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Abstract 

The emerging autonomous mobile robots promise a new level of efficiency and flexibility. However, because these types of systems operate in 

the same space as humans, these mobile robots must cope with dynamic changes and heterogeneously structured environments. To ensure safety 

new approaches are needed that model risk at runtime. This risk depends on the situation and that is a situational risk. In this paper, we propose 

a new methodology to model situational risk based on multi-agent adversarial reinforcement learning. In this methodology, two competing groups 

of reinforcement learning agents, namely the protagonists and the adversaries, fight against each other in the simulation. The adversaries represent 

the disruptive and destabilizing factors, while the protagonists try to compensate for them. The situational risk is then derived from the outcome 

of the simulated struggle. At this point, the system’s Digital Twin provides up-to-date and relevant models for simulation and synchronizes the 

simulation with the real asset. Our risk modeling differentiates the four steps of intelligent information processing: sense, analyze, process, and 

execute. To find the appropriate adversaries and actors for each of these steps, this methodology builds on Systems Theoretic Process Analysis 

(STPA). Using STPA, we identify critical signals that lead to losses when a disturbance under certain conditions or in certain situations occurs. 

At this point, the challenge of managing the complexity arises. We face this issue using training effort as a metric to evaluate it. Through statistical 

analysis of the identified signals, we derive a procedure for defining action spaces and rewards for the agents in question. We validate the 

methodology using the example of a Robotino 3 Premium from Festo, an autonomous mobile robot. 
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1. Introduction 

The emerging autonomous mobile robots promise a new 

level of efficiency and flexibility. They are used to connect the 

respective workstations flexibly and allow for dynamically 

adding, removing, and changing manufacturing processes. 

They do not need specific work areas but share the same floor 

with other vehicles and workers. Because these types of 

systems operate in the same space as other vehicles and 

humans, these mobile robots have to cope with dynamic 

changes and heterogeneously structured environments. 

Therefore, they rely on the characteristics of autonomous 

systems, namely “(1) systematic process execution, (2) 

adaptability, (3) self-governance and (4) self-containedness“ 

[1], and artificial intelligence. However, in order to ensure 

safety, new design patterns are required. The risk of these 

systems is no more predominantly defined by the reliability of 

the components but rather on the scenario and how well the 

system is prepared to handle it. Therefore, the safety evaluation 

has to focus on the situation the system is in rather than globally 

trying to rate the reliability and conclude to safety – a paradigm 

shift.  

In this paper, we propose a novel design approach as a 

situational risk assessment allowing for runtime risk assessment 

based on the situation, the system is currently in. We use the 

idea of system theoretic process analysis and derive 

reinforcement learning-based fault injectors, so-called 

adversaries. These adversaries learn to apply worst-case 

disturbances reasonable for the respective situation and 

challenge the system in simulation. If the system is able to 

survive these disturbances, it can be considered safe. In order to 

execute this simulation, we exploit the Digital Twin with its 

main properties: synchronization with the asset, model 

orchestration, and simulation capability [2]. In this way, we 
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ensure that the simulation is always up-to-date and represents 

the real system and its environment. 

Section 2 introduces several related works on this topic. We 

continue in Section 3 with the design pattern for the adversaries 

and explain how to choose the appropriate ones and train them. 

In Section 4, we tackle the topic of complexity management. 

Then, we present a case study in Section 5 and finally draw the 

conclusion and outlooks in Section 6. 

2. Background 

In the field of safeguarding autonomous systems, there are 

mainly three approaches: formally proving the absence of 

critical behavior, trying to improve robustness and to show 

superhuman performance, and analyzing the autonomous 

systems in certain scenarios. One approach of the first category 

is working with set-based methods like [3] claiming to provide 

provable safe navigation. However, formal proving requires 

strong assumptions and is computationally expensive. The 

second approach is taken especially in the domain of 

reinforcement learning. The community celebrated 

breakthroughs in superhuman performance in playing Go [4]. 

