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Abstract: This paper presents a novel approach to ensure the quality of the Digital Twin models that 

modern Cyber-Physical Manufacturing Systems (CPMS) rely on. CPMS are configurable and intelligent. 

Environmental and system parameters change frequently. Thus, static models are inadequate. Autonomous 

mobile robots and the simulation of their movement are important elements of these CPMS. Based on our 

reinforcement learning-based methodology, we use these robots as an example to show how the Digital 

Twin automatically improves models that do not perfectly represent the physical asset, making it an 

intelligent Digital Twin. In our scenario, the behavior of the asset deviates from the simulated prediction, 

i.e., a simulation gap occurs. The presented approach closes this simulation gap through a three-step 

mechanism. First, it makes the simulated data and the real data comparable and synchronizes it. Second, it 

applies reinforcement learning to find patterns in the deviations between the simulated and real data. Third, 

it learns to compensate for them. The evaluation of this example shows promising results. 
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1. INTRODUCTION 

Intelligent cyber-phyiscal manufacturing systems (CPMS) 

become flexible, (re-)configurable and intelligent. They 

support smaller batch sizes, shorter reconfiguration times and 

perform production and reconfiguration with less human 

intervention up to full autonomy. To achieve this flexibility, 

CPMS are often set up in a matrix production environment 

where autonomous mobile robots connect the individual 

workstations. One enabling technology on this way is the 

Digital Twin. The Digital Twin of a CPMS “is a virtual 

representation of a physical asset […], capable of mirroring its 

static and dynamic characteristics” (Ashtari Talkhestani et al., 

2019). Its main capabilities is mirroring the physical asset to 

the cyber world. The Digital Twin therefore needs the three 

capabilities: “synchronization with the real asset, active data 

acquisition from the real environment and the ability of 

simulation” (Ashtari Talkhestani et al., 2019). With these 

capabilities, it enables applications like virtual commissioning, 

what-if simulations of reconfiguration variants, simulative 

studies of corner cases etc. However, all these applications rely 

on the quality of the Digital Twin’s models. As West and 

Blackburn showed in (West and Blackburn, 2018), it is 

impractical or at least uneconomic to model every detail of the 

physical asset in advance. Another reason for model 

inaccuracy is the fact that in the life cycle of an asset the gap 

between models and reality is constantly increasing. The cause 

of this gap is the changes within the physical asset or in its 

environment. CPMS therefore must deal with imperfect 

models. As the models do not perfectly represent the physical 

asset, the behaviour of the asset is expected to deviate from the 

simulated prognosis, i.e. a simulation gap arises. What would 

humans do in this situation? They would study the deviations 

from their expectation and improve on the models based on the 

experience they gain during operation. For this reason, it is an 

intuitive approach to apply this strategy to the Digital Twin, as 

well, rendering the Digital Twin an intelligent Digital Twin. In 

this paper, we present a reinforcement learning based approach 

that follows this strategy, thus closing the simulation gap. The 

approach is evaluated on an autonomous mobile robot 

connecting the workstations of a CPMS. 

The reminder of this paper is structured as follows: After the 

introduction, we outline the background of this paper in 

Section 2. Afterwards, in Section 3, we present our approach 

of self-improving models for the Digital Twin. Thereafter, we 

illustrate our prototype (Section 4) and evaluate it towards the 

ability of closing the simulation gap. The paper ends with a 

conclusion (Section 5). 

2. DIGITAL TWIN AND SIMULATION-REALITY GAP 

Digital Twin started as a vision of the NASA, driven by the 

idea of fully simulatable aerospace missions (Glaessgen and 

Stargel). In the early days, the NASA painted the vision that 

the Digital Twin would be equipped with a set of models, 

covering every detail of the system’s behavior. Thus, it predict 

any behavior of the system in any case (West and Blackburn, 

2018). With this property, they would enable the perfect zero-

shot-transfer to the physical world. However, this approach 

has several drawbacks. West and Blackburn consider this 

unrealistic or at least uneconomic. Our survey on Digital Twin 

for verification and validation (Löcklin et al., 2020) supports 

this thesis since we hardly found approaches with full-featured 

Digital Twins and none of them alone was enough to certify 

the asset.  



 

 

     

 

However, there are huge progresses in this field. Just the take 

strategy changed. Simulation is one core attribute of the 

Digital Twin. With the synchronization, there is a strong 

emphasize on the transfer from simulation to reality and back. 

