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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Flexible manufacturing processes such as laser metal deposition exhibit high potential for a production solely defined by software to cope with 
the current challenges of production systems. The determination of suitable machine parameters for the production of novel materials and 
geometries however requires extensive experimental effort. Existing simulative approaches do not offer sufficient accuracy to predict the relevant 
machine parameters in a satisfactory way. This paper presents a new concept, in which we apply a digital twin to provide a step towards a fully 
software-defined and predictable laser metal deposition process. The presented concept includes relevant data of the machines as well as data-
driven machine learning models and physics-based simulation models. This enables a more reliable prediction of geometries of single tracks 
which was validated on a laser metal deposition machine.  
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1. Introduction 

Manufacturing companies face increasingly shorter product 
life cycles and the need for individualized products [1, 2]. 
Successful handling of these challenges requires flexible and 
reconfigurable manufacturing systems [3, 4]. This flexibility is 
expected to be manageable, if manufacturing systems are both 
universal and can be fully controlled by software, enabling 
what is commonly referred to as software-defined 
manufacturing [5].  

Laser as a manufacturing tool offers high potential regarding 
flexibility, as it covers processes from all the six main groups 

of manufacturing processes defined in the DIN 8580 [6]. The 
laser metal deposition (LMD) process belongs to the group 
“primary forming”. It deposits several tracks of a given 
material one next to the other to form the desired three-
dimensional part layer by layer. The geometry of a single track, 
which is characterized by its height and width, is influenced by 
the parameters of the LMD process. In the present paper, we 
focus on the freely selectable machine parameters laser power, 
supply rate of the powder, feeding speed, and diameter of the 
laser beam on the surface. To directly derive the machine code 
from a computer-aided design (CAD) file, a functional 
relationship between the machine parameters and the geometry 
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laser metal deposition (LMD) process belongs to the group 
“primary forming”. It deposits several tracks of a given 
material one next to the other to form the desired three-
dimensional part layer by layer. The geometry of a single track, 
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of the produced tracks must be known. Deriving these 
functional relationships for a given LMD machine and a 
desired part is however a non-trivial task requiring a significant 
amount of skill and mostly manual effort.  

To illustrate this, we consider different phases of the 
lifecycle of a machine and the respective experimental work. 
Initial estimations of the machine parameters are carried out by 
the manufacturer during production and commissioning of the 
machine. When the machine is handed over to the customer, 
most of the individual operator knowledge cannot be 
transferred to the new operator. Both the results and the 
efficiency therefore often vary strongly between manufacturer 
and customer, as well as between different customers and even 
between different operators at the same customer. The 
identification of functional relationships between machine 
parameters and geometry of a single LMD track is expected to 
overcome these drawbacks. Nevertheless, the complex 
interaction phenomena within the LMD processes limit the 
availability of analytical descriptions of the relationships 
between the machine parameters and the resulting track 
geometry [7].  

Different analytical models were proposed by Cheikh et al. 
[8] and Ahsan et al. [9], while Zhang et al. [10] and Huang et 
al. [11] discuss implementations of numerical models. 
However, none of them is sufficiently accurate to predict the 
machine parameters without additional experimental 
validation. For instance, Cheikh et al. [8] assume unknown 
quantities, such as powder efficacy and absorption coefficient, 
while Ahsan et al. [9] do not consider thermophysical effects. 
A further approach uses data-driven models to predict the 
machine parameters [12]. In order to achieve applicability for 
a wide range of parameters and applications, sole focus on one 
machine is not sufficient. It is rather necessary to implement a 
more general concept for cross-machine collection and 
handling of data. Therefore, we opt for a digital twin (DT) of 
the process. While many different definitions of DTs are found 
[2, 4, 13], herein we refer to it as a virtual representation of the 
static and dynamic behavior of a real object, often referred to 
as an asset [2]. The DT contains all models and data of the 
represented object. It enables the virtual simulation of the 
physical behavior and it is continuously synchronized with the 
asset [2]. Consistency across the life cycle phases of the asset 
and thus across departmental and company boundaries is a 
fundamental property of DTs. Standardization and 
standardized interfaces are elementary for this purpose. One 
possible realization of the DT with a standardized framework 
is the asset administration shell (AAS) [13].  

