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Abstract— Machine learning (ML) is one of the most 

interesting techniques being researched in recent decades and 

has applications in various areas. Among these applications is 

machine learning to identify and protect systems from 

potential adversarial intrusions, thus presenting promising 

cybersecurity solutions. However, machine learning 

algorithms and systems themselves are prone to a variety of 

security concerns. In the first part of this paper, a brief 

introduction to the concept of machine learning and its 

generic model will be given. Thereafter, some information 

gathered by some leading researchers on the taxonomy of 

attacks is presented. Some prevalent types of attacks are also 

discussed. Lastly, a summary of some defense mechanisms 

used to combat threats is drawn. The second part of this paper 

provides a case study of cybersecurity applications in the 

medical field, specifically Remote Heart Monitoring Devices. 

This paper aims to give an introductory understanding of 

machine learning threats, the defense mechanisms against 

them and provide a case study of how safer machine learning 

systems could be applied in the field of medicine. 

Keywords—Machine Learning, Cybersecurity, Defense, 

Adversaries, Cyberattacks, Artificial Intelligence, Medical AI. 

PART 1: CYBERSECURITY IN MACHINE LEARNING 

I. INTRODUCTION 

Machine Learning employs a variety of algorithms to 

iteratively learn patterns in data and make predictions on 

unseen data. Although there are many advantages of 

applying machine learning algorithms in various fields, 

there are still risks involved with the use of machine 

learning that need to be overcome to ensure the security of 

data, reliability of the model, and transparency of the 

decision process. The main focus of this paper is on the 

cybersecurity risks that are associated with the application 

of machine learning and how these can be overcome. To 

have a better understanding of how these risks occur and 

how they can be prevented, it is important to first give a 

brief introduction on the general working principles of 

machine learning. 

Machine Learning is split into three learning techniques 

namely – supervised learning, unsupervised learning, and 

reinforcement learning. In the supervised and unsupervised 

learning techniques, a training dataset from which the 

algorithm will learn the patterns in data is required. It 

consists of instances collected that have an input vector of 

attributes and in the case of supervised learning, the desired 

output. In case of classification problems, the desired 

outputs are discrete values (labels), whereas regression 

problems have continuous-valued outputs. The Figure I 

shows a generic model of an ML system as shown by 

McGraw et al. [1]. McGraw et al. describe the model using 

9 components. The ML Pipeline starts with the raw data in 

the real world which is then collected and labelled in case 

of supervised learning. An exploratory data analysis 

thereafter helps find and deduce important features for the 

learning process. The collected data is divided into three 

datasets: the training dataset used to optimize the learnable 

model parameters like weights and biases, a validation set 

used to optimize model architecture parameters like 

number of layers and the number of training epochs in 

neural networks and finally, a test set used to evaluate the 

performance of the trained model. The optimized model 

with a good enough performance is then used in an ML 

system to make decisions on new unseen inputs from the 

real world. Each of the steps is vulnerable to cyberattacks.  

 

Figure I: Generic Model of an ML System [1]. 

In section II, a taxonomy of cyberattacks on ML 

systems is discussed with reference to various studies done 

by profound researchers. A few examples of risks and 

cyberattacks are discussed in Section III. Section IV gives 

a summary of some reactive and proactive defence 

mechanisms against cyberattacks. In conclusion of part 1 

of this paper, a personal conclusion and future outlook is 

drawn. Part 2 of the paper focuses then on a case study of 

the application of cybersecurity techniques in a medical 

environment, precisely, remote heart monitoring devices. 

II. TAXONOMY OF ATTACKS 

 When attacking an ML system, an attacker may use a 

variety of tricks and skills to sabotage the ML model, hence 

leading to wrong predictions or extraction of vital data. 

According to Pitropakis et al. [2], regardless of what 

individual steps the attacker takes, the attack-process can 

be summed up into two phases. 

A. Preparation Phase 

Before the attacker can make any attack-plan, they need 

to gather relevant information about the model and identify 

the skills necessary to carry out the attack. This is the 

preparation phase. In [3], the knowledge that an attacker 

may get about a ML system include: knowledge about the 

training data, the feature set used, the machine learning 

algorithm, the cost function minimized during training and 

lastly, the trained parameters. The category of attacker 

knowledge depends on what kind of information the 

attacker can find about the model [2]. In case the attacker 

mailto:st175494@stud.uni-stuttgart.de


 

 

knows information about both the learning algorithm and 

the ground truth (i.e., the training and test data that has 

already been labelled / measured before training the model) 

then the type of attack is called a Whitebox attack. 

