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Abstract  

With the increasing amount of available and connected data sources, industrial automation applications such as condition monitoring of a 

production machine can be improved by considering various data. To gain insights from this data and make it useable, heterogeneous data has to 

be analyzed intensively. Limited machine learning approaches exist in industrial automation and manufacturing for analyzing data acquired from 

multiple sources. In this paper, first, a suitable concept for handling heterogeneous data from integration to analysis is presented as well as a 

multi-layer architecture for the concept’s realization. The architecture encapsulates functionalities into the different layers and allows easy 

extendability and modifiability. Afterwards, a context modeling approach for managing heterogeneous data and existing approaches and 

algorithms for analyzing this data robustly and dynamically analyzing it are presented. 
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1. Introduction 

With the potential of improving control and management of 

a system by acquiring more data reflecting its state as well as 

its environment and therefore generating a more holistic and 

virtual representation of it, adding more data sources e.g., 

sensors is necessary. In industrial automation and 

manufacturing, this can improve and enhance approaches, such 

as condition monitoring, anomaly detection, or failure analysis. 

Data-driven approaches, especially machine learning (ML) 

algorithms gained attention within the last years for analyzing 

data and gaining knowledge about a system's state (e.g. 

predictive maintenance or condition monitoring) [1]. However, 

when it comes to heterogeneous data from multiple sources and 

of different types, data-driven approaches are often limited, 

since they typically focus on a specific type of data with a high 

volume (e.g. images (computer vision) [2, 3] or time-series data 

[4, 5]). Therefore, these approaches do not take advantage of 

the multimodality provided by heterogeneous data which 

enables different views of a system, since they are not designed 

to intelligently combine heterogeneous data sources [6]. 

To analyze heterogeneous data, it first has to be integrated, 

preprocessed, modeled, and managed suitably, allowing central 

data access with clearly defined interfaces. Different 

approaches exist, which aim at modeling and handling the 

complex relationships coming with the increased amount of 

data sources. One research direction is context modeling, 

where a semantic metamodel integrates a system’s model with 

its operational environmental representation. Context is hereby 

defined as aggregated and time-continuous data outside the 

system’s boundary, using which, a better understanding of the 

system’s operation is possible [7]. To enable this 

understanding, a system’s representation in terms of models 

and data is necessary, which is referred to as the internal 

context, which is then mapped to the external environmental 

context. Some of the characteristics of context modeling are the 

heterogeneity of context, as it is multimodal and dynamic, 

using a knowledge-based approach; a context model aggregates 

and unifies heterogeneous data to enable inference of complex 

http://www.sciencedirect.com/science/journal/22128271


 Kamm et al. / Procedia CIRP 00 (2022) 000–000 

context, i.e. influencing contextual factors during the system’s 

operation. Having a context model in combination with data-

driven learning approaches enables efficient learning and an 

improved understanding of the learning results. 

Data-driven learning approaches have challenges and 

limitations. When having, e.g., multiple views (sensors) on a 

system, the sensor configuration of an industrial automation 

system will likely vary during its lifetime. New sensors are 

installed or existing sensors are removed, modified, or fail [8]. 

This challenges a pre-trained data-driven model since they are 

usually fixed after training. To tackle this, the ML model needs 

to be adapted and made robust and dynamic. These terms will 

be introduced and defined in the later sections in detail. 

The objective of the paper is to show a concept for analyzing 

heterogeneous data robustly and dynamically. Context 

modeling is used for integrating and handling the data first. A 

holistic architecture will be introduced, which handles the 

heterogeneous data from their sources to the final analysis and 

interface to the user. 

The remaining paper is structured as follows: First, the 

basics and related work for the integration, modeling, and 

analysis of heterogeneous data in industrial automation and 

manufacturing are introduced. Based on that, the open 

challenges and requirements are discussed. Thereupon, an 

architecture is proposed which enables dynamic and robust 

machine learning for heterogeneous data. Subsequently, 

concrete approaches for realizing the introduced components 

of the architecture are presented and discussed. Finally, a 

conclusion and outlook on further work are given. 

2. Basics and Related Work 

2.1. Integrating and modeling heterogeneous data 

To analyze data, first the integration, modeling, and thus 

provisioning of the heterogeneous data needs to be realized. 