The application of DTs in laser material processing has 
already been addressed in some related work, e.g. on using DTs 
for defect-free production of components as reported by 
Gaikwad et al. [14], Stojanovic and Milenovic [15], and 
Papacharalampopoulos [16]. Knapp et al. [17] used a DT to 
predict the spatial and temporal distribution of the temperature 
and the resulting geometry of the LMD track. Prieto et al. [18] 
and Ertveldt et al. [19] present a framework for the collection, 
storage, preparation, and visualization of process data in the 
LMD process using DTs. The previously mentioned papers 

either do not predict the geometry of the produced tracks or 
solely base their prediction on numerical simulation. As of yet, 
there is no fully accessible concept for DTs in order to assist 
the estimation of parameters for LMD processes. We hence 
propose a novel concept of a DT to predict the geometry of the 
LMD tracks by providing data-driven and simulation models in 
a standardized and semantic way. 

2. Concept 

With the proposed concept, the machine manufacturer can 
additionally access operational data and predictions from the 
machine and the models via the DT to improve and test the 
models with a larger amount of more representative data. 
Figure 1 depicts our macroscopic concept which comprises 
several entities.  

 

 

Figure 1: General concept 

As the core of the concept, the DT contains several models, 
data, and interfaces to communicate with other entities and 
provides information to all parties involved in the process. A 
connection between the DT and the physical system - i.e. the 
LMD machine - allows for the collection of operational data 
and for storing it in the DT. The DT obtains various models and 
data about the physical system from the machine manufacturer 
through the manufacturer’s access interface. The data contains 
general and technical information such as ranges of the 
machine parameters. The entity of the executing software runs 
the models provided by the DT and returns the predictions back 
to the DT. The assistance system, which is used by the machine 
operator, finally provides predictions of the geometry of the 
produced LMD tracks to help adapting the machine parameters.  

Figure 2 shows the specific application of this concept 
including the processing workflow of LMD used for the 
additive manufacturing process. The LMD process starts with 
a CAD model, which includes local reinforcements that shall 
be printed together with the manufactured part. The computer 
aided design / computer aided manufacturing (CAD/CAM) 
program uses the CAD model to generate a code that is 
readable by the machine as a numerical control (NC) code. The 
geometry of the tracks is a requirement originating e.g. from 
the geometry of the part or requirements for the quality of the 
surface. The operator must provide the corresponding machine 
parameters to achieve the desired geometry and quality, where 
the assistance of the DT is needed. The physical system 
communicates with the DT through a physical system interface 
using e.g. an open platform communications – unified 
architecture (OPC-UA). Alternatively, one can use static values 
from the NC Code to determine the machine parameters used 
for the manufacturing process. The dimensions of the produced 
part are finally measured either manually or by automated 
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measuring devices.  
 

 

Figure 2: Concept of a digital twin for laser metal deposition 

The data entered through the interface of the physical system 
are stored in the entity for operational data and predictions 
using time-series databases (TSDB). The results obtained by 
the physical systems, i.e. the measured geometry of the 
produced part, are also stored in this component. The prediction 
of the model using the parameters from the physical system is 
captured as well. These operational data and predictions are 
provided to the manufacturer through the manufacturer’s 
interface as well as to the assistance system through the 
assistance system’s interface. We use executing software such 
as COMSOL Multiphysics and MathWorks MATLAB to 
generate the predictions. The models are provided by the 
interface of the executing software are stored in the models 
component. Besides the models, we also provide the parameter 
ranges of the physical system, which is stored in the 
engineering data component, to the executing software. This 
engineering data is provided by the manufacturer through the 
manufacturer’s access interface. The assistance system is 
provided with operational data and predictions through its 
interface to enable a quantitative or qualitative estimation of 
the track geometry depending on the parameters. The machine 
user can enter the machine parameters to the CAD/CAM 
program when the predicted geometry of the tracks suits the 
requirements. Other combinations of machine parameters must 

otherwise be explored to achieve the desired track geometry. 
These data are also provided to the manufacturer through the 
manufacturer’s interface. The machine manufacturer can train 
and improve the provided data-driven and simulation models 
incrementally over time with this continuous collection of data 
from the physical system and the models. This leads to a more 
accurate prediction of the geometry of the single LMD-
produced tracks. 