Whitebox attacks are common to opensource models since 

information about the model architecture is often available 

to the public. If neither information about the algorithm 

used nor ground truth is available to the attacker, then we 

are dealing with Blackbox attacks. A final category known 

as the Graybox attacks defines attacks in which the attacker 

knows information either about the ML algorithm used or 

the ground truth.  

Some popular machine learning algorithms that may be 

used to optimize the model parameters include Deep Neural 

Networks (DNNs) and Convolutional Neural Networks 

(CNNs) widely used in more complex learning tasks like 

image recognition, classical algorithms like Naïve Bayes, 

Support Vector Machines (SVMs), K-Means, K-Nearest 

Neighbour among others. 

B. Manifestation Phase 

After successfully determining the necessary skillset 

and information needed to carry out an attack, the attacker 

then launches the next phase – Manifestation phase. Both 

Pitropakis et al. [2] and Barreno et al. [4] suggest some 

characteristics by which this phase may be characterized. 

They both however heavily focussed on attacks against 

supervised classification models. Barreno et al. suggests 

characterizing attack models based on the following 

characteristics:  

1. Attack Influence: There are two ways an attacker can 

influence a ML system. Firstly, the attacker could 

make alterations the training data used in optimizing 

the model parameters. Such attacks are called 

Causative Attacks. Secondly, the attacker may not 

have access to the training data but rather use carefully 

designed input data on a model and observe the 

decisions made. From these decisions, the attacker 

may be able to extract some information about the 

training data or/and model architecture. These attacks 

are called Exploratory attacks. [3]  

2. Attack Security Violation: Any attack on a ML system 

usually poses a security threat. This characteristic 

defines what kind of security violation the attacker 

does. The attacker may aim to evade the detection of 

certain harmful instances during classification 

(Integrity Violation). In some cases, the attacker may 

influence the model to classify a negative data instance 

as a false positive (Availability Violation) [4]. In some 

more recent research [5, 6], another security violation 

in which the attacker is able to obtain private 

information about users, model etc. by reverse 

engineering is discussed, i.e. the Privacy Violation. 

3. Attack Specificity: This points out the range of data 

instances that the attacker targets. Targeted specificity 

is when the attacker wishes to have a certain class 

classified as a specific class other than the true class, 

whereas with indiscriminate/generic Specificity it can 

be classified as any other of the classes but not the true 

class. [3, 5, 6] 

In [7], McGraw et al. from the Berryville Institute of 

Machine Learning further classify attacks on ML systems 

by the part of the model they attack. An attacker may either 

target the input, the model itself, or the training data used 

to optimize the cost function. Combining this classification 

with the attack influence characteristic (causative/ 

manipulation attacks and exploratory/extraction attacks) 

discussed above, we can derive a taxonomy of six 

categories for attacks on ML Systems. Table I shows these 

categories. 

Table I: Categories of Attacks on ML Systems. [7] 
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III. MACHINE LEARNING ATTACKS 

The Berryville Institute of Machine Learning carried 

out an architectural risk analysis of ML systems [1] in 

which they identified 78 risks associated with using ML 

systems. They further go on to select and discuss the top 

ten risks [8] from the 78 risks identified. In this section of 

this Paper, a brief overview of some of the attack types will 

be given. 

Adversarial attacks 

Sadeghi et al. [9] defines Adversarial machine learning 

as a game between an ML System and an Adversary. The 

ML System will learn patterns from existing data with the 

goal of predicting the new data outputs, whereas the 

Adversary aims to alter the training data, new data, or the 

model parameters to cause wrong predictions.  

 

 

Figure II: A taxonomy of the Adversary's knowledge [9]. 