Previous work towards the synchronization of the Digital Twin 

focus on changes on the CPMS, how to detect these and keep 

the (simulation) models and their relations consistently to the 

physical asset (Ashtari Talkhestani et al., 2018; Talkhestani et 

al., 2018). In more recent work, the area of AI-enhanced 

Digital Twin (Jazdi et al., 2021) is researched. Specifically 

transfer learning is connected to the Digital Twin (Maschler et 

al., 2021). From this perspective, the research on bringing the 

simulation-to-reality gap, which has been studied for over 20 

years now (Mouret and Chatzilygeroudis, 2017), comes into 

touch with the Digital Twin research. However, the latter 

survey outlines, that the simulators are not good enough now. 

Although approaches exist that try to tune the simulator in 

order to bridge the simulation-to-reality gap (Collins et al., 

2020), according to Mouret and Chatzilygeroudis, this may not 

get so far in the next couple of years. Therefore, it moves the 

Zero-Shot-Transfer in the future. In contrast, (W. Zhao et al., 

2020) identify in their survey system identification, domain 

randomization, domain adaption, and learning with 

disturbances as subsidiary approaches in order to bridge the 

simulation-to-reality gap. In this area, (Bousmalis et al., 2018) 

study the applicability of simulation-trained models to the 

reality using randomized environments and domain adaption 

methods. Moreover, (Zhao et al., 2020) and (Rao et al., 2020) 

consider the area from a deep reinforcement learning 

perspective with the intention to train the agents in simulation 

environment and apply them to real systems. 

However, considering the Digital Twin, there is a difference to 

the pure simulation-to-reality transfer: Instead of starting with 

a simulation and transferring the result to the reality, in the 

case of the Digital Twin, simulation and physical execution 

coexist. Therefore, not only a transfer to reality, but also a 

transfer back is required. One approach considering this issue 

is (Chang and Padir, 2020). Since the environment and the 

system itself change and the initial models exist in different 

qualities, an intelligent Digital Twin has to care dynamically 

about its models. As a result, it must improve them as soon as 

it detects that its models are no longer suitable or even valid.  

The departure from the vision of the Digital Twin being able 

to describe the asset in any detail has the consequence that 

discrepancies arise between the forecast of the Digital Twin 

and the process data of the physical asset. In other words, a 

simulation-reality gap is created. Approaches to deal with this 

simulation gap already exist from the simulation sciences and 

in particular from the field of reinforcement learning. 

Reinforcement learning uses the simulation to safely explore 

the environment selecting actions from the action space and 

learn from the environment’s feedback how to improve the 

behavior. However, these mainly focus on the transfer from a 

simulation to a real application. The Digital Twin, in contrast, 

requires a mutual interaction between cyber and physical 

world. This paper provides a contribution to this. We propose 

an approach that builds on the spirit of adaptive models but 

with the focus on closing the reality-to-simulation gap in order 

to create self-improving models for the intelligent Digital 

Twin. These self-improving models therefore get closer to the 

physical asset’s actual behavior. This approach is presented in 

the following section. 

3. APPROACH FOR SELF-IMPROVING MODELS 

The following aspects build the basic idea of our approach: 

Observation, perception, analysis, and reasoning. For the 

reasoning, the existing operational experience and expert 

knowledge are used. In contrast to the general approaches, 

where the algorithms are pre-training in the simulation first 

and afterwards irrelevant when applied to reality, the Digital 

Twin paradigm proposes using Digital Twin’ s simulation part 

and asses at the same time with equal priority. For this reason, 

the information transfer takes place in two directions: from the 

Digital Twin to the asset providing predictions and what-if 

analyses and from the asset to the Digital Twin providing not 

only reference data to validate the predictions but also 

information about changes in the environment and the system 

itself. This bidirectional transfer keeps the Digital Twin 

consistent with the asset and at the same time enriches the asset 

with additional background. We consider this bidirectional 

transfer synchronization. The synchronization builds the basis 

for the (automatic) model improvement. Fig. 1 illustrates the 

relationship.  

The synchronization uses both, the synthetic data and the 

process data, compares them and searches for aspects that are 

not well predicted or at least explainable from the simulation 

models. Therefore, the synchronization process consists of two 

parts, comparison and anomaly detection. From the 

comparison between the cyber data and the asset, plausibility 

checks validate the process data. In this way, obvious 

measurement errors are unveiled. In this case, the system relies 

on the simulation. However, especially in the beginning of the 

application phase, large simulation-to-reality gaps have to be 

taken into account. If inconsistencies occur that are not 

obvious measurement errors, the measurements always 

overrule the simulations. Therefore, the simulation adopts the 

system state based on the measurements, accepting the 

violation of physical constraints. In the example of the 

 

Fig. 1: Workflow of synchronization and model 

improvement 



 

 

     

 

autonomous mobile robot, position jumps occur. The anomaly 

detection then differentiates normal deviations between 

simulation and reality from unexplainable behaviour. 