3. Models and experimental data 

An essential part of the proposed concept is to add 
simulation models besides the data-driven models to predict the 
geometry of the produced tracks. 

3.1. Simulation models 

A finite-element method (FEM) simulation model was 
implemented with the commercial software COMSOL 
Multiphysics. The model solves the transient heat-conduction 
equation to compute the heat transport by thermal conduction, 
convection, and radiation [20]. The latent heat was taken into 
consideration to account for the phase changes of the material 
[21]. Only a single additively produced bead was considered in 
the simulation in order to reduce computational time. The 
initial geometry was set to have a dimension of 10×3×1.5 mm, 
where the plane (0, y, z) was set to be symmetrical, so that only 
half of the geometry needs to be considered. The simulation 
time can thus be reduced and the variation of the temperature 
at the center of the geometry can be displayed. The ambient 
temperature and the initial temperature of the workpiece were 
set to 293 K. Thermal radiation and convection are applied at 
the top and bottom of the geometry. To model the increase of 
the volume caused by the supplied powder, a vertically moving 
mesh with the velocity vZ0 along the (0, z) direction was 
implemented on the upper side of the substrate. The velocity of 
the mesh mainly depends on the rate of the powder supply and 
can be described as proposed by Peyre et al. [22]. The heat 
source was implemented assuming a Gaussian laser beam at 
normal incidence and the related parameters: absorption 
coefficient A, laser power P0 and radius ω0 of the beam waist, 
which is located on the upper surface of the workpiece.  

The exact value of A is afflicted with some uncertainty as it 
is affected by the exact condition of the irradiated material and 
was therefore used as a fitting parameter for calibration of the 
model with experimental data. The maximum mesh size was 
confined to 0.3 mm for the whole structure in order to improve 
the accuracy of the simulation and to obtain a sufficiently 
accurate calculation of the deformation. Automatic remeshing 
was implemented which occurs when the mesh quality, which 
is determined by measuring the skewness of the mesh as default 
in COMSOL, is below 0.1. The aluminum alloy AlSi10Mg was 
considered for the simulation with parameters taken from Chen 
et al. [23]. Figure 3 presents an example of the computed 
distribution of the temperature. The input parameters are the 
supply rate Q of the powder, the radius rp of the powder stream, 
the feeding speed v, the laser beam parameters including the 
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of the produced tracks must be known. Deriving these 
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represented object. It enables the virtual simulation of the 
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Papacharalampopoulos [16]. Knapp et al. [17] used a DT to 
predict the spatial and temporal distribution of the temperature 
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The exact value of A is afflicted with some uncertainty as it 
is affected by the exact condition of the irradiated material and 
was therefore used as a fitting parameter for calibration of the 
model with experimental data. The maximum mesh size was 
confined to 0.3 mm for the whole structure in order to improve 
the accuracy of the simulation and to obtain a sufficiently 
accurate calculation of the deformation. Automatic remeshing 
was implemented which occurs when the mesh quality, which 
is determined by measuring the skewness of the mesh as default 
in COMSOL, is below 0.1. The aluminum alloy AlSi10Mg was 
considered for the simulation with parameters taken from Chen 
et al. [23]. Figure 3 presents an example of the computed 
distribution of the temperature. The input parameters are the 
supply rate Q of the powder, the radius rp of the powder stream, 
the feeding speed v, the laser beam parameters including the 
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laser power P, and the diameter of the laser beam d. The 
distribution of the temperature on the workpiece is iteratively 
computed at each time step. The height of the layer is extracted 
by measuring the difference between the height of the 
deformed geometry and the original height of the geometry. 
The width and depth of the produced tracks are calculated 
without moving mesh only by solving the transient heat-
conduction equation in a separated model solver. The simulated 
distribution of the temperature in the cross-section of the 
workpiece and the temperature at which the transition from 
liquid to solid occurs are considered. 