However, in most cases the Attacker may not have 

access to the training data and the model parameters of a 

ML system. Hence, most adversarial attacks are evasion 

attacks that attack an ML system by altering the new input 

data to be classified [1]. Assume we train a Model 𝐹(∙) to 

classify an input 𝒙 ∈ ℝ𝑑  by a label 𝑦 from a certain label 

space 𝒴. The Adversary 𝐴(∙) will create an input 𝒙 = 𝐴(𝒙) 

that is similar to 𝒙 such that the Model will do a wrong 

prediction for 𝒙, i.e., 𝐹(𝒙) ≠ 𝑦. The more information the 

Adversary can get about an ML system, the better equipped 

it is to design 𝐴(∙) capable of fooling 𝐹(∙). The figure II [9] 

shows a taxonomy of the knowledge an Adversary can 

possess about an ML model. This knowledge is categorized 

into knowledge about the data and knowledge about the 

algorithm. The goal of an adversarial attack is categorized 

by what security violation the Attacker intends to infringe 

[9]. In evasion attacks, the attacker does not infringe on the 

normal functioning of the model but rather finds inputs that 



 

 

find loopholes in the model, thus violating the integrity of 

the model [5]. 

Data Poisoning 

When training an ML model, training, validation, and 

test data plays a very important role in optimizing the 

model parameters with reference to the cost function. 

Should an attacker have the ability to alter the training or 

test data, there is a high chance that the proper operation of 

the ML system may be compromised [1]. In data poisoning 

attacks, the attacker intentionally alters the data in any of 

the three parts of the data (training, validation, and test) 

with the goal of influencing the optimization of the learning 

algorithm. It is important for ML engineers to have a good 

understanding of data sensitivity and what fraction of data 

an attacker may have access too. One particularly 

interesting type of the poisoning attack is the backdoor or 

Trojan attack. In this type of attack, the Adversary uses a 

backdoor key when poisoning the model such that in case 

the backdoor key is available, the model misclassifies the 

input but performs normally in absence of the backdoor key 

[2]. An example of this kind of attack can be shown in an 

ML system used in autonomous cars to detect road signs – 

an attacked system may correctly detect stop signs, but in 

case some particular landmark (backdoor key) is placed on 

a stop sign, it misclassifies it as a speed sign [5, 6] as 

represented in Figure III. This may cause accidents if the 

autonomous car then drives into a junction. 

 

Figure III: Representation of the impact of backdoor 

poisoning attacks of decision function in the case of road sign 

detection [5]. 

According to the study by Biggio et al. [5], poisoning 

attacks can violate either the integrity of a model e.g. 

through backdoor and trojan attacks or the normal 

functioning of a model (availability) by maximizing the 

classification error 

Privacy Attacks 

Popular in the category of input and training data 

extraction attacks is the risk of facing attacks with the goal 

of espionage or breach of confidentiality. An attacker can 

use model inversion techniques to retrieve data from a 

model. The aim of Model Inversion attacks is to reconstruct 

training samples from model parameters or model outputs 

[5]. A model inversion attack can either be blackbox 

whereby the attacker can only query the final result of the 

model or whitebox. With the increasing availability of 

model architectures available for download on the internet 

like through Tensorflow Hub, white box attacks are 

becoming more prevalent [10]. Chen et al. [10] present a 

study of how to carry out a white box model inversion 

attack using a new inversion-specific Generative 

Adversarial Network (GAN) that can better distil 

knowledge from public data to launch attacks on private 

models. Fredrikson et al. [11] on the other hand show how 

blackbox models can be attacked with just minimal 

information from the model. One particularly interesting 

example of such an attack is shown by Fredrikson et al. [11] 

who attack a facial recognition system with only the name 

of the person recognized by the model (class label) and 

access to the classification confidence score of the model 

for the given name. This poses an enormous risk to the 

privacy of users of facial recognition models vulnerable to 

this kind of attack. Figure IV [11] shows an example of the 

image such an attack produces when given a class label 

(name of person) and access to the model classification 

score given.  

 

Figure IV: Image recovered by a model inversion attack on a 

facial recognition system (left) and the training image of the 

victim (right) [11]. 

Privacy attacks like Model Inversion violate the privacy of 

the model by retrieving inappropriate data from 

reconstructed training data. 

The attacks discussed above are the most common kind 

of attacks found in research papers [5]. There are however 

other kinds or variations of these attacks on ML systems 

that aren’t discussed. These include transfer learning 

attacks, model extraction/manipulation, among others. 

IV. DEFENSES AGAINST ATTACKS 

In this section, a discussion about some of the popular 

defence mechanisms against ML attacks is done. There are 

two ways to react to a ML attack, and these are; either 

acting reactively to counter attacks that have already 

occurred or proactively to prevent future attacks from 

happening [5].  

