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Abstract: The progress of digitalization and Internet of Things enables more and more complex, networked 
and powerful Cyber-physical Systems (CPS) operating in uncertain environments. This complexity and 
uncertainty, however, makes it unfeasible to model every aspect in advance. This causes the models to 
leave their scope and reach their capability limits. Specifically, in safe maintenance planning for highly-
automated trucks, this fact causes waste of valuable resource, since maintenance models are often more 
rule-of-thumb (e.g. operation hours) than precise. In order to counteract this issue, we propose extending 
the digital twin concept by artificial intelligence such that the models get dynamic and adaptive. Having 
described the general approach and its architecture, we showcase and evaluate the approach in a highly-
automated truck scenario. 
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1. INTRODUCTION 

The progress of digitalization and Internet of Things enables 
more and more complex and powerful Cyber-physical 
Systems (CPS). This technology push awakens great hopes 
especially with regard to increasing efficiency and new fields 
of application. In particular, people envisages the use of such 
CPS in uncertain and dynamic environments. However, 
according to the survey of (Luo et al., 2019), there are still 
large unsolved questions. This is especially true in the area of 
safety and the late product life cycle phases focusing on 
maintenance. Classic CPS execute complex but fixed 
procedure in static environment. They often occur in the 
domain of production, but modern trucks, which we take as an 
example, count as CPS, too. Classic safety and maintenance 
planning concepts focus such CPS. The safety process usually 
starts with planning phase and ends with certification. 
Afterwards the operating phase begins where the maintenance 
plan created as part of the safety analysis takes effect. 
Maintenance often take place at specified intervals based on 
static models. Under the assumption of static conditions and 
with the appropriate experience, this approach works very 
well. However, for the safe maintenance planning of the 
future, this approach leads to a dilemma. Maintenance costs 
time and money. Especially safety-critical assemblies must be 
replaced in advance. Therefore sometimes assemblies are 
replaced that, in retrospect, would still have had a considerable 
service life. Thus, valuable resources are wasted. This is where 
the demand for increased efficiency arises. However, since 
considering a system in an uncertain environment, the safety 
engineer must assume the worst-case scenario of use and 
estimate wear and tear very conservatively. Especially due to 
the uncertainties, large discrepancies between the a priori 
planned maintenance and a posteriori determined lifetime of 
the components can be expected.  
Our approach to the solution of this problem is the 
consideration of dynamic and adaptive models. These models 
automatically evaluate the process data of the CPS, thus taking 

into account the context and the concrete type of use. 
Consequently, they enable a more precise (worst-case) 
estimation. We build on the concept of the digital twin, which 
provides a detailed reproduction of system components. 
However, according to our survey (Löcklin et al.), current 
approaches hardly exploit the potential of the digital twin. 
Furthermore, digital twins do not automati-cally adapt to 
previously unknown dependencies between models and 
emerging influencing factors. If, for example, a deteriorated 
shock absorber influences the wear of a wheel, the digital twin 
usually does not model this effect and the connection between 
wheel and shock absorber if it has not been modelled before. 
However, modelling all details in advance is impracticable 
(West and Blackburn, 2018). For this reason, we propose to 
extend the digital twin concept by aspects of artificial 
intelligence (AI) according to the Intelligent Digital Twin’s 
architecture (Ashtari Talkhestani et al., 2019) to provide 
adaptive models. Detected anomalies (monitoring) are divided 
into three groups, namely (1) little deviations from prediction 
(2) fundamental deviations from prediction, and (3) short, but 
intense deviations with random characteristic. Based on this 
differentiation, we present a holistic architecture handling all 
three cases individually, analysing them with rule extracting 
algorithms and directed graph reconstruction, and thus 
uncover yet unhandled phenomena. We investigate this issue 
in the further course of this paper by means of the maintenance 
planning for a highly automated truck. For this reason, 
maintenance work can only be carried out at dedicated 
maintenance locations (Allal et al.), so both the estimation of 
the service life of wear parts and estimated journey time to next 
location becomes relevant from a safety point of view. 
However, the service life of many wearing parts such as brake 
pads depends much more on their actual use than on static 
metrics like operating hours. Driving through congested urban 
areas with frequent stop-and-go phases is much more stressful, 
high fuel consumption and erosion than smooth driving over 
free highways. The totality of the individual influencing 
factors is strictly dependent on the use case and therefore 