Clustering the process data in repeating steps and thereafter 

statistically evaluating the respective data inside these clusters, 

the anomaly detection provides evidence to the comparison 

part, where to put the border between obvious measurement 

error and unexpected but plausible data. The first way of 

supporting this decision is straightforward calculation of 

observed variations and therefore concluding on plausible 

deviations. However, using more sophisticated anomaly 

detection, this procedure may be complemented by 

identification of preliminary signs of leaving the validity 

range. The survey (Lindemann et al., 2021) sums up 

approaches for more sophisticated anomaly detection. 

Independent on the used approach, anomaly detection provides 

information whether the incoming data is considered normal 

or abnormal. This information is crucial for model 

improvement since the way of changing the models differs 

fundamentally between these two cases. In the normal case, 

the basic correctness of the underlying models is assumed. 

Therefore, the model is tuned using methods of system 

identification or parameter tuning. In contrast, having 

abnormal data indicates fundamental problems in the model. 

Therefore, it is sensible to adapt the model as such by 

searching for a translation between current models and reality.  

But how to compare the models of the Digital Twin with the 

physical asset? As (Mouret and Chatzilygeroudis, 2017) show, 

the simulators’ synthetic data still differ significantly from real 

process data. In general, models simplify the reality and 

therefore by design need to be made comparable first. Our 

approach in this aspect is visualized in Fig. 2. We identified 

three steps namely data acquisition, pre-processing and 

transfer, which have to be executed in both domains, cyber and 

physical world differently in order to prepare for 

synchronization and model improvement. In the cyber domain, 

the simulation environment produces synthetic data. 

Normally, this data represent a subset of the total space of 

possibilities the system acts in. It is pure, i.e. does not contain 

noise or dirt effects. In order to make the data more general, 

the latter might be added. Moreover, to prepare the system for 

real-world data, the covered space has to be extended. This 

process is subsumed with the term Domain Randomization. 

Concrete approaches of how this works are proposed in (Tobin 

et al., 2017). The result of this Domain Randomization are 

synthetic features, which have to be unified in order to match 

the process features. In this context, it has to be noted, that the 

algorithms in the simulation domain might differ from the 

algorithms in the physical space. The Simulation-to-Reality 

Wrapper takes care on this task. It puts the detection layer on 

a higher level and therefore eases the comparison. One 

example is the domain of object detection. In this area, not only 

the identified label but also the confusion matrix to other labels 

should be considered. However, reducing this conversion table 

to the 5-10 most relevant misclassifications and comparing this 

between cyber world and reality is better comparable than 

comparing the features, which the object detectors use. 

The physical world however acquires the process data directly 

from its sensory. The so acquired process data is pre-processed 

with exactly the opposite intention of the cyber world, namely 

to reduce dirt effects and noise and therefore purify the signal. 

Sensor fusion & noise reduction therefore are the matter of 

choice for pre-processing real-world data. As in the cyber 

space, the transfer follows. The Reality-to-Simulation 

Wrapper also abstracts from domain-specific features, making 

the information comparable to the synthetic features.  

As previously announced, the model improvement follows two 

different approaches, depending on whether the deviation 

between forecast and measured values is classified as normal 

or abnormal. The differentiation between normal and 

abnormal is use case specific. In the easiest case, the signal-to-

noise ratio serves as threshold. However, as the abnormal 

deviation can be seen as an anomaly, the Digital Twin can also 

exploit more sophisticated anomaly detection algorithms as 

described in (Lindemann et al., 2021). 

While for the case of normal deviation the way to tune the 

model is already included in the model itself, the question of 

how to close the gap between simulation and reality when the 

model reaches its limits requires a model-independent 

approach. This paper focuses on this area. We propose 

exploiting reinforcement learning for this purpose. Table 1 

summarizes the parameters of the learning algorithm. The 

basic idea is to use the synchronization signal as a delayed 

reward judging the actions of modifying the original model.  

