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial

Examples for Semantic Segmentation and Object Detection,” in 2017

IEEE International Conference on Computer Vision (ICCV), 2017.