 
 

     

 

unknown at design time. At operating time, however, these 
influencing factors can be read out of the operating data, the 
digital twin can adjudge life cycle models accordingly and thus 
provide more precise and reliable predictions. 
The simplified logistic scenario is detailed described in 
Section 2.1. Reference to related work follows (section 2.2). 
Subsequently, we explain our concept (Section 3) and present 
simulated results of the scenario (Section 4). Finally, a 
conclusion follows (Section 6).  
 

2. SCENARIO AND RELATED WORK 

In this section first the scenario and the underlying problem is 
described (section 2.1). Afterwards the reference to related 
works is established (section 2.2).  

2.1 Scenario of safe maintenance planning for trucks 

In the scenario, we assume an autonomously driving truck that 
delivers parts to various customers. On its way, the truck stops 
at maintenance bases where wear parts can be replaced and 
other maintenance work can be carried out. Therefore, the 
autonomous truck requires autonomous maintenance planning. 
The truck mainly drives on similar routes. The sections of the 
routes contain physical properties such as the gradient or the 
quality of the road surface. There are also other properties such 
as traffic density. These properties are statically assigned to a 
route section and are always similar within a statistical 
fluctuation range. Occasionally, however, the road sections 
traveled change, for example due to road closures, customer 
fluctuation, priority change etc., or the properties of the road 
sections change, for example due to road renovation. In 
addition to the rather slowly changing properties, events such 
as traffic jams or rain etc. can occur. Characteristic for events 
is that they occur stochastically distributed over different road 
sections, that they have a short but significant influence on 
process data and that they affect the target value, the wear. The 
autonomous truck reacts to these influences automatically. For 
example, it reduces its speed when it rains. It is obvious that it 
is not possible to manually build a separate model for each 
route section and each event, which models the environment 
and system reaction. Instead, the models themselves must 
adapt to the new conditions without having to rely on external 
help. As already mentioned, the goal of the modelling is to 
adequately estimate the wear of the components and to choose 
the maintenance time with the appropriate reliability. Note that 
the maintenance planning of an autonomously driving truck is 
not only an availability problem but also a safety problem. Due 
to a lack of on-board personnel, failures on the track may result 
in long intervention times. Traction failures caused by material 
fatigue therefore may endanger other road users, especially at 
railroad crossings or in rescue routes etc. That is why 
maintenance planning must fulfil safety requirements. For this 
purpose, on the one hand, the approach predicts the arrival 
time at the destination and on the other hand, it individually 
evaluates the wear and tear based on the route travelled. 
The main idea in this scenario, namely to perceive the 
parameters of the surrounding system, analyse them, draw 
conclusions from them and then adjust the models and their 
relations, is cross-domain. This idea can be transferred to all 
areas of automation technology, e. g. manufacturing etc. 