Following [10], data processing for heterogeneous data can be 

divided into three steps: Data cleaning, data integration, and 

dimension reduction (including data normalization). 

Data cleaning aims at improving the data quality by 

identifying incomplete, inaccurate, or unreasonable data and 

modifying or deleting such data [11]. Bad data quality can 

directly lead to inaccurate data analytics. Some of the most 

common and important techniques are outlier detection, data 

transformation, error repair (including the imputation of 

missing values), and data deduplication [12]. 

Clean data should then be integrated into a common dataset, 

stored in one (or multiple) database(s), and accessible for 

further processing and analytics. Multiple industrial data 

integration tools exist. One part of them is the so-called ETL 

(Extract, Transform, Load) tools. As the name states, these 

tools extract data from a source, transform it to the desired 

format, and load it to the defined target. In academia, ontology-

based data integration (OBDI) gains increased interest, since it 

is theoretically able to handle semantic heterogeneity by 

resolving this heterogeneity into a uniform, formal, and 

semantic data description and managing the heterogeneous data 

while preserving the existing relations [6]. In [13], ontologies 

were developed for the manufacturing process of 

semiconductors to use the generated data for decision making. 

Ford investigated the potential of federated, distributed 

ontologies for the integration of big data from production [14]. 

Dimensionality Reduction and data normalization are 

crucial parts for heterogeneous data analysis. On the one side, 

dimensionality reduction is relevant, when multiple data 

sources are available and high dimensionality of the data is 

given. Uniform normalization is necessary to ensure common 

treatment of the data sources and not artificially highlight a data 

source due to its bigger data range. 

Context-aware systems are systems that consider context, 

either in the form of a model or with context-aware computing 

methods to increase the system’s sensitivity and adaptability to 

contextual changes. Depending on the domain, context has 

different definitions and realizations. [15] defines context as 

“any information that can be used to characterize the situation 

of an entity” during its interaction with a software application. 

For cyber-physical automation systems, context is defined as 

dynamic data representing flexibly connected entities around 

the system, sharing either a goal or an environment and 

contributing to an understanding of its operation [16]. Having 

a relational property as [17] describes, focusing on relations 

between different context information and how they relate to 

the system’s operation is essential and can be represented 

within a context model. 

Modeling context is predominantly realized semantically 

via ontologies or graphically via networks. An important aspect 

the context model should address is the dynamic evolvement of 

the model at runtime to reflect the dynamicity of the system and 

its environment as well as enable the addition of new data 

sources to model further context information. A further aspect 

to consider is the unified modeling of heterogeneous data 

within the context model, which necessitates a pre-processing 

and aggregation of acquired data and mapping approaches to 

the pre-defined schema or ontology. In [16], a structured data 

and metamodeling approach was used to acquire data and map 

it to a context graph. Another important aspect is the update of 

the context model, which based on the system can be time-

based on event-based. To achieve usability of the context 

model and compensate for the invested modeling effort, an 

interface allowing for scalable and multiple access to the 

context model via applications and services is necessary.  

2.2. Machine Learning for heterogeneous data 

In the last years, ML and especially Deep Learning (DL) 

was used increasingly in manufacturing and industrial 

automation. Due to its capability of learning complex 

correlations between input and outputs from recorded, 

historical data, these algorithms are more and more used for 

specific tasks, such as object detection or failure analysis. 

Traditionally, these algorithms consume one kind of data, e.g. 

images or time series. In [18], time-series data is analyzed by a 

convolutional neural network to determine the failure class of 

an electronic device. [19] applied LSTM networks in discrete 

manufacturing for anomaly detection in a metal forming 

process. Since recent deep learning approaches are typically 

first implemented and evaluated on image data, multiple 

applications of deep learning for computer vision tasks are 
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realized in manufacturing and industrial automation. [20], e.g., 

introduced a deep learning-based classification pipeline using 

a convolutional neural network for defect detection of solar 

cells based on electroluminescence images. 

However, in nowadays systems, more data sources exist 

which acquire different views of the monitored system or 

component. These different views (multi-view) often 

complement each other and thus give additional information. 