One particularly interesting approach is the auto-curriculum 

[5], where two types of reinforcement learning agents, called 

protagonist and adversary play against each other in order to 

improve self-supervised. This approach was transferred to the 

technical domain, building robust adversarial reinforcement 

learning [6]. Several approaches extend this original idea, e.g. 

using model-checking-based falsification as adversaries [7], 

considering model uncertainties [8], or even including the 

policy’s variance into the optimization process [9]. However, 

as studies from the autonomous driving domain show, it is hard 

to show superhuman performance in dynamically changing and 

heterogeneously structured environments [10]. The design 

approach we propose belongs to the third category. 

Conventionally as addressed in the PEGASUS project, a list of 

relevant scenarios is defined and tested [11]. As Hata et al. [12] 

propose, fuzzy methods combined with deep learning-based 

semantic segmentation helps interpolating between scenarios. 

However, if trying to make a claim for any possible scenarios, 

similarly to the proving approach strong assumptions are 

needed.  

The complex environment regarding the higher complexity 

of input data, complex software due to required complex logic, 

and non-deterministic behavior all factors show the importance 

of analyzing the complexity of safety [13]. So, the 

unpredictability of the behavior of autonomous systems causes 

a complexity increase of simulation techniques [14] Making 

complex decisions and meeting many requirements brings a 

new class of complexity problems for software of autonomy 

[15]. In [16], runtime validation is proposed as an approach for 

addressing the complexity problem.  

We, therefore, follow a novel approach. As [17] suggests, 

we determine the risk at runtime based on the situation, the 

system is currently in. As this is a concrete situation, we just 

need to consider scenarios, which can arise from the given 

situation, limiting it to a handy set. However, in contrast to 

[17], the proposed design pattern aims to set up a reinforcement 

learning-based system that derives the risk from the outcome 

of simulated development of the current situation rather than a 

rule-based approach. Moreover, like [18], we determine the 

risk in a probabilistic sense. Our overall architecture is 

presented in [19]. Our design approach is based on the idea of 

environment-centric judgment starting from control-theoretic 

modeling [20]. Therefore, we use the System Theoretic Process 

Analysis [21] rather than component-centric safety analysis. 

Moreover, we rely on the Digital Twin as the information 

source, with the main properties: synchronization with the 

asset, model orchestration, and simulation capability [2]. It 

models the system and its environment. In our work, we focus 

on the simulation capability but need the other parts as well. 

Indeed, it is a challenge in itself to build a good Digital Twin. 

Kousi et al. [22]therefore investigate the use of digital world 

modeling in hybrid production systems, Staczek et al. [23] 

show the important role of DT technology to test the operating 

environment of an autonomous mobile robot and early 

detection of design defects. In [24, 25], we contribute 

guidelines of building system’s Digital Twin and its 

environment and address the challenges of synchronization. 

Summing up the state of the art, there is a research gap in 

designing systems that determine the situational risk at runtime. 

Therefore, we contribute a novel design approach for building 

these systems (Section 3). As this comes at the cost of 

computational complexity, we consider this arising issue 

regarding the learning models and run time validation in 

Section 4 and introduce the drivers of complexity as a 

preliminary step for managing complexity. 

3. Situational Risk Assessment  

Digital Twin as a digital representation of a physical asset is 

a new concept to address the challenges of having flexible 

systems with shorter life cycles by providing the required 

information. It consists of data and models of the system to 

simulate, predict and optimize the system processes in the 

virtual environment [2]. As introduced in the latter section, our 

analysis is based on the system theoretic process analysis 

(STPA) [21]. The Digital Twin provides the STPA with the 

needed information, specifically the control-theoretic models 

as well as context information and relations to other models. 

The STPA results in a set of scenarios, where a control action 

potentially leads to a hazard. By taking the Digital Twin’s 

information model, all inputs involved in processing the 

respective control actions reveal the basis of unexpected inputs. 