A. Reactive Defenses 

Reactive defences have the goal of protecting a system 

after an attack has already happened. In some cases, 

reactive defences can be more effective than proactive 

cases [5]. The typical workflow of the reactive mechanism 

involves analysing the attack results to see the loopholes in 

the system that the attacker may have used and then 

proposing defence mechanisms to counter the attacks. 

Some examples of reactive defence strategies include; 

timely detection of novel attacks, training the classifier 

frequently and consequent comparison of the classifier 

decisions with reference to the training data and ground 

truth [3]. These mechanisms can also be used proactively. 

B. Proactive Defenses 

This type of defences try to find a secure solution to 

potential attacks that may occur in the future – i.e., the kind 

of attacks the system may face are not completely known 

and therefore, there needs to be an analysis of various attack 

models and the possible defences against them. Liu et. al 

[5, 6] state that the most common procedure that ML 

engineers follow when designing this kind of defence 

mechanism involves four steps: selecting potential 

adversarial models and modelling them, performing 

penetration tests on the targeted model, analysing the 



 

 

impacts of the penetration tests, and finally proposing 

counter measures to the adversarial models. These steps are 

summarized in figure V. 

 

Figure V: Steps of a proactive model protection against 

attacks [5, 6]. 

 Biggio and Roli [5] separate the counter measures 

taken by proactive defences into two categories: The first 

category is Security-by-design. Security-by-design means 

building systems securely from the ground up to secure 

against attacks. This kind of defence is used in cases of 

whitebox attacks, whereby the attacker knows information 

regarding both the training dataset and the model 

architecture. Defending whitebox attacks involves 

techniques that detect attacks early on and/or ensure secure 

and robust learning. Secondly comes the category of 

security-by-obscurity. In this category, measures are taken 

to protect grey- and blackbox attacks by either 

hiding/randomization of information from the attacker or 

detecting probing attacks before they occur. Below are 

established countermeasure mechanisms [3, 5, 7]: 

1) Randomizing data collection 

This proposes the collection of training data samples at 

different timings and under different circumstances. 

Although researchers in 2008 showed that this mechanism 

was effective enough in hiding information from the 

attacker, it still remains an open research problem to 

understand to how far this mechanism can help prevent an 

attacker from learning a sufficient surrogate model and 

defend against model inversion attacks [5]. Furthermore, 

using a randomized hypotheses might reduce the 

importance of feedback to an attacker. Randomization does 

not necessarily mean information will be less available to 

the attacker, but rather that the attacker will have to do more 

work to get the information [3]. 

2) Input Transformation 

Reconstruction of input data can help defend against 

attacks, mostly attacks in the input manipulation category 

[7]. In the raw input to an ML system, there is often a 

considerable amount of extra variation, that is not relevant 

for the classification problem [7]. As a result, some of this 

unnecessary data is likely to be included in the ML system's 

learnt hidden representations. The harmful additional 

information becomes mixed with the positive information 

in some way. This makes a model susceptible to evasion 

attacks that take advantage of the extra learned variations 

to cause misclassification. Yuan et al. [12] mentions the 

possibility to use variant of autoencoder with a penalty term 

called deep contractive penalty aimed at increasing model 

robustness. The autoencoder is trained to eliminate noisy 

distribution from adversarial samples fed into the model. 

3) Robust and secure learning algorithms 

The system's robustness can be improved by enhancing 

the learning algorithm. Learning algorithms subjected to 

constraints of the functions that the algorithm learns tend to 

have an increased robustness against causative attacks [4]. 

This technique is known as Regularization. It basically 

extends the cost function optimized during training by 

including a regularization term that penalizes complex 

distributions, that may be a result of adversaries in the 

training set. Ensembles of models can be used, to make it 

harder for the attacker to reverse engineer the model 

decision making process [4]. 

4) Noise/Anomaly/Attack detection 

The input data can be compared to the typicality of the 

training data to detect noise and anomalies not present in 

the training dataset [7]. Under this category of defences that 

detect malicious patterns, the Reject On Negative Impact 

(RONI) defence mechanism proposed by Barreno et al. [3] 

may be included. This mechanism measures for each 

instance of training data, an empirical effect and eliminates 

instances from the training dataset that lead to negative 

impact on the accuracy of the model. Detecting attacks 

before they occur is something difficult but allows the 

model designer to know the capabilities of the attacker and 

the loopholes in the ML model. Numerous research papers 

studied by Yuan et al. [12] develop classifiers that detect 

input samples as either a clean input or an adversarial 

sample. Using such a model may help filter out adversarial 

samples beforehand. 