 

 

Figure 3: Exemplary temperature distribution calculated via FEM simulations 

3.2. Data-driven models 

Finding a functional relationship between the machine 
parameters and the geometry of the resulting tracks based on 
experimental data is a typical regression task, which can be 
implemented using various machine-learning approaches. In 
the following, we discuss the suitability of linear regression, 
tree regression, Gaussian process regression, and artificial 
neural networks for the given use case. The regression model 
needs to be able to handle the machine parameters as degrees 
of freedom and take into account the non-linear influence of the 
parameters on the process as well as their interrelated 
interactions. The experimentally determined values of the track 
geometry must be represented as accurately as possible, but at 
the same time, the regression model must be general enough to 
avoid overfitting. 

In contrast to linear regression, tree regression is suitable for 
larger data sets and complex non-linear relationships. One 
major drawback of tree regression compared to linear 
regression is that it can neither discover trends nor extrapolate 
beyond the existing data [24]. Gaussian process regression is 
based on probabilistic functions and generally works well in 
the case of small datasets. It aims at maximizing the likelihood 
function and provides measurements of the uncertainty for 
prediction [25]. Artificial neural networks can be used for 
regression tasks [26]. As both artificial neural networks and 
Gaussian process regression are suitable for non-linear 
relationships between the various parameters, these algorithms 
are generally apt for our use case. 

3.3. Experimental data 

Experimental data was generated to train the data-driven 
models and to evaluate which of the previously mentioned 
models best represents our experimental results. The 
experiments were performed on the LMD machine 
TruLaserCell3000 with a 4 kW disc laser from TRUMPF 
GmbH + Co. KG using powder of AlSi10Mg with a 

distribution of the particle diameters ranging between 45 and 
107 µm. The powder was conveyed to the process zone by 
means of a vibratory feeder, a helium gas flow, and a MultiJet-
nozzle from TRUMPF. Single tracks with different machine 
parameters were welded on a 10 mm thick plate of AlMg3. 
Cross sections of the welding track, as exemplarily shown in 
Figure 4, were examined by means of an optical microscope. 

 

 

Figure 4: Cross-section of a single welding track; b is the width, h the height 
and t the depth of the track. 

The laser power, the supply rate of the powder, the diameter 
of the laser beam on the surface, and the feed rate have a 
significant influence on the geometry of the resulting track. 
Therefore, these parameters were varied within broad ranges 
and variable step sizes: Laser power between 1 and 3.5 kW in 
13 different steps, supply rate of the powder between 2.1 and 
21 g/min in 11 steps, beam diameter between 1 and 2 mm in 4 
steps, and feeding speed between 0.75 and 10 m/min in 8 steps. 
The experiments were repeated at least three times for each 
combination of the parameters, summing up to a total of 282 
single tracks. A fraction of 80% of the gained data was 
randomly selected and used to train the models. Here, we 
applied k-fold cross-validation with five folds to tune the 
performance of the models. The remaining 20% of the data was 
used to test the performance of the data-driven models.  

4. Results and discussion 

For the implementation of the concept, the AASX-package 
explorer was used as a demo implementation of the AAS [4]. 
The AASX-package explorer is an open-source editor to create 
AAS provided by a publicly funded industrial consortium. The 
AAS ensures interoperability between machines and 
operational boundaries. This allowed obtaining the results 
presented and discussed in the following.  