The concept of multi-view data is defined as data collected in 

parallel using different methods or techniques [21]. The 

multiple views should be analyzed in a combined fashion to 

gain the best result. Current research in this direction is linked 

with the keywords sensor/data fusion and multi-view/multi-

modal neural networks. These approaches are currently mainly 

the focus of the automotive domain, where different 

information, coming from diverse sensors (Lidar, Radar, 

Camera, Ego-data, etc.) should be fused to enable autonomous 

driving. In [22], lidar depth information and 2D image data are 

combined into an RGBD image, which is then processed by a 

convolutional network for image segmentation and object 

detection. Another approach [23] provided a fusion method for 

vehicle detection, which combines laser information, visual 

data, and GPS data. 

In the manufacturing and industrial automation domain, just 

a limited amount of work was found, that analyzes 

heterogeneous data. [24] combined motor vibration and stator 

signals with current signals in a multi-view network 

architecture to fuse this information for motor fault diagnosis. 

In [25], an unsupervised machine learning approach is 

presented for the active perception in autonomous robots based 

on multimodal fusion. This approach was validated for a 

multimodal human activity sensor dataset. A multi-head CNN-

RNN architecture was proposed by [8] for time series anomaly 

detection. First, the multi-head CNN is used to extract features 

of each sensor data independently to deal with heterogeneous 

data. Afterward, the time series are windowed and analyzed 

jointly by an RNN to detect an anomaly. 

These approaches show that sensor/data fusion and multi-

modal/multi-view neural networks are of interest for the 

manufacturing and industrial automation domain to handle the 

increasing variety and thus heterogeneity of the occurring data. 

However, limited research was so far conducted regarding a 

holistic approach for integrating, handling, and analyzing 

heterogeneous data in this domain. 

3. Concept for handling and analyzing heterogeneous data 

Different challenges arise in manufacturing and industrial 

automation when heterogeneous data is handled and analyzed. 

Since data arise from different data sources, flexible data 

interfaces for data integration are required. Once 

heterogeneous data is integrated, the (often complex) relations 

within the data need to be considered and modeled, whereas 

classical and often used relational database systems are limited 

[26]. Data coming from different sources can have different 

meanings and interpretations of the same values and labels, 

which require a uniform formal and semantic data description 

to resolve this heterogeneity [27]. This allows the further usage 

of the data via a uniform interface. This gives the first challenge  

C1: Big semantic heterogeneity at the integration,

 description, and storage of the heterogeneous data. 

Once data is integrated, described, and modeled, it shall be 

analyzed. Nowadays, ML methods and algorithms are used for 

this step. Classical ML algorithms do not use the advantage of 

heterogeneous data and typically do not combine data coming 

from different data sources and are of different data formats 

[28]. Models specifically designed for heterogeneous data are 

lacking the ability to dynamically and robustly adapt to changes 

in the input, e.g. when data sources are missing or failing 

(robust) or when new data sources are added (dynamic). A 

brute-force approach requires re-training of the whole model, 

which requires a lot of computational overhead and capacity. 

In summary, the second challenge is 

C2: Complex data analytics for heterogeneous data. 

Based on these two challenges, concrete requirements (R) 

for a robust and dynamic ML approach for heterogeneous data 

in manufacturing and industrial automation are derived, which 

will be introduced in the following. 

R1: Heterogeneous data with different semantics and 

syntax shall be integrated. 

Interfaces for the data integration shall be flexible and 

extendable for new data sources. 

R2: A central data access in a uniform, machine-readable 

format shall be given under the preservation of 

available information. 

Known relations within the data shall be modeled and the 

data shall be described in a unique semantic. 

R3: The existing data variety shall be used for data 

analysis. 

I.e. heterogeneous data shall be analyzed and used and it 

shall intelligently be combined. 

R4: The built model/method shall be robust and dynamic 

to changes. 

It shall work in case of missing or failed (robust) and be 

extendible for new (dynamic) data sources. 

In the following, an architecture is introduced, which is able 

to realize the concept fulfilling the four requirements. The 

architecture shall finally resolve the introduced and discussed 

challenges. 

4. Architecture for Dynamic and Robust Machine 

Learning for heterogeneous Data  

To address the derived requirements and realize the concept, 

a generic multi-layer architecture is first proposed. In the 

different layers, the required functionalities can be realized to 

fulfill the requirements. The architecture should, among others, 

enable reusability for different applications and domains and 

ensure functional suitability and extendibility/changeability. 