5) Adversarial training 

The aim of adversarial samples either in the test set or 

input, is to exploit the distribution of the training phase and 

find loopholes for misclassification. A solution to stop this 

would be to include adversarial samples to the training set 

during retraining [12]. This countermeasure makes the 

decision boundary more robust against anomalies.  

6) Information hiding/limiting 

Although it is nearly impossible to limit all feedback to 

an attacker, limiting some feedback makes it harder for the 

attacker [3]. The learner could also misinform the attacker 

with false altered information about the model or dataset 

[4]. This reverses the roles of the learner and attacker – i.e., 

the attacker faces an indiscriminate causative availability 

attack by the learner that provides false information. Some 

more sophisticated learners can be developed to trick an 

attacker into believing that some particular instances were 

not included in the dataset thus acting as an attractive point 

for the attacker. If the attacker then targets this attractive 

point, it may be easier to detect the adversaries. 

V. CONCLUSION 

This paper serves as an introduction to understanding 

ML attacks and how they can be detected and avoided. It 

covers a section of a wide range of attack variants and 

defence mechanisms. Defending against attacks is an open 

research topic. The main issue observed in research papers 

studied for this paper, is that each of them model attacks 

are based on predictable attack strategies. Although some 

of the defence mechanisms also detect and avoid other 

attack strategies, they may not be capable to do so in case 

of unknown, unpredictable attacks. As [5] state, ML 

models should be able to defend themselves even against 

unknown unexpected threats. This creates and interesting 

research field that would benefit the whole ML and AI 

society.  



 

 

PART 2: CASE-STUDY: CYBERSECURITY IN 

REMOTE HEART MONITORING DEVICES 

I. MOTIVATION 

In the western world, good quality medical service is 

something that almost everyone can easily access. This 

however is not the case in many third world countries that 

do not have the health care infrastructure or expertise 

necessary to provide even the basic services necessary to 

their population. A solution for these people might be the 

use of decentralized medical devices that can gather health 

information from the patient and either make a diagnosis 

with help of some ML model or transmit collected data to 

a professional health worker, who makes the diagnosis. 

Such a system can also be used in regions with good 

medical services to save time and reduce costs incurred by 

both the patient and the medical service provider. Several 

papers have been written about wearable health monitoring 

devices. For example, Fahim Faisal and Syed Hossain [13] 

from Bangladesh present a remote medical diagnosis 

system that collects heartbeat and temperature data from 

the patient and is rendered over the internet in real time. 

The data can then be viewed through a web browser 

remotely. However, in the paper [13] the security aspect of 

the data collected is not discussed explicitly. Part 2 of paper 

aims to point out risks and threats associated with remote 

heart monitoring devices (RHMD) and highlight some 

concerns that require special attention. It also presents a 

concept for such a device based on emerging technologies 

that can be used to ensure a better safety of remote RHMDs 

from cyberattacks. 

II. ASSOCIATED RISKS AND THREATS 

Since the intention is for this device to be able to 

diagnose heart complications with help of a ML model, it 

is critical to put emphasis on the security of the model used. 

As shown in part 1 of this paper, a lot of the measures 

against cyberattacks involve hiding as much data as 

possible from the attacker. This means we need to design 

our system architecture such that there is minimal to no 

possibility for an attacker to access data and disrupt the 

normal functioning of the device. In a 2017 study [14], 

Piggin lists some generic threats specific to medical 

devices. Some of these threats include database injection 

used to gain access and steal data, escalation of privileges 

to perform actions that would otherwise not be permitted, 

denial of service by affected availability of computing 

resources, communication disruption, among others. The 

U.S Food and Drug Administration (FDA) that oversees the 

medical devices recommends that a process of 

cybersecurity risk assessment of the device’s clinical 

performance be implemented by considering the 

exploitability of the vulnerabilities and the seriousness of 

the health impact to the patient in case a vulnerability is 

exploited [14]. The European Medicine Agency (EMA) 

also recommends the same urgency when investigating the 

safety of new medical devices [15]. The heart being one of 

the most vital parts of our bodies definitely poses a higher 

risk than other parts like the leg or arm. The risks associated 

may range from ‘negligible’ for example a 

misclassification of a normal state of the heart as a heart 

attack or ‘catastrophic’ in case the ML model doesn’t detect 

a crucial problem with the proper heart functioning. 