4.1. Validation of physical simulation models 

Several simulations with different input parameters were 
executed to validate the physics-based simulation model. Three 
different laser powers, three different diameters of the beam 
and three different supply rates of the powder were considered. 
The absorption coefficient A was used as a fit parameter to 
adjust the model to the first set of experimental data, which 
resulted in A = 0.15 and was kept constant in the simulation. 
Table 1 compares the data-driven (Dat.) – using Gaussian 
process regression – and the simulated results (Sim.) with the 
experimentally measured values (Exp.) for some combinations 
of the machine parameters. As seen from Table 1, the height of 
the track, which is predicted by the simulation with the moving 
mesh, agrees well with the experimental measurements within 
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a difference of up to 6%. The depth and width of the track were 
calculated without a moving mesh, as this delivered more 
accurate results. Thereby, the simulation results of the depth 
and the width still deviate from the experimental data within a 
difference of up to 14%. We explain this deviation as follows: 
Firstly, the material assumed in the simulation was the alloy 
AlSi10Mg whereas the experiments were carried out with the 
powder material AlSi10Mg on an AlMg3 substrate with a 
smaller thermal conductivity. Secondly, the fluid flow of the 
melt, which influences the shape of the formed bead [22], was 
not considered to save computational time. Thirdly, the 
absorption coefficient A was kept constant for all sets of 
parameters, even though the energy coupling into the material 
is expected to vary for different laser beam diameters. 

Table 1: Validation of simulation and data-driven models with experimental 
data (white background). Input data marked with grey background 

Laser power P (kW) 2.00 2.70 2.70 2.70 2.00 
Laser beam diameter d (mm) 2.00 2.00 1.00 1.50 2.00 
Powder supply rate Q (g/min) 3.10 3.10 3.10 2.80 3.10 
Feeding speed v (m/min) 2.00 2.00 2.00 2.00 1.50 

Track depth (mm) 
Sim. 0.50 0.73 0.47 0.74 0.68 
Exp. 0.58 0.75 0.49 0.66 0.69 
Dat. 0.59 0.75 0.49 0.65 0.68 

Track width (mm) 
Sim. 1.89 2.61 2.17 2.35 2.52 
Exp. 2.10 2.68 2.26 2.35 2.48 
Dat. 2.15 2.66 2.24 2.35 2.42 

Track height (mm) 
Sim. 0.38 0.38 0.39 0.35 0.48 
Exp. 0.40 0.36 0.41 0.34 0.47 
Dat. 0.40 0.36 0.42 0.34 0.47 

 
Despite the quantitative deviations between simulation and 

experimental data, the simulation displays the same trend as the 
experimental data for most of the investigated parameter 
changes: The spatial dimensions of the tracks increase with 
increasing laser power, the height of the track increases when 
the supply rate of the powder is increased, the width is 
decreased with decreasing beam diameter, and an increase of 
the feeding speed leads to a reduced height, width and depth of 
the track. Yet, the simulation gives no information about the 
influence of powder’s supply rate on width and depth, as the 
moving mesh was not considered for the determination of these 
quantities. 

4.2. Validation of data-driven models 

The experimental data mentioned in Section 3.3 was 
compared to the results of the regression models mentioned in 
Section 3.2. The corresponding coefficients of determination 
with regard to the geometry of the tracks are summarized in 
Table 2. The width and the depth of the tracks are predicted 
comparably well by all models, but linear regression fails to 
predict the height of the tracks. This can be explained by the 
non-linear influence of the process parameters on the height of 
the tracks. Tree regression yields acceptable results for all 
geometrical dimensions, but height and depth are predicted less 

accurately than by means of Gaussian process regression and 
artificial neural networks. The latter two approaches yield the 
most accurate predictions and are thus both suitable for our use 
case. This can be explained by their ability to represent non-
linear relationships and the better generalization of the data as 
compared to the other models. The validation of our proposed 
concept is exemplarily shown using Gaussian process 
regression in the following. 

Table 2: Coefficient of determination R2 for different regression models 

Data-driven models 
Track 

width b 
Track 

height h 
Track 
depth t 

Linear Regression R2=0.85 R2=0.58 R2=0.90 
Tree Regression  R2=0.90 R2=0.89 R2=0.87 
Gaussian Process Regression R2=0.90 R2=0.95 R2=0.95 
Artificial Neural Networks R2=0.90 R2=0.95 R2=0.94 

 
Figure 5 displays the experimentally determined width and 

height of the tracks and compares them to the values predicted 
by Gaussian process regression. Only the test data that has not 
been used for the training of the model is considered. Since the 
behavior of the depth of the track resembles that of the track’s 
height it is not shown separately. The deviation between the 
measured and the predicted width of the track was smaller than 
0.4 mm, respectively 22%. The deviation between the 
measured and the predicted height was less than 0.1 mm, 
respectively 23%, the one of the depth was smaller than 
0.09 mm, respectively 14%. The process is robust enough to 
handle these deviations when parts are manufactured with a 
layer height in the order of 1 mm. 