2.2 Related work 

The shortcomings of traditional safety concepts for 
autonomous systems especially when it comes to safeguard 
dynamically made decisions is still an open issue. Today's 
safety analysis tools are often not suitable for real-time 
application. To still meet the need for safety in unknown 
environments, (Bajcsy et al., 2019) propose a real-time safety 
analysis based on Hamilton-Jacobi accessibility to calculate 
the Backward Reachable Set in real time. The basic idea of this 
approach is to build a specific model, i.e. an environment map, 
according to a fixed scheme at runtime and to identify a secure 
environment in this map using the Backward Reachable Set. A 
different approach, but in principle with the same goal, namely 
the control of uncertainties (Chen et al., 2019). They extend 
existing imitation learning methods with better performance 
and a safe set based safety controller. Speed and distance-
dependent ellipses define the safety areas that are not touched 
by safe set-based safety controllers. A third approach (Magdici 
and Althoff), also based on safe sets, provides an emergency 
trajectory in case an unexpected event occurs. All three 
approaches have in common that they use variable models for 
a very specific sub-area, navigation, to ensure the safety of the 
vehicle during operation. Another piece of the puzzle is the 
safety monitoring of models. For example, (Machin et al., 
2018) contribute to this topic. Their Safety MOnitoring 
Framework (SMOF) automatically generates safety 
regulations based on the concept of safety margins. The 
approach builds on a hazard analysis and formal verification 
techniques to synchronize the regulations. However, the 
approach assumes trusted information sources. (Müller et al., 
2019) contribute to the trustworthy merging of different 
information sources based on subjective logic. (Di Franco and 
Bezzo, 2020) present an interesting avionics approach to 
human interpretability. They propose to apply decision trees at 
runtime to monitor the system behaviour in an interpretable 
way and thus avoid collisions of their quadcopter. The 
algorithms classify the trajectories as safe or unsafe depending 
on the training set trajectories generated. If a planned 
trajectory becomes too similar to an unsafe trajectory, the 
system considers this trajectory unsafe, too and triggers re-
planning. In this case, Di Franco and Bezzo propose to use a 
different decision tree to evaluate the trajectory, which is most 
similar to the current one and manoeuvre the drone out of the 
risk situation. Since the decision trees are rule-based in 
principle, they argue that, unlike modern black-box models of 
artificial neural networks, they offer interpretability.  

Thus, there are approaches that already propose adaptive 
models to ensure safety during operation. However, these 
approaches mainly refer to motion planning, not to 
maintenance planning of safety-critical components. For this 
reason, specific models are also focused on, namely mainly 
card and motion models that expand according to specific 
processes. There are also approaches that monitor the safety-
related behaviour and make new decisions based on the 
situation. In addition, there are approaches like by (Müller et 
al., 2019) which evaluate the information’s value of a data 
source and reclassify it during operation. There are also efforts 
to make this monitoring interpretable for humans. However, to 
the best of our knowledge, there are no holistic approaches, 



 
 

     

 

combining adaptive models, model monitoring and 
interpretability for lifetime estimation of safety-critical parts 
under wear. Therefore, the authors contribute the concept 
descripted in Section 3 to close this gap. 

3. CONCEPT 

The architecture for dynamic and adaptive models to achieve 
a reliable lifetime estimation of safety-critical parts is shown 
in Fig.1. It follows the MAPE-K-scheme (monitor, analyze, 
process, execute, and knowledge) introduced by autonomic 
computing (Kephart and Chess, 2003). Monitoring, analysis 
and information processing exploit machine learning 
algorithms in order to identify shortcomings in the models and 
automatically fix the issues. Execute module follows static 
procedures to handle the generated knowledge gain. The 
Knowledge is managed according to the concept of the digital 
twin (Ashtari Talkhestani et al., 2019). For the normal 
operation, physical models calculate the lifetime estimation of 
the wear parts and the operation hours until next maintenance. 
Context model choose the appropriate physical models and 
their parameterization while the state model activates the 
needed context models. In contrast, event models serve for 
handling specific exceptions. They are introduced in detail 
later on. The information model links the specific models to 
the process steps, models to models, and (context) models to 
historical data. This creates a structure of loosely networked 
models that can be reorganized dynamically. The intelligent 
algorithms from the MAPE steps, on the other hand, use this 
plasticity to dynamically adapt the models to the system and 
its environment and to integrate new findings. 