Note that this analysis is not requiring for a manual search of 

scenarios where these constellations of unexpected control 

actions might occur. These unexpected inputs are produced by 

adversaries.  The adversaries are reinforcement learning agents 

injecting faults in terms of disturbances and environment 

features. They are therefore designed based on the relevant 

signals, the potential losses, and optionally loss scenarios. The 

relevant signals define the action space where the losses and 

ideally the loss scenarios form the basis of the adversary’s 

reward function. Then, the adversaries are trained in the Digital 
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Twin’s simulation environment. They get a reward if they 

manage to cause the control actions leading to hazards in the 

simulation. We suggest sampling over the possible values of 

the input vectors thus building a look-up table of trained 

policies with different strengths. The fault injection (i.e. the 

actions) of the adversaries now manipulates the original signals 

thus destabilizing the system in simulation. The strongest fault 

injection must be chosen such that the adversary always wins 

in terms of destabilizing the system to cause a hazard. 

However, especially in the interplay of different adversaries, 

weaker adversaries will also be able to cause hazards. The 

question of risk is now: how likely is a disturbance strong 

enough to force the system to fail? In order to determine this 

question at runtime, the monitored space is considered. For this 

reason, we instantiate Monitored Space Observation. Fig. 1 

visualizes this analysis. It is exemplified in Section 5. 

Note that the Monitored Space Observation does not only 

consider how much of the coverable area is covered in the 

respective situation but also which quality the signal has. These 

two dimensions cause different types of adversaries. In the first 

case, the adversaries try to hide important information within 

the uncovered space in the latter case they try to exploit the 

signal uncertainty in order to manipulate the outcome. Taking 

the mobile robot as an example, uncovered space might occur 

when obstacles shadow the sensors. In this case, the adversary 

simulates other vehicles or human workers in the unseen field 

crossing the mobile robot’s trajectory. In the case of signal 

uncertainty, e.g. imprecise estimation of the orientation, the 

adversary manipulates the orientation such that the mobile 

robot crashes into an obstacle rather than driving around them. 

In this way, the STPA points to several agents. We suggest 

following the divide-and-conquer principle and identifying 

more but simpler adversaries. The adversaries then all have 

different action spaces according to the various models, the 

Digital Twin organizes. However, for each adversary, the goal 

remains the same: injecting a fault such that the system runs 

into a loss. Therefore, some patterns occur.  

To analyze these patterns, we cluster the adversaries in the 

MAPE scheme [26] (“Monitore” is replaced with “Sense” to 

avoid confusion with the monitored space). Moreover, we 

differentiate between the adversaries exploiting limited 

observation range and those exploiting limited precision. Fig. 

2 depicts the design pattern of the adversaries. 

The sense adversaries disturb the preprocessing of the raw 

sensor signals. One classic example is simultaneous 

localization and mapping (SLAM). The adversaries in this 

cluster mainly focus on the precision of the signals. The Digital 

Twin provides statistical analytics for this purpose. The action 

spaces range from a light barrier signal, where the adversary 

just manipulates the signal intensity to complex image 

manipulation in the sense of adversarial examples [27]. In order 

to avoid sparse reward issues, the adversaries observe the 

effects in the next layer as intermediate goals. For example, the 

reward is provided when fault injection leads to the 

misdetection of an object. Again it is a service of the Digital 

Twin that provides the loss matrix of the respective 

misclassifications. In dead, in the following analysis part 

typically object detection takes place. It takes the point map of 

the step sense and extracts objects from it using pattern 

recognition. The patterns and the transformation models from 

point cloud to 3d object are retrieved from the Digital Twin. 

The result is an object map building the environmental 

understanding of the system. As manipulations in the data 

leading to misclassifications are already covered in the 

previous step, the fault injection in the analysis step focuses on 

the observation range. In our example of the mobile robot, the 

adversaries try to hide obstacles in the unobserved area in order 

to provoke collisions. We suggest building object classes like 

moving obstacles, static obstacles, etc., and representing each 

group by an adversary. As in the previous step, we recommend 

using intermediate goals for easing the training of the 

adversaries. In this case, the time, and injected obstacle that 

remain undetected serves as criteria. Moreover, as a 

simplification, the training process can provide reward already 

if the planned trajectory intersects an introduced object, saving 

time for simulating the execution of the planned trajectory.  