 

 

Figure 5: Comparison of predicted and measured values for track width (left) 
and track height (right) for Gaussian process regression 

4.3. Discussion 

As seen in Table 1, the predictions of the data-driven model 
and the simulation are generally in good agreement with the 
experimental data. It can however be clearly observed that the 
used data-driven models predict the track geometry more 
accurately than the physical simulation. Besides this, the 
simulation model has further drawbacks: Firstly, the absorption 
coefficient needs to be adjusted to fit experimental data. 
Secondly, the calculation time usually exceeds ten minutes 
compared to a prediction time in the range of seconds for data-
driven models. Thirdly, the influence of the supply rate of the 
powder on width and depth of the track cannot be displayed. 
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laser power P, and the diameter of the laser beam d. The 
distribution of the temperature on the workpiece is iteratively 
computed at each time step. The height of the layer is extracted 
by measuring the difference between the height of the 
deformed geometry and the original height of the geometry. 
The width and depth of the produced tracks are calculated 
without moving mesh only by solving the transient heat-
conduction equation in a separated model solver. The simulated 
distribution of the temperature in the cross-section of the 
workpiece and the temperature at which the transition from 
liquid to solid occurs are considered. 

 

 

Figure 3: Exemplary temperature distribution calculated via FEM simulations 

3.2. Data-driven models 

Finding a functional relationship between the machine 
parameters and the geometry of the resulting tracks based on 
experimental data is a typical regression task, which can be 
implemented using various machine-learning approaches. In 
the following, we discuss the suitability of linear regression, 
tree regression, Gaussian process regression, and artificial 
neural networks for the given use case. The regression model 
needs to be able to handle the machine parameters as degrees 
of freedom and take into account the non-linear influence of the 
parameters on the process as well as their interrelated 
interactions. The experimentally determined values of the track 
geometry must be represented as accurately as possible, but at 
the same time, the regression model must be general enough to 
avoid overfitting. 

In contrast to linear regression, tree regression is suitable for 
larger data sets and complex non-linear relationships. One 
major drawback of tree regression compared to linear 
regression is that it can neither discover trends nor extrapolate 
beyond the existing data [24]. Gaussian process regression is 
based on probabilistic functions and generally works well in 
the case of small datasets. It aims at maximizing the likelihood 
function and provides measurements of the uncertainty for 
prediction [25]. Artificial neural networks can be used for 
regression tasks [26]. As both artificial neural networks and 
Gaussian process regression are suitable for non-linear 
relationships between the various parameters, these algorithms 
are generally apt for our use case. 

3.3. Experimental data 

Experimental data was generated to train the data-driven 
models and to evaluate which of the previously mentioned 
models best represents our experimental results. The 
experiments were performed on the LMD machine 
TruLaserCell3000 with a 4 kW disc laser from TRUMPF 
GmbH + Co. KG using powder of AlSi10Mg with a 

distribution of the particle diameters ranging between 45 and 
107 µm. The powder was conveyed to the process zone by 
means of a vibratory feeder, a helium gas flow, and a MultiJet-
nozzle from TRUMPF. Single tracks with different machine 
parameters were welded on a 10 mm thick plate of AlMg3. 
Cross sections of the welding track, as exemplarily shown in 
Figure 4, were examined by means of an optical microscope. 

 

 

Figure 4: Cross-section of a single welding track; b is the width, h the height 
and t the depth of the track. 

The laser power, the supply rate of the powder, the diameter 
of the laser beam on the surface, and the feed rate have a 
significant influence on the geometry of the resulting track. 
Therefore, these parameters were varied within broad ranges 
and variable step sizes: Laser power between 1 and 3.5 kW in 
13 different steps, supply rate of the powder between 2.1 and 
21 g/min in 11 steps, beam diameter between 1 and 2 mm in 4 
steps, and feeding speed between 0.75 and 10 m/min in 8 steps. 
The experiments were repeated at least three times for each 
combination of the parameters, summing up to a total of 282 
single tracks. A fraction of 80% of the gained data was 
randomly selected and used to train the models. Here, we 
applied k-fold cross-validation with five folds to tune the 
performance of the models. The remaining 20% of the data was 
used to test the performance of the data-driven models.  