The monitoring has the responsibility to detect abnormal 
behavior of the system. Therefore, different algorithms from 
simple thresholds to sophisticated ones like by (Lindemann et 
al., 2019) surveil the process data. The selected algorithms 
depend on the input values. We discuss the concrete choice for 
this work in Section 4. From the Anomaly Detection Module 
the system differentiates three conditions: 

(1) Little deviations from prediction 
(2) Fundamental deviations from prediction, and 
(3) Short, but intense deviations with random 

characteristic. 

In order to differentiate the three states, the spread monitoring 
algorithms position the process data in the light of the 
historical curves and automatically derive the decision 
boundaries. Little deviations from estimation (1) refers to the 
normal case, where the module detects no anomaly. In this 
case, in the analysis step, stability analysis module increases 
the stability metric of the models involved in the prediction. 
Processing state continues training the physical parameters of 
the physical models to further improve the prediction quality. 
In contrast to the first case, (2) fundamental deviations show 
off in anomaly detection. They occur when either the system 
assigned a wrong context to a given situation or the system 
faces a persistent environmental change. Referring to our 
scenario, the latter could be the effect of rearranging the routes 
due to customer fluctuation or diversions. To react to those 
situations our approach instantiates a new context model and a 
new physical model. This event comes with high safety margin 
since the system has little information and thus estimates 
conservatively. To avoid this effort if possible, in the analysis 
step context analysis algorithms search the other context 
models. Simulating the prediction of the other context models, 
in the simplest case, Context analysis module diagnoses the 
confusion of the contexts. In the following processing step, 
Correlate States module inserts a new link from state model to 
the newly discovered context model. Otherwise, the closest 
context models and therefore physical models serve as 
template for the new model instances. In this case, the Directed 
graph reconstruction algorithms of the processing step come 
into play. The core idea of the directed graph reconstruction 
algorithms is to extract a directed graph from the process data 
where the nodes of the graph represent intersection points with 
other processes (i.e. driving other routes with their individual 
manifestation) and the edges model the characteristic curves 
of the process data. The output of the directed graph 
reconstruction algorithms, obviously a graph, principally 
serves as the system’s state model. However, process step 
duplicates are not yet handled. That is why the state correlation 
algorithms are subsequently involved identifying and merging 
duplicates and thus reducing the graph. 

Finally, the third case namely short but intense deviations with 
random characteristic (3) is considered. In case of trucks, this 
could be spontaneous traffic jam. The core problem is often a 
missing information. You cannot measure this directly, it 

 

Fig. 1: Following the MAPE-K scheme, this architecture realizes the model extension for safe lifetime estimation. 



 
 

     

 

happens suddenly, somehow randomly (e.g. concerning street 
segment) and it shows off in an anomaly (e.g. vehicle speed). 
Nevertheless, there are significant correlations to certain 
contexts (e.g. rush hour). We refer to this as event. We define 
an event, in the common sense “something that happens, 
especially when it is unusual or important” (Collins English 
Dictionary) in this context as the triple E = {P, R, I}, where P 
is the event’s characteristic pattern (input), R is a rule defining 
when the event occurs, and I is the influence of the event on 
certain values (outcome). Note that the precision of the event’s 
parameters increase with the number of observed events. The 
event diagnosis module of the analysis step uncovers those 
events checking for sudden, short but high anomalies 
occurring on stable models. However, events show off 
patterns, which algorithms can uncover. Therefore, in the 
processing step, a two-step process trains the event models. 
First step is to uncover rules. A combination of RUDE (Lud 
and Widmer, 2002) and Sequential Covering (SC) (Halpern, 
1977) provide human-interpretable rules describing the 
anomaly. Second step is determine the effect on the target 
value. Artificial neural networks can do this.  