Table 1: parameters of the reinforcement learning agent 

Parameters Values 
Algorithm class State-Action.Reward-State-Action 

(SARSA) 

Available input Continuous value, Delayed reward, Multi-

action 

Assumptions Only longitudinal control 

Action space 0...20 cms-1, quantization 1 cms-1 

Reward 
𝑅(𝑥) = {

+1, 𝑥 < 1 𝑐𝑚
−5, 𝑥 ≥ 1 𝑐𝑚

 

End of an episode x > 2 cm or rotational deviation > 0.01 rad 

 

Fig. 2: Synchronization and model improvement 



 

 

     

 

The reinforcement learning agent now translates the changes 

in the form of a discretized translation table from the original 

model to the process data, i.e., the measurements. This way, a 

new model is created. Each time the new model predicts the 

position of the robot with a maximum tolerance of 1 cm to the 

measurement, the agent receives a positive reward. This way 

the simulation models are adapted such that they better 

represent the physical asset and therefore reduce the 

simulation-reality gap. During the learning process, the 

agent’s goal of minimizing the gap between cyber and real 

world makes the translation table converge to the actual 

representation of reality, i.e. a new, improved model is build. 

However, there are some aspects to care for in order to make 

this approach successful. The first aspect is the definition of 

the action space. It has to cover the complete observed space 

of the process data. Moreover, the resolution must be high 

enough that the quantization noise is significantly smaller than 

the expected model deviation. Since training data is limited, 

we suggest starting with very rough quantization. The strategy 

is just to get below the anomaly level and tune out the 

quantization errors in model tuning. In our experiment, we 

took an action space of only 20 actions leading to convergence 

with about 100 training samples. Of cause, larger action spaces 

are possible but lead to long convergence times or require for 

more training samples, respectively. This aspect has to be 

taken into account especially because synthetic data is 

identified to not correctly represent reality and therefore is not 

available. Against this background, it seems expedient to 

narrow down the range of deviation as much as possible. In 

our example, the odemetry of a mobile robot was reduced to 

the longitudinal control. Changes in the cross control therefore 

trigger a new training sequence. More details on the prototype 

and the experiment are descripted in the following section. 

4. CASE STUDY 

As previously indicated, we consider an autonomous mobile 

robot connecting various workstations in a matrix production. 

The autonomous mobile robot’s Digital Twin is used to safely 

navigate in the manufacturing system and coordinate 

exchanging workpieces between the respective resources. 

Fig. 3 (left) illustrates the autonomous mobile robot within the 

CPMS. In the sketched scenario, the deviation between 

simulation and reality is small to enable the other factory 

components to use them e.g. to co-simulate docking processes. 

In our case, we only tolerate a simulation-to-reality gap of 2 

cm. The Robotino 3 Premium by Festo is used as the 

autonomous mobile robot. It is equipped with a laser scanner 

used for simultaneous localization and mapping and a 

monocular camera assisting the object detection and 

visualizing the environment. On the Robotino, a Robot 

Operating System (ROS) node, is running. Through this ROS 

node, the Robotino is controlled wirelessly from a pc running 

Lubuntu 20.04. The simulation environment builds on Gazebo. 

However, machine learning models, especially reinforcement 

learning models complement it. The framework RviZ serves 

for visualization. Fig. 3 illustrates the perception of the 

intelligent Digital Twin. In this visualization, the autonomous 

mobile robot’s process data with camera image and laser 

scanner data is shown on the left, where the simulation is 

visualized on the right. In this simulation, the two white tables 

on the right side of the autonomous mobile robot are already 

recognized and modelled as bounding boxes. The tool bar on 

the left hand side allows for selecting the signals to monitor. 

The map in the centre shows the current laser scanner 

measurement (cyan), the direction of movement (red arrow), 

and the assigned cost maps representing regions to stay out. 

The terminal on the bottom right shows logs of the running 

scripts. In this scenario, we consider the correct movement and 

positioning of the robot in the simulation. The position of the 

Digital Twin and the asset is synchronized. Laser scanner data 

is therefore processed to extract the position using 

Simultaneous Localization And Mapping (SLAM), which is 

then transferred to the simulation coordinate system. 

Moreover, features like the mentioned tables, represented as 

bounding boxes are transferred to simulation. In turn, the 

simulation model of the movement predicts the position under 

domain randomization using physics models. In the drive of 

the autonomous mobile robot, two nonlinearities exist, which 

are not yet modelled. Instead, the old model assumes a linear 

relationship between requested velocity and set velocity, i.e. 

the controller is always considered to be oscillated in. 

Therefore, in the Digital Twin, without countermeasures, the 

autonomous mobile robot “jumps” in the simulation 

 

Fig. 3: Perception of the intelligent Digital Twin 



 

 

     

 

environment due to frequent position updates. These position 

updates always occur when the tolerated deviation of 2 cm is 

violated. In conclusion, the number of position updates 

provides information about the quality of the model. It is 

compared before and after applying synchronization. 