4. Results and discussion 

For the implementation of the concept, the AASX-package 
explorer was used as a demo implementation of the AAS [4]. 
The AASX-package explorer is an open-source editor to create 
AAS provided by a publicly funded industrial consortium. The 
AAS ensures interoperability between machines and 
operational boundaries. This allowed obtaining the results 
presented and discussed in the following.  

4.1. Validation of physical simulation models 

Several simulations with different input parameters were 
executed to validate the physics-based simulation model. Three 
different laser powers, three different diameters of the beam 
and three different supply rates of the powder were considered. 
The absorption coefficient A was used as a fit parameter to 
adjust the model to the first set of experimental data, which 
resulted in A = 0.15 and was kept constant in the simulation. 
Table 1 compares the data-driven (Dat.) – using Gaussian 
process regression – and the simulated results (Sim.) with the 
experimentally measured values (Exp.) for some combinations 
of the machine parameters. As seen from Table 1, the height of 
the track, which is predicted by the simulation with the moving 
mesh, agrees well with the experimental measurements within 
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a difference of up to 6%. The depth and width of the track were 
calculated without a moving mesh, as this delivered more 
accurate results. Thereby, the simulation results of the depth 
and the width still deviate from the experimental data within a 
difference of up to 14%. We explain this deviation as follows: 
Firstly, the material assumed in the simulation was the alloy 
AlSi10Mg whereas the experiments were carried out with the 
powder material AlSi10Mg on an AlMg3 substrate with a 
smaller thermal conductivity. Secondly, the fluid flow of the 
melt, which influences the shape of the formed bead [22], was 
not considered to save computational time. Thirdly, the 
absorption coefficient A was kept constant for all sets of 
parameters, even though the energy coupling into the material 
is expected to vary for different laser beam diameters. 

Table 1: Validation of simulation and data-driven models with experimental 
data (white background). Input data marked with grey background 

Laser power P (kW) 2.00 2.70 2.70 2.70 2.00 
Laser beam diameter d (mm) 2.00 2.00 1.00 1.50 2.00 
Powder supply rate Q (g/min) 3.10 3.10 3.10 2.80 3.10 
Feeding speed v (m/min) 2.00 2.00 2.00 2.00 1.50 

Track depth (mm) 
Sim. 0.50 0.73 0.47 0.74 0.68 
Exp. 0.58 0.75 0.49 0.66 0.69 
Dat. 0.59 0.75 0.49 0.65 0.68 

Track width (mm) 
Sim. 1.89 2.61 2.17 2.35 2.52 
Exp. 2.10 2.68 2.26 2.35 2.48 
Dat. 2.15 2.66 2.24 2.35 2.42 

Track height (mm) 
Sim. 0.38 0.38 0.39 0.35 0.48 
Exp. 0.40 0.36 0.41 0.34 0.47 
Dat. 0.40 0.36 0.42 0.34 0.47 

 
Despite the quantitative deviations between simulation and 

experimental data, the simulation displays the same trend as the 
experimental data for most of the investigated parameter 
changes: The spatial dimensions of the tracks increase with 
increasing laser power, the height of the track increases when 
the supply rate of the powder is increased, the width is 
decreased with decreasing beam diameter, and an increase of 
the feeding speed leads to a reduced height, width and depth of 
the track. Yet, the simulation gives no information about the 
influence of powder’s supply rate on width and depth, as the 
moving mesh was not considered for the determination of these 
quantities. 