The execution step does not infer artificial intelligence but 
executes the actual actions, calculate the safety reserves and 
apply the changes to the models according to the previous 
training step. The execution step may be realized in a semi-
autonomous manner, where human operator has to confirm the 
model extensions or in fully autonomous way where the 
suggested actions are directly executed. A special focus lies on 
the calculation of the safety margin. Here, the information 
obtained from the available and generated models come into 
play. The spread monitoring not only provides the basis for 
estimation of the stochastic noise distribution of the physical 
models or the spread in the characteristics of an events and the 
event’s influences. Combined with the analysis step, the 
monitoring also provides information of the probability of 
events occurring assuming a given process. Moreover, the 
graph reconstruction checkpoints testing the predictions. This 
allows to calculate worse case and realistic estimations of the 
metrics of interest (i.e. remaining lifetime of a component), 
where at the same time, since RUDE+SC and Directed Graph 
Reconstruction algorithms provides interpretable rules, human 
operator can understand what stands behind a certain event. 

The introduced architecture expresses our very general 
approach for extending the Digital Twin by AI thus achieving 
dynamic and adaptive models. The intelligent algorithms 
differentiate three cases and improve on the models according 
to them. In this way, the approach uncovers new contextual 
situations or new events, assigns human-interpretable rules to 
them and learns their effect. In order to evaluate this concept 
we developed a simulation to our showcase (Section 2.1). This 
simulation is described in the following section (Section 4). 

4. SIMULATION TO EVALUATE THE APPROACH 

The simulation consists on an environment simulation (ES) 
and the Digital Twin under Test (DTuT) of the truck. The ES 
is realized in a Unity3D simulation (Fig. 2). The ES provides 
a map with four maintenance bases and two road junctions. In 
the map, the ES models physical aspects such as gradients of 

road segments. Moreover, the ES provides the event traffic jam 
and the event rain. The user configures both events in their 
contextual and statistical properties. For example, traffic jam 
occurs on road segment 3, kilometer 125 to 175 in the time 
range from 17:30 h to 18:30 h in 60% of the simulated 
journeys. In this simulated environment, the DTuT gets virtual 
sensor values like velocity and temperature as well as distance 
to target and (simulated) time. The goal is to reconstruct all the 
simulated physical parameters, as well as events and their 
effect. According to common sense, the ES uses operating 
hours as basic wear metric. The challenge for the DTuT is to 
guarantee the maintenance intervals by estimating the travel 
time to the next maintenance base and, at the same time 
estimate the wear.  

The simulation is subdivided in two phases. In the first phase, 
the DTuT derives a rough state model representing the road 
network. In this process, the algorithms neglect events. In the 
second phase, when the rough state model is converged, i.e. 
the change of the spread remains < � , the event models are 
activated to further improve the prediction accuracy. For better 
readability, in the presented data, events are deactivated in the 
first phase as well. However, simulating events from the 
beginning does not show fundamental changes. 

At the beginning, the truck only knows the maintenance bases 
and the paths connecting them. Properties of the streets and 
relevant road junctions are unknown. The truck drives to the 
maintenance bases via different routes, on which it supplies the 
customers. On its journey, the truck collects process data. The 
truck or more precisely the DTuT evaluates this process data 
and learns from it as descripted in Section 3. It first recognizes 
repeating route segments using the Directed Graph 
Reconstruction. In this way, the DTuT builds a road graph that 
combines road sections with the same properties using the 
directed graph reconstruction algorithm by (Berkolaiko et al., 
2018). Fig. 3 visualizes this procedure on the example of a new 

 

Fig. 3. Graph Reconstruction of the road segments. 

 

Fig. 2. Visualization of the simulation. 



 
 

     

 

discovered junction. The algorithm correlates curves of 
measured data from different journeys, recognizes recurring 
road sections and saves them as edges of the graph. Each edge 
represents a road segment. The context analysis algorithm 
assigns a context model to each of these edges. This context 
model links to several physical models. Physical models may 
apply for different contexts where the context models 
parameterize them. They are available in different degrees of 
maturity. In the simplest case the physical model breaks down 
to curve fitting if no further information is known at design 
time.  