The following planning stage involves the Guidance 

Protagonist, a stabilizing reinforcement learning agent to plan 

a cost map which is used by the subsequent execution step as a 

setpoint for the controller. In our case, the protagonist 

determines safety areas around the respective object types 

using the Digital Twin’s object models combined with the loss 

models. The reward function contains a strong negative reward 

for collisions and a small negative reward for extending the 

length of the trajectory thus balancing risk vs. efficiency. The 

adversary counteracts the protagonist by calculating critical 

trajectories for the moving obstacles forcing collisions. This 

type of adversary is trained with the previously calculated 

trajectory of the guidance planning and the object map as an 

input. This object map contains the attribute of the objects 

marking them as movable. The adversary then step by step 

moves the obstacles towards the mobile robot in order to 

provoke a collision. This process is simulated in the Digital 

Twin, but not mirrored to the asset. The action space for each 

of the obstacles depends on their physical properties like max. 

speed etc. These properties again provide the Digital Twin. In 

this case, no simplification can be applied since the system’s 

reaction on eventually tracking and estimating the behavior of 

the moving obstacles has to be taken into account. This aspect 

is taken into account in the execution step. In this step, a 

Fig. 1. Design Process for Monitored Space Observer and Adversaries 



4 Manuel Müller et al./ Procedia CIRP 00 (2022) 000–000 

 

controller generates the mobile robot’s trajectory based on the 

cost map of the planning steps. One option of implementing 

this controller is model predictive control. As the risks of 

limited observation range are already covered by the planning 

adversary, this adversary again belongs to the group of 

precision adversaries. One example of the execution adversary 

is the simulation gap adversary. It is to expect that even the 

Digital Twin takes care of the up-to-dateness of the models, a 

simulation gap will remain. This simulation gap misleads the 

controller such that the actions chosen by the control do not 

really result in the calculated outcome. The respective 

adversary exploits these imprecisions. In the case of the mobile 

robot, it manipulates for example the orientation angle such 

that the robot deviates from the planned course. Naturally, the 

controller will eventually detect and compensate for the 

deviation. Depending on the strength of the adversary and the 

dead time of the controller, a collision may still occur. 

As previously discussed, the concrete risk is evaluated within a 

series of simulated experiments according to the current 

situation. The adversaries exist in different strengths (i.e. 

different action spaces). The monitored space observation 

selects the currently suiting adversary in real-time from the 

measured parameters: signal precision and observation range. 

The monitored space observation therefore statistically 

analyzes the incoming data for its variance and the observed 

area at the different levels. Table 1 shows an example analysis 

of the respective fields. Therefore, the presented risk 

assessment methodology uses the Digital Twin to provide data 

and models for STPA to ascertain the scenarios leading to 

hazards and system failure. The confrontation between 

adversaries and protagonists as destabilizing and stabilizing 

reinforcement learning agents provides vulnerable and safe 

areas around the respective object. The introduced Monitored 

Space Observation is used to select the strength and coverage 

of fault injection processes. This evaluation scenario brings 

about a situational risk area reorganization mobile robot. 

Building all these adversaries provides on the one hand more 

and more precise modeling of various risk factors. However, 

this comes at cost of increased complexity. The analysis of this 

complexity is discussed in the following section.  

Table 1. Observed parameters of monitored space observation in the 

respective processing stages 

Processing 

stage 

Observed 

category 

Observed parameter  

Sense Signal variance Distribution of the signals 

Analyze Observed area of 

the sensory 

Regions in the map covered by 

sensory 

Plan Observable 

behavior of 

obstacles 

Predictability of the obstacle’s 

behavior. Unrecognized obstacles 

are treated completely 

unpredictable. 

Execute Simulation gap, 

model 

inprecisions 

Deviation from the simulated 

outcome to the measured one. 