Therefore, software architecture aspects such as 

modularization, orchestration, and usage of service for 

encapsulation of functionality should be incorporated. The 

multi-layer architecture is shown in Figure 1. The different 

layers will be introduced in the following. Outside of the 

system architecture, the different heterogeneous data sources 

are given. Between the layers and even within the layer, the 

communication shall take place via services. With the help of 

orchestration, a higher level service can be offered to a user via 
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the user interface layer. Due to the encapsulated modules and 

functionalities, new modules can easily be added. 

Authorization aspects can be added if some data or services 

shall be available solely to a specific user group. 

4.1. Data Layer 

The data layer shall integrate heterogeneous data with 

different semantics and syntax (R1) and allow central data 

access in a uniform and machine-readable format (R2). Thus, 

this layer needs to perform several tasks, e.g. data integration, 

data cleaning, and data storage. As a solution, a context model 

with pre-processing steps is proposed for the data layer. 

The context model represents heterogeneous data uniformly 

within the data layer based on acquired data and enables 

knowledge-based learning through its access by the ML model. 

Heterogeneous data sources differ in type, sampling rate as well 

as the communication interface. Therefore, communication 

interfaces to different data sources are applied. These interfaces 

can for example be part of an integration platform. Configuring 

data sources as well as data sampling frequency then takes 

place. Data acquisition can be either event-based or time-based 

according to the system and its requirements. Each acquired 

data is represented by a JSON object according to a pre-defined 

schema defining different categories for the context model and 

having further metadata such as timestamps. Different data 

sources can represent a specific category, e.g. the category 

environment can be represented by multiple data such as 

temperature, humidity, and light intensity. Next, data is 

accumulated and integrated within a database, before further 

pre-processing takes place. The pre-processing checks the 

validity of data and aggregates it in 3 steps as shown in Fig.2. 

First, the validity and plausibility of the data is checked via 

Kalman filters (Data Validation). Second, outliers or values out 

of range are detected and filtered out (Outlier Detection) before 

(third) aggregating data and reducing their dimensionality 

(Dimensionality Reduction). The latter addresses the aspect of 

heterogeneous sampling rates, for which continuous and 

voluminous data series are aggregated and mapped to data with 

lower sampling frequency. Having this step is necessary for a 

coherent representation by the context model. After pre-

processing, semantic annotation takes place based on the pre-

defined categories and the aggregated data is represented as a 

CSV file. The context model has interfaces to the data 

acquisition and pre-processing modules and acquires CSV files 

for modeling an instance of the context model. A pre-defined 

but extendible metamodel describes the relationship between 

each category, therefore relating the system to its external 

environment and users. Based on the metamodel, a context 

model instance is created, denoting specific values for modeled 

entities i.e. categories. Each model instance is stored and 

related to the metamodel, so that an efficient query of either a 

specific entity or an instance of the complete context model is 

possible. Fig. 3 depicts the communication between the context 

model and the machine learning model. 

4.2. Data Analytics Layer 

Within the data analytics layer, the requirements R3 and R4 

shall be addressed. First, the data variety shall be used for data 

analysis in an intelligent way (R3). Further, based on R3, the 

data analytics model shall be capable of dealing with 

missing/failing data sources (robust) and newly added or 

changed data sources (dynamic) (R4). 

For the data analysis, the data modeled in the data layer is 

used and provided to the data analytics layer. The data is 

filtered, preprocessed and modeled in the context model at the 

data layer and then provided to the data analytics layer. In 

addition, the context model can provide information about 

sensor status, e.g. if a sensor is defective, missing or a new 

sensor is added. The interface between the data layer and the 

data analytics layer is shown in Figure 3. 

To analyze the heterogeneous data, multi-view neural 

networks are proposed, which are capable of analyzing data 

coming from different sources in different formats, since e.g. 

image and time-series data will be in different formats, even 

after preprocessing and structuring within the data layer. Three 

possible realization structures for multi-view neural networks 

are shown in Figure 4, where (neural network) models are used 

in different ways (early, late, and joint fusion) to analyze data 

Data 

Source 1

Data Layer

Data Analytics Layer

User Interface Layer

Data 

Source 2
...

