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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Digital Twins have been described as beneficial in many areas, such as virtual commissioning, fault prediction or reconfiguration planning. 

Equipping Digital Twins with artificial intelligence functionalities can greatly expand those beneficial applications or open up altogether new 

areas of application, among them cross-phase industrial transfer learning. In the context of machine learning, transfer learning represents a set of 

approaches that enhance learning new tasks based upon previously acquired knowledge. Here, knowledge is transferred from one lifecycle phase 

to another in order to reduce the amount of data or time needed to train a machine learning algorithm. 

Looking at common challenges in developing and deploying industrial machinery with deep learning functionalities, embracing this concept 

would offer several advantages: Using an intelligent Digital Twin, learning algorithms can be designed, configured and tested in the design phase 

before the physical system exists and real data can be collected. Once real data becomes available, the algorithms must merely be fine-tuned, 

significantly speeding up commissioning and reducing the probability of costly modifications. Furthermore, using the Digital Twin’s simulation 

capabilities virtually injecting rare faults in order to train an algorithm’s response or using reinforcement learning, e.g. to teach a robot, become 

practically feasible. 

This article presents several cross-phase industrial transfer learning use cases utilizing intelligent Digital Twins. A real cyber physical production 

system consisting of an automated welding machine and an automated guided vehicle equipped with a robot arm is used to illustrate the respective 

benefits. 
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1. Introduction

In recent years, the practical application of artificial intelli-

gence algorithms in networked production systems has been the 

focus of numerous scientific publications [1]. Many of these 

aim at providing new functionalities as an addition to conven-

tional control software, e.g. in order to detect anomalies [2], op-

timize operating parameters [3] or predict faults [4]. However, 

integrating those into live industrial systems remains a chal-

lenge, because the required training datasets are hard to acquire 

[5, 6]. 

One possible vehicle to convey these new concepts into ac-

tual industrial applications would be the intelligent Digital 

Twin [7]. Together with lifecycle-spanning, so-called cross-

phase transfer learning [5], AI algorithms could be designed 

and trained in simulations and then swiftly deployed onto the 

real assets without requiring as much training data or time. 

Objective: In this article, case studies from the domain of in-

dustrial manufacturing underlining the potentials of intelligent 

Digital Twins enhanced with cross-phase transfer learning ca-

pabilities are presented and qualitatively analyzed. 

Structure: In chapter 2, related work on the topics of intelli-

gent Digital Twins and transfer learning is introduced. From 

there, a concept is derived in chapter 3. Chapter 4, then, presents 

case study scenarios as well as the cyber-physical production 
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system and its Digital Twin used therein. Finally, a conclusion 

and an outlook are given in chapter 5. 

2. Related Work 

2.1. Intelligent digital twin 

The Digital Twin is a well-established concept which is de-

fined differently by each author depending on the use case and 

the discipline. Nevertheless, there are similarities in certain 

core elements which are the same regardless of the use case and 

which define the Digital Twin in general. They have been iden-

tified by literature survey presented in [7]: 

The most fundamental part of any Digital Twin are the as-

set’s digital models, e.g. CAD, ECAD, simulation models, soft-

ware models and many more. Which of those a specific Digital 

Twin requires strongly depends on the real asset as well as the 

use case and can therefore differ between Digital Twins and 

over their lifecycle [8, 9]. Furthermore, the relations between 

different models (instance-instance relation), within a structure 

(parent child relation) and the dependencies of elements (inher-

itance relations) are of great importance [10]. Together, these 

models and their relations form the digital replica (see Fig 1). 

Besides these elements, a digital replica needs to have a set 

of three additional abilities to form a Digital Twin: an active 

data acquisition from the real manufacturing system and its en-

vironment to replicate the dynamic behavior and to adapt to the 

current status of the system; an interface to synchronize the 

models and their relations with any modifications occurring to 

the real manufacturing system; an interface for co-simulation 

with other Digital Twins to represent a complex factory com-

monly constituted by more than a single Digital Twin [7]. Such 

a set of models and abilities enriched by organizational infor-

mation and meta data is then called Digital Twin (DT). 

There are many applications for a DT of manufacturing sys-

tems, in the areas of planning, control or maintenance, like vir-

tual commissioning or fault tracing [11]. In general, the ad-

vantage of having a Digital Twin in these use cases as well as 

all others is that the real plant, the physical asset, is not needed 

[12]. All tests, optimizations, programming and maintenance 

can be done virtually and supported by computing power. This 

shortens downtime or the time to ramp-up. Thus, the system 

can be used continuously and operation does not have to be in-

terrupted for planning or testing. The DT can be used for sup-

port during the hole lifecycle of a plant starting from its design 

over engineering, operation up to optimization as long as the 

Digital Twin is continuously adapted to the real asset [13]. 

The intelligent Digital Twin is an extension of the DT and 

enriches it with artificial intelligence to automatically adapt 

models, provide benefits and new abilities for the physical sys-

tem and its environment. By definition, the intelligent DT is 

capable to observe and analyze the environment which is nec-

essary to learn and gain new information from it [14]. 

Examples for these new abilities are fault