4.2. Validation of data-driven models 

The experimental data mentioned in Section 3.3 was 
compared to the results of the regression models mentioned in 
Section 3.2. The corresponding coefficients of determination 
with regard to the geometry of the tracks are summarized in 
Table 2. The width and the depth of the tracks are predicted 
comparably well by all models, but linear regression fails to 
predict the height of the tracks. This can be explained by the 
non-linear influence of the process parameters on the height of 
the tracks. Tree regression yields acceptable results for all 
geometrical dimensions, but height and depth are predicted less 

accurately than by means of Gaussian process regression and 
artificial neural networks. The latter two approaches yield the 
most accurate predictions and are thus both suitable for our use 
case. This can be explained by their ability to represent non-
linear relationships and the better generalization of the data as 
compared to the other models. The validation of our proposed 
concept is exemplarily shown using Gaussian process 
regression in the following. 

Table 2: Coefficient of determination R2 for different regression models 

Data-driven models 
Track 

width b 
Track 

height h 
Track 
depth t 

Linear Regression R2=0.85 R2=0.58 R2=0.90 
Tree Regression  R2=0.90 R2=0.89 R2=0.87 
Gaussian Process Regression R2=0.90 R2=0.95 R2=0.95 
Artificial Neural Networks R2=0.90 R2=0.95 R2=0.94 

 
Figure 5 displays the experimentally determined width and 

height of the tracks and compares them to the values predicted 
by Gaussian process regression. Only the test data that has not 
been used for the training of the model is considered. Since the 
behavior of the depth of the track resembles that of the track’s 
height it is not shown separately. The deviation between the 
measured and the predicted width of the track was smaller than 
0.4 mm, respectively 22%. The deviation between the 
measured and the predicted height was less than 0.1 mm, 
respectively 23%, the one of the depth was smaller than 
0.09 mm, respectively 14%. The process is robust enough to 
handle these deviations when parts are manufactured with a 
layer height in the order of 1 mm. 

 

 

Figure 5: Comparison of predicted and measured values for track width (left) 
and track height (right) for Gaussian process regression 

4.3. Discussion 

As seen in Table 1, the predictions of the data-driven model 
and the simulation are generally in good agreement with the 
experimental data. It can however be clearly observed that the 
used data-driven models predict the track geometry more 
accurately than the physical simulation. Besides this, the 
simulation model has further drawbacks: Firstly, the absorption 
coefficient needs to be adjusted to fit experimental data. 
Secondly, the calculation time usually exceeds ten minutes 
compared to a prediction time in the range of seconds for data-
driven models. Thirdly, the influence of the supply rate of the 
powder on width and depth of the track cannot be displayed. 
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This is because a moving mesh, which is needed to consider the 
effect of powder supply, was not used. Within the parameter 
ranges covered by training data, we therefore propose to predict 
the geometry of the track by means of data-driven models. The 
validation with 56 test data samples showed an accuracy within 
the same order of magnitude as the experimental uncertainty 
does. This accuracy allows planning of the tool path without 
preliminary experimental investigations, which is a significant 
contribution to a software-defined process.  

However, data-driven models do not generalize well for 
parameter ranges that are not covered by training data. To show 
this, we applied our data-driven models with additional 
experimental data using a different range of machine 
parameters. Here, the data-driven models showed deviations of 
more than 50%. Physical simulation models can be generally 
applied and complement the data-driven models through 
qualitative predictions in these parameter ranges.  

5. Conclusion and outlook 

The use of digital twins in the field of laser metal deposition 
enables machine users to predict the geometry of single tracks 
using both data-driven and physical simulation models. By 
validating the data-driven models with experimental data, we 
proved that artificial neural networks and Gaussian process 
regression models are able to predict the geometry of the tracks 
accurately within the parameter ranges covered by training 
data. Moreover, our validation of the physical simulation 
models showed a qualitative agreement with the experimental 
results for most of the used machine parameters. These models, 
therefore, complement the data-driven models for parameter 
ranges that are not covered by training data. Our work shows 
the first combination of data-driven and physical simulation 
models in a digital twin for laser metal deposition. This offers 
a more accurate prediction of the track’s geometry. In 
combination with data handling in the digital twin, it represents 
a promising step towards software-defined manufacturing. 

Future studies are expected to extend data-driven models by 
additional parameters to achieve more versatility. In order to 
reduce the effort for data collection, automated acquisition of 
the height and width of the track is essential. 
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