However, the improved model is not applied directly but runs 

in parallel to the original model. In this way, the anomaly 

detection keeps triggering. Thus, the algorithms run in the 

model improvement branch supplying the reinforcement 

learning algorithm with samples. The algorithms switch to the 

new model once the reinforcement learning algorithm has 

converged. 

5. EVALUATION 

We evaluate the case study according two criteria. First, we 

check for plausibility interpreting the found translation table. 

Afterwards we quantify the success comparing the deviation 

between model’s prediction and actual process data. 

Our synchronization process takes the measurements from the 

laser scanner and processes it to position information using 

SLAM algorithm. This position measurement is validated 

through reference measurement. The synchronization module 

now compares this position to the simulated position. This 

simulated position is calculated using a simple physics model 

integrating over the set point value of the velocity. Since the 

positioning module has a much higher dudty cycle than the 

speed controller, the speed controller is seen as a subordinate 

control loop, which is assumed to be swung in. Then we run 

the reinforcement learning algorithm to come up with a 

mapping table that maps the original speed (“old action”) to 

the better fitting velocity (“new action”) to apply in simulation. 

The mapping from old action to new action is visualized in Fig. 

4. By this experiment, it shows off that the naive assumption 

and therefore the resulting model is too simple. We can 

observe a start saturation up to 6 cms-1. Obviously, the physical 

controller is not able to set movements below this level. 

Moreover, the plot indicates a speed saturation at 16 cms-1. The 

physical controller seems to have a limit at this level instead 

of the assumed 20 cms-1. Reasons for this behavior could be 

friction etc. consuming the control reserves. Both 

nonlinearities are plausible and were validated on the asset. Of 

cause, it was not a hard challenge to correct the models or build 

a better controller not showing these deficits manually. 

However, the amazing aspect of this approach is that the 

system automatically identified the problem in the model (i.e. 

identified the limits of the model) and improved it in order to 

compensate for the inadequacy. Using this model in the 

Intelligent Digital Twin for subsequent processes like 

trajectory prediction etc. running in an open loop simulation 

now provides more accurate results. Nevertheless, the 

compensated model is not yet ideal as well. In the linear area 

(7 cms-1...15 cms-1) the quantization error clearly shows off. Its 

severity depends on the trade-off between complexity and 

precision. The subsequent model tuning can be exploited here 

to decide in favor of complexity. 

Applying this compensation shows a significant improvement 

of the model as visualized in Fig. 5 and Fig. 6. Fig. 5 shows 

the results without compensation. In average, every third 

position value has to be corrected (marked red), because it 

exceeds the limit of 2 cm deviation. Although the updates were 

this frequent, still deviations above 4 cm occur. The model 

quality is therefore rather poor. The new model applies the 

improvement using reinforcement learning. The results are 

visualized in Fig. 6. As can be seen, not only the number of 

deviations was reduced from 33 to 10, approximately a third 

compared to the old model, the magnitude of the deviation was 

also reduced. In other words, the model got three times closer 

to the actual position, an improvement by 300%.  

 

 

Fig. 4: Revealed pattern between old and new model 

 

Fig. 5: Results without compensation 

 

Fig. 6: Results with compensation 



 

 

     

 

6. CONCLUSION 

Modern Cyber-Physical Manufacturing Systems (CPMS) 

become flexible, (re-)configurable and intelligent. The 

intelligent Digital Twin supports this transformation process. 

In order to do so, a core challenge, a core challenge of the 

Digital Twin is to close the simulation-to-reality gap. The 

proposed approach thereby shows how self-improving models 

can be created. This synchronization reveals the limitations of 

the models, and the subsequent step of self-improvement 

causes the models to get closer to the actual behavior of the 

physical asset. A distinction must be made between normal 

deviations and anomalies, since the approach differs in the 

individual cases. While the improvement of models, which are 

in the normal range, is already inherent in the models, the 

model-free reinforcement learning method SARSA is suitable 

for improvement in the insufficiently modeled areas. In our 

case we reached: 

- The synchronization mechanism automatically found 

out the nonlinearities in the system.  

- The system learned autonomous how to compensate 

for the shortcomings of the movement model. 

- The accuracy of the model increased by 300%, i.e. the 

position is closer to the actual position of the asset. 

However, keeping the complexity low remains a critical 

aspect. Dealing with this aspect is interesting for future work. 

Moreover, it would be interesting to research more models 

applying the presented methodology. In addition, further 

approaches to adapt the models of the Digital Twin during 

runtime should be considered. Furthermore, the benefit to the 

transfer-learning model to reality using the synchronized 

models should be researched in future work. 
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