Data 

Source n
 

Figure 1: Generic multi-layer architecture for heterogeneous data 

analytics 

Data Layer

Data Integration

Communication

Data Validation

Outlier Detection

Dimensionality Reduction

Semantic Annotation/Categorization

Context Model 

(Metamodel, Model management)

 

Figure 2: Data Layer approach to fulfill R1 and R2 
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coming from two sources (feature A and feature B). Early 

fusion first combines the features A and B and analyzes them 

jointly in a model within the data analytics layer (e.g. Machine 

Learning model) to obtain the final output. Late fusion first 

analyzes the features A and B separately and combines the 

outputs of the models for the final output. Joint fusion 

processes feature A in an early stage in model 1 and fuses the 

processed feature A with feature B for analysis in model 2 for 

the final output. The information from the output can be used 

as additional information in model 1 for processing feature A. 

However, multi-view neural networks are not robust and 

dynamic by default. Further concepts are necessary to enhance 

the existing networks, which were reviewed and developed. 

The prototypical implementations are currently ongoing, which 

will be presented in the future. Nevertheless, first obtained 

outcomes of the analysis will be discussed. Table 1 lists the 

approaches and gives a preliminary rating of them for the 

robustness and dynamics of a neural network. 

The first approach is input layer dropout (ILD), where 

dropout is used at the input layer. Typically, dropout is used 

within the hidden layers of a neural network to reduce the 

overfitting of the network. With ILD, single inputs are set to 

“0” randomly with a certain probability. This enhances the 

robustness of the model to missing inputs (inputs with “0”). 

This approach does not tackle the dynamic of the network. 

A denoising autoencoder (DAE) learns to reconstruct the 

original input from a corrupted input (single inputs are set to 

“0” during training of the DAE). The DAE shall thus be capable 

to reconstruct an “original” input from a corrupted one, where 

single inputs are e.g. missing or failed. The DAE is used as a 

separate preprocessing step for the neural network. The DAE 

can reconstruct an original input, however, it artificially 

generates information, which can also be misleading for the 

following neural network. It does not cover the dynamic aspect. 

Adversarial learning (AL) tries to find adversarial samples 

for the neural network during training to improve the 

robustness of the model. Typically, little noise is added to an 

input, which changes the output of the neural network, leading 

to a wrong prediction. In this case, the adversarial loss term is 

adjusted, so that single inputs are corrupted to “0”, mimicking 

a missing or failed sensor. This incorporates the adversarial 

samples into the training process of the neural network. 

However, this approach has the problem of a vanishing 

gradient, since the adversarial loss is calculated based on the 

network's output then backpropagated through the network. 

The adjusted adversarial loss forces outputs to “0”, leading to 

the vanishing gradient. This problem is under further research. 

Transfer Learning (TL) aims at transferring existing 

knowledge learned in a source task to a new target task. 

Following [29], TL can be distinguished in different categories, 

where for the similarity of the input feature space, two 

categories are commonly distinguished: 

 Homogeneous transfer learning: a setting in which the 

source and target input feature space are identical. 

 Heterogeneous transfer learning: a setting in which the 

source and target input feature space differ. 

Heterogeneous transfer learning directly tackles the 

previously introduced problem, where sensors are missing or 

failing (robust) or new sensors are added (dynamic). The input 

feature space differs, while the tasks remain the same. 

Following the first investigations, input layer dropout and 

transfer learning seem to be the most promising approaches, 

where transfer learning seems suitable for both, the robustness 

and dynamics of the model, while input layer dropout seems to 

be suitable for increased robustness. 

4.3. User Interface Layer 

The user interface layer serves as the link between the 

developed concept and models and the user. The user can, e.g., 

be a domain expert, a data scientist, or a worker. Depending on 

the role, different views shall be given to enable the desired 

functionalities effetivly. A domain expert, e.g., wants detailed 

sensor values or analysis results for certain situations of the 

system, while the worker may just need high-level feedback 

Information about 

Sensor Status (e.g. 

defective, missing or 

new Sensor)

Filtered and 

Preprocessed Sensor 

Data

Data Analytics 

Layer

Machine Learning 

Model

Robust and Dynamic 

Data Layer

Context Model

Data Preprocessing & 

Structuring

 

Figure 3: Interface between context model and robust and dynamic 

machine learning model 
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Figure 4: Possible structures for multi-view neural networks 

 

Table 1: Identified Approaches for robust and dynamic neural networks 

Approach Description Robustness Dynamic 

Input Layer Dropout (ILD) Dropout is used at the Input Layer of the neural network.  ● ○ 