In our simulation, we take the temperature as an example. The 
temperature does not directly affect the operational time but it 
influences wear. Temperature models apply to several road 
segments. However, entering new climatic zone (e.g. truck 
drives from northern Europe to southern Europe) requires 
different parameterization. Fig. 4 visualizes the interplay of 
context model and physical model in case of a new 
instantiation.  Since the process data deviate significantly more 
than the normal spread over the whole scope, a new model is 
instantiated. The model is just a floating average of the 
recorded data mapping temperature to time. However, there 
are different curves for the two different climatic zones. The 
context models maps the process data to the appropriate 
climatic zone and thus generate two temperature expectations 
depending on the road segment. Subsequently, during the next 

runs, the temperature new instantiated model adapts to the new 
environmental conditions optimizing quadratic error.  

Another physical model is the gradient model. This model is 
bound to a specific road segment, since every road segment is 
unique in this property. Figure 5 depicts the gradient model.  

As visualized for road segment 3 in Fig. 5 a) the trained 
physical model accurately represents the specified street 
properties. Now, the before event traffic jam comes into play. 
Fig. 5 b) visualizes its effect. Now the anomaly detection 
triggers the analyzing step that ends up in case (3), short but 
intense deviations with random characteristic. Unlike the 
completely different route, the event is characterized by the 
fact that the anomaly is only effective for a very limited spatio-
temporal area. Therefore, anomaly detection triggers event 

diagnosis, which compares the event with the rules from other 
events uncovered by RUDE+SC. Since the event occurs for 
the first time, no matching model does exist. Thus, the 
algorithm adds a new event model. Having instantiated a new 
event, any similar occurrence triggers rule identification for 
this event. Fig. 6 visualizes the RUDE+SC-Algorithm 
identifying the event’s rule R. 

In parallel to the rule analysis, the Event Training module 
performs the impact analysis exploiting neural networks for 
regression. The heat-map of the training is visualized in Fig. 7.   

 

Fig. 6. Rule identification using RUDE+SC algorithm in 
normed values. The rule refers to traffic jam at rush hour.  

 

Fig. 7. Impact analysis of the identified events using neural 
networks. Anomalies are marked with white dots. 

 

Fig. 5. Detailed view of edge3’s velocity with event (b) and 
without event (a).  

 

Fig. 4. Temperature curve indicating new context: The 
deviation from the measurement (red) to the known model 
(blue) significantly exceeds normal spread (black), so a new 
model is instantiated and trained (green). 



 
 

     

 

In the simulated case, the algorithms identify clear rules and 
patterns creating good estimation for the specific events, 
namely the pattern in the process data hinting to the nearby 
event, the rule when the event occurs and the impact. 

Combining all the algorithms as described in the scenario, the 
simulated results are promising. Fig. 8 shows the development 
of the perception accuracy.  

In the first phase, where the DTuT has no prior information, 
the deviation from the estimation is quite high. Therefore, the 
safety margin has to be calculated high as well. After a few 
journeys, the rough state model converges and the simulation 
environment activates the events. In the next phase, the events 
linked to missing information show off. As the events are 
unknown to the truck, the impact on the estimation of the 
journey time is quite high. However, with increasing training 
data, the DTuT knows the events and thus the prediction 
improves. In the third phase, most predictions are accurate 
besides some outliers. This outliers refer to (5) covariance 

shift, where few data is known. Having uncovered these 
seldom events, the DTuT has completely established the event 
model and the estimation error drops to lower than 1%. 

5. SUMMARY 

In this paper, we presented an approach for dynamic and 
adaptive models hosted by the digital twin, which adapt to their 
environment not only by optimizing their parameters, but also 
by uncovering entirely new contextual situations or events. 
Subsequently, the models learn the characteristics of these 
situations or events, and their impact on other models and 
goals, specifically the optimal maintenance interval. 
Automatically derived and human-interpretable rules provide 
insights into the decision-making process. We showcased the 
approach on the example of safe maintenance planning of a 
highly-automated truck and evaluated it in a simulation. The 
approach shows promising results and is generally valid. It is 
transferable to all domains of industrial automation. 
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