Catastrophic threats may lead to death in a patient and call 

therefore for special care. The Figure VI below shows how 

the FDA suggests one should assess the vulnerability of a 

device and whether the risk is acceptable or not. 

 

Figure VI: Vulnerability risk assessment by the FDA [14]. 

III. CONCEPT OF REMOTE HEART MONITORING SYSTEM 

AND CONCERNS INVOLVED 

In this chapter a brief concept of a remote heart 

monitoring device with the main peripherals is presented. 

The figure VII below shows the architecture of the remote 

heart monitoring system.  

 

Figure VII: Concept architecture of system. 

The idea is to have a RHMD that is either wearable or 

implanted in the patient. With help of sensors, the RHMD 

can collect vital information necessary for diagnosis. The 

RHMD can then either detect a heart issue with an inbuilt 

ML model or notify medical personnel in case an unknown 

state of the heart is detected. In case the RHMD is wearable, 

it may be built with indicators that let the patient know the 

state of their heart. For example, an LED that shows green 

for normal heart operation, orange to provide caution to the 

user and red to seek professional help. The information 

gathered by the RHMD can then be broadcast to a safe 

database in a cloud. Integrated data analysis and detection 

applications can also be included in the cloud to analyse 

and monitor more complex heart issues that may either 

need more computational power or more data. The patient 

may have access via a secure mobile application to monitor 

their heart operation and receive notification from the 

doctor or analysis application if dangerous patterns like 

increased stress levels or high and low blood pressure are 

noticed. This may then allow the patient to act early enough 

before any heart complications occur. The doctor is also 

allowed access to the information in the cloud. Apart from 

the patient and the doctor, no one else should be able to 

access this information. In [16], they develop an intelligent 

pill dispenser with a similar system architecture. Some 

issues that need to be given particular attention are 

discussed below. 

a) RHMD safety using processors: 



 

 

This poses a question to the ability of the RHMD device 

to provide security against attacks on the software running 

on the remote device. Applying the recently introduced 

processors with Trusted Execution Environments (TEEs) 

like the Intel SGX in the RHMD provides a solution to 

secure the data, code and models used by restricting access 

to the trusted part of the processor [17, 18]. This enhances 

the security of the ML model by hiding it from adversaries. 

b) Secure cloud computing: 

Secure cloud computing calls for procedures and 

technology to secure cloud environments against threats. 

Some security solutions for secure cloud computing 

include user access control to ensure only authorized users, 

device access control to prevent unknown devices, malware 

prevention, data loss prevention, data encryption to prevent 

unauthorized access to data even when it is stolen, data 

visibility to define who has access to which data and who 

doesn’t. These solutions limit adversarial access to the 

model or data used for training thus aid in implementing 

the security solutions in Chapter IV of Part 1. 

c) Data transmission: 

For heart problems to be detected in real-time, data 

must be broadcast to the cloud constantly. I.e., even without 

internet connection, the device should still transmit data to 

the cloud - might be challenging to implement. Frequency 

of data transmission should also be determined such that 

the data saving structure is not overloaded but still has 

enough real-time data to make a diagnosis. Transmission 

should be encrypted to avoid unwanted access. The cloud 

computing concerns and data transmission concerns are 

similar to that of the intelligent pill dispenser [16]. 

d) Acceptance of medical AI in society: 

AI has been depicted in various ways by the media and 

movies. These depictions often build a fear of AI. This 

tends to make society weary of AI applications. However, 

the fear is not fully unjustified. There are still many short 

comings that AI has, and the fear only increases the need 

for proper test protocols and regulations to monitor and 

limit the application of AI. For example, AI in medicine is 

today only seen as an assistant to professional doctors [14]. 

The RHMD suggested in this paper however aims to allow 

ML models make decisions on their own and only seek 

professional help when needed. As shown in Chapter III of 

Part 1, ML models are however vulnerable and require very 

special attention in securing them. 

IV. CONCLUSION 

As discussed in Part 1, limiting the access of an 

adversary to the model architecture and data contributes 

highly to securing ML Systems. However, there are still 

some loopholes even in the safest systems that can be 

exploited. For example, some researchers have been able to 

find vulnerabilities in some TEEs, which are actually 

considered to be very safe [18]. There are still many 

research areas open to ensure absolute safety, and thereby 

acceptance of medical systems even in cases of catastrophic 

severity levels that demand very low system exploitability 

as shown in Figure VI. 
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