Denoising Autoencoder (DAE) Inputs are corrupted. DAE learns to reconstruct original Input from corrupted input. ◑ ○ 

Adversarial Leraning (AL) Corruption of inputs through finding adversarial samples. Adversarial loss is adjusted, 

so that single inputs are “missing” 

◑ ○ 

Transfer Learning (TL) Model is trained on original input. Can then be transferred to a new domain (either 

less-dimensional input or higher dimensional input) 

● ● 
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about the system state, such as “OK” or “Not OK”. The data 

scientist may need the opportunity to train the neural network 

model and therefore define the training data and set relevant 

parameters for the training procedure. Therefore, an interface 

to the data analytics and the data layer is manadatory from the 

user interface layer. This will be developed upon the previously 

described layers and is part of future work since this is highly 

dependent on the functionalities of the lower layers. 

5. Conclusion & Outlook 

In this work, two challenges for handling heterogeneous 

data within the industrial automation and manufacturing 

domain were introduced based on previous work. Four 

requirements are then derived from literature to resolve the 

aforementioned challenges. To fulfill the requirements, a 

generic multi-layer architecture for heterogeneous data 

analysis was proposed, consisting of a data layer, a data 

analytics layer and a user interface layer. The architecture is 

modular and extendible and easily transferable to different 

applications. Concrete approaches are introduced and 

discussed for the realization of the multi-layer architecture to 

handle and analyze heterogeneous for industrial automation 

systems and manufacturing engineering applications: 

 A unifying context model with defined pre-processing 

steps is introduced as a realization for the data layer, 

highlighting on relations between categorized data entities. 

 Multi-view neural networks are then proposed for the 

analysis of heterogeneous data. 

 To ensure robustness and dynamics of the neural network, 

different approaches are discussed, identifying input layer 

dropout and transfer learning as the most promising ones. 

In future work, this defined architecture will be realized for 

an industrial automation system, to detailly prove the concept. 

Detailed research on the robustness and dynamics of neural 

networks is currently ongoing and will further be investigated. 

References 

[1] B. Maschler, S. Kamm, and M. Weyrich, “Deep industrial transfer 

learning at runtime for image recognition,” at-Automatisierungstechnik, 

vol. 69, no. 3, pp. 211–220, 2021. 

[2] J. Villalba-Diez et al., “Deep learning for industrial computer vision 

quality control in the printing industry 4.0,” Sensors, vol. 19, no. 18, p. 

3987, 2019. 

[3] H. Vietz et al., “A Methodology to Identify Cognition Gaps in Visual 

Recognition Applications Based on Convolutional Neural Networks,” in 

2021 IEEE 17th International Conference on Automation Science and 

Engineering (CASE), 2021, pp. 2045–2050. 

[4] B. Lindemann, N. Jazdi, and M. Weyrich, “Anomaly detection and 

prediction in discrete manufacturing based on cooperative LSTM 

networks,” in 2020 IEEE 16th International Conference on Automation 

Science and Engineering (CASE), 2020, pp. 1003–1010. 

[5] S. Kamm et al., “Hybrid Modelling for the Failure Analysis of SiC 

Power Transistors on Time-Domain Reflectometry Data,” in 2021 IEEE 

International Symposium on the Physical and Failure Analysis of 

Integrated Circuits (IPFA), pp. 1–6. 

[6] S. Kamm, N. Jazdi, and M. Weyrich, “Knowledge Discovery in 

Heterogeneous and Unstructured Data of Industry 4.0 Systems: 

Challenges and Approaches,” Procedia CIRP, vol. 104, pp. 975–980, 

2021. 

[7] N. Sahlab, N. Jazdi, and M. Weyrich, “Dynamic Context Modeling for 

Cyber-Physical Systems Applied to a Pill Dispenser,” in 2020 25th IEEE 

International Conference on Emerging Technologies and Factory 

Automation (ETFA), 2020, pp. 1435–1438. 

[8] M. Canizo, I. Triguero, A. Conde, and E. Onieva, “Multi-head CNN‐
RNN for multi-time series anomaly detection: An industrial case study,

” Neurocomputing, vol. 363, pp. 246–260, 2019. 

[9] V. Jirkovský and M. Obitko, “Semantic Heterogeneity Reduction for Big 

Data in Industrial Automation,” ITAT, vol. 1214, 2014. 