4. Complexity analysis 

The aforementioned approach suggests training multiple 

reinforcement learning agents for fault injection and then 

assessing the risk. While executing the policies at runtime is 

computationally lightweight, training the policies requires 

certain computational power. Therefore, we propose how to 

improve the quality of the fault injection process against the 

required effort, i.e. apply complexity management. Fig. 3 

visualizes the complexity drivers. 

From intuition, it is clear that safety increases with finding 

critical situations more efficiently which correlates with the 

power of the adversaries. The adversaries’ power increases 

with the granularity of the action space, the number of agents 

trained together, and the number of training epochs. 

Generalization increases with the number of different scenarios 

involved in the training process, e.g. different maps containing 

different types of objects, different trajectories, etc. Moreover, 

the engineering effort decreases, less preprocessing is required 

for the input data, and trending to high dimensional input 

spaces. However, all these parameters increase the complexity 

and consequently the training effort. In order to limit this effort, 

we introduce a complexity budget. The complexity budget 

defines the amount of acceptable complexity up to which the 

system remains manageable. This complexity budget is 

determined from the use cases, the engineering, and the design-

time risk assessment. We have to define first, how much we are 

Fig. 

2. Design Pattern of the Adversaries 

 

Fig. 3. Complexity Budget. Analysis from Design Phase, namely use 

case, engineering and risk assessment to estimate the complexity 
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willing to pay in order to further improve safety. This budget is 

limited by practical as well as economical arguments like the 

time spent for training, the required engineering effort, etc. In 

our case, we use the training complexity of reinforcement 

learning as a reference and measure it in training epochs. We 

count the epochs with respect to the already optimized policy 

as depicted in Tabel 3. We generate an exchange process for 

example to engineering effort, as further optimization in the 

engineering process can optimize the needed number of 

epochs. From the use cases, stable states can be derived, where 

the risk is known to be neglectable, e.g., when the mobile robot 

is docked to a working station in a charging- or entering a 

waiting position. These stable states determine the length of 

epochs since the runtime risk assessment simulates the 

activities between two stable states. Moreover, the agents are 

trained for the environmental conditions, the use case focuses 

on determining the variation of the expected situation and 

therefore, the number of test setups. From the engineering, the 

input optimization determines whether the agents get a map as 

bitmap or object position, etc. thus influencing complexity. 

Moreover, by selecting the architecture of the agents, we 

indirectly define convergence speed and the number of epochs 

we need for training. Finally, design time risk assessment 

provides as output the number of agents, as well as the groups 

of agents as common cause analysis. Table 3 provides a 

reference value of how much complexity is put into the 

complexity budget in the following case study. 

5. Case Study 

For our case study, we consider Robotino 3 Premium by 

Festo, a mobile robot. Its goal is to deliver intermediate 

products to the workstations of a matrix production system. For 

this setup, we perform a simplified STPA in order to define our 

adversaries. The result of the STPA is depicted in Table 2. 

Here, we consider the two control signals move and rotate, 

which can lead to two different kinds of losses: blocking the 

process and colliding. The collision is the worse loss and the 

only safety-critical one. For this reason, we give priority to 

collisions.  

Table 2. Results of STPA. STPA identifies different loss scenarios 

Control 

action 

Wrongly 

provided 

Wrongly not 

provided 

Wrong timing 

Move Robot crashes 

into an obstacle 

Production 

process blocked  

Crash or process 

blocked 

Rotate Deviation from 

plan leads into 

crash 

Deviation from 

plan leads into 

crash 

Deviation from 

plan leads into 

crash 

The next step is to derive the appropriate adversaries for the 

four layers: Sense, Analyze, Process, and Execute. As in STPA, 

losses are always allocated in the Execute part, we start with 

this part. We identify that a deviation in the rotation might lead 

to leafing the planned route and therefore crash. For this reason, 

we build an adversary manipulating the robot’s orientation. 

Through backpropagate using the digital twin, we find a 

prediction of moving obstacles influencing the movement from 

the processing layer. Based on that, we insert an adversary 

manipulating the trajectories of moving obstacles. Another 

layer above, we learn from the Digital Twin, that the object 

model is essential for movement prediction. However, the 

mobile robot does not know all objects from the beginning. It 

has to discover them during runtime. Therefore, if obstacles are 

not in the field of view of the robot, it will not recognize them. 

The Analyze-Adversary exploits this property and inserts 

obstacles at the unobserved areas. Intentionally, the mobile 

robot detects the obstacle too late and crashes. The Sense-

Adversary’s manipulation points in the same direction, but 

even one layer above. It disturbs the input signal, e.g. the 

camera signal. The camera is used to identify the respective 

objects. Therefore, by adding adversarial noise, a 

misclassification takes place, which eventually leads to a crash 

with the respective object. Table 3 summarizes the adversaries, 

their parameters, and a reference value of the complexity. 

Table 3. Example Adversaries for the different layers with their action spaces 

and complexity after optimization 

Layer Adversary’s 

Goal 

Input space Action 

space 

Complexity  

Sense Image 

manipulation 

Image size Noise 

matrix 

~50,000 eq. 

epoch[27] 

Analyze Position 

obstacles in 

unobserved 

area 

Field of 

View, List of 

Objects 

Object 

type, 

position 

~50,000 eq. 

epoch 

Process Manipulate 

trajectory of 

moving 

obstacles 

Field of 

View, List of 

Objects, Ego 

perception 

Movement 

Direction 

~16,000 eq. 

epoch 

Execute Manipulate the 

orientation of 

the robot 

Grayscale 

map 

(bitmap) 

Deviation 

in Angles 

~ 60,000 eq. 

epoch 

We define for our complexity budget a limit of 200,000 

equivalent epochs (eq. epoch), which corresponds to ca. 36 h 

of training on our hardware. The equivalent epochs directly 

correlate with the runtime behavior, since one epoch represents 

one simulation run. A budget of 200,000 eq. epoch therefore 

directly corresponds with a computational effort of 648 ms, 

which is acceptable for our robot’s high-level planning. Then 

we naively set up the adversaries ending up a factor between 2 

and 10 above our complexity budget. By reducing the 

granularity of the execute adversary to fife angles and 

optimizing the training environment, directly implementing it 

in OpenGL and c/c++, we managed to reach the results 

provided in the table and thus kept our budget. 

The above case study successfully exemplifies the 

application of our design process. Moreover, reference values 

for the respective adversaries are provided. Indeed, the 

adversaries have to be designed individually for the respective 

system. However, this design process provides guidance in 

setting up a situation-based runtime risk assessment for mobile 

robots. In principle, it is transferrable to other domains as well. 
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6. Conclusion and Future Work 

This paper presents a methodology enabling to find out the 

situational risk for mobile robots operating in dynamically 

changing and heterogeneously structured environments. The 

presented risk assessment methodology uses Digital Twin to 

provide data and models for System Theoretic Process 

Analysis to ascertain the scenarios leading to system failure. 

Moreover, the Digital Twin’s model management capability, as 

well as its synchronization property, are used at runtime in 

order to simulate the system’s current situation accurately. 

Multi-Agent Adversarial Reinforcement Learning forces self-

play between two competing kinds of agents, namely 

Adversary and Protagonist. Like prosecutors and defense 

attorneys in court, both sides present evidence that argues for 

or against the safety of the system: the adversaries by fault 

injection and the protagonists by coping with it. Circumstances 

determine the strength of the parties and thus the outcome of 

the confrontation, i.e. the situational risk. The Monitored Space 

Observation provides the information of the circumstances in 

terms of statistical signal property. The methodology is 

validated in a case study using Robotino 3 Premium by Festo. 

By focusing on the situational risk instead of the overall risk, 

this approach contributes to solve the scenario explosion. 

However, shifting the risk assessment to runtime causes 

additional software complexity. The complexity issue of 

required learning for this methodology is considered and 

investigated the factors that affect the required effort to 

simulate. However, more studies in situative risk assessment 

and complexity management in intelligent software-defined 

systems are required. For this reason, in future work, we are 

going to further study the complexity of intelligent software-

defined systems and situational risk assessment at runtime. 
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