[10] L. Wang, “Heterogeneous data and big data analytics,” Automatic 

Control and Information Sciences, vol. 3, no. 1, pp. 8–15, 2017. 

[11] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile networks 

and applications, vol. 19, no. 2, pp. 171–209, 2014. 

[12] I. F. Ilyas and X. Chu, Data cleaning: Morgan & Claypool, 2019. 

[13] S. Schabus and J. Scholz, “Semantically Annotated Manufacturing Data 

to support Decision Making in Industry 4.0: A Use-Case Driven 

Approach,” in Data Science‐Analytics and Applications: Springer, 

2017, pp. 97–102. 

[14] D. Ostrowski, N. Rychtyckyj, P. MacNeille, and M. Kim, “Integration of 

big data using semantic web technologies,” in 2016 IEEE Tenth 

International Conference on Semantic Computing (ICSC), 2016, pp. 

382–385. 

[15] A. K. Dey, “Understanding context,” Personal and Ubiquitous 

Computing, vol. 5, no. 1, pp. 1617–4917, 2001. 

[16] N. Sahlab, N. Jazdi, and M. Weyrich, “An Approach for Context-Aware 

Cyber-Physical Automation Systems,” IFAC-PapersOnLine, vol. 54, no. 

4, pp. 171–176, 2021. 

[17] S. van Engelenburg, M. Janssen, and B. Klievink, “Designing context-

aware systems: a method for understanding and analysing context in 

practice,” Journal of logical and algebraic methods in programming, 

vol. 103, pp. 79–104, 2019. 

[18] S. Kamm, K. Sharma, N. Jazdi, and M. Weyrich, “A Hybrid Modelling 

Approach for Parameter Estimation of Analytical Reflection Models in 

the Failure Analysis Process of Semiconductors,” in 2021 IEEE 17th 

International Conference on Automation Science and Engineering 

(CASE), 2021, pp. 417–422. 

[19] B. Lindemann, F. Fesenmayr, N. Jazdi, and M. Weyrich, “Anomaly 

detection in discrete manufacturing using self-learning approaches,” 

Procedia CIRP, vol. 79, pp. 313–318, 2019. 

[20] A. Bartler et al., “Automated detection of solar cell defects with deep 

learning,” in 2018 26th European signal processing conference 

(EUSIPCO), 2018, pp. 2035–2039. 

[21] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview: 

Recent progress and new challenges,” Information Fusion, vol. 38, pp. 

43–54, 2017. 

[22] B. Shahian Jahromi, T. Tulabandhula, and S. Cetin, “Real-time hybrid 

multi-sensor fusion framework for perception in autonomous vehicles,” 

Sensors, vol. 19, no. 20, p. 4357, 2019. 

[23] F. Garcia, D. Martin, A. de La Escalera, and J. M. Armingol, “Sensor 

fusion methodology for vehicle detection,” IEEE Intelligent 

Transportation Systems Magazine, vol. 9, no. 1, pp. 123–133, 2017. 

[24] J. Wang et al., “Multilevel information fusion for induction motor fault 

diagnosis,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, 

pp. 2139–2150, 2019. 

[25] M. Jayaratne, D. de Silva, and D. Alahakoon, “Unsupervised machine 

learning based scalable fusion for active perception,” IEEE Transactions 

on Automation Science and Engineering, vol. 16, no. 4, pp. 1653–1663, 

2019. 

[26] R. Henkel, O. Wolkenhauer, and D. Waltemath, “Combining 

computational models, semantic annotations and simulation experiments 

in a graph database,” Database, vol. 2015, 2015. 

[27] A. L’heureux, K. Grolinger, H. F. Elyamany, and M. am Capretz, 

“Machine learning with big data: Challenges and approaches,” Ieee 

Access, vol. 5, pp. 7776–7797, 2017. 

[28] X. Wilcke, P. Bloem, and V. de Boer, “The knowledge graph as the 

default data model for learning on heterogeneous knowledge,” Data 

Science, vol. 1, 1-2, pp. 39–57, 2017. 

[29] B. Maschler and M. Weyrich, “Deep transfer learning for industrial 

automation: a review and discussion of new techniques for data-driven 

machine learning,” IEEE Industrial Electronics Magazine, vol. 15, no. 2, 

pp. 65–75, 2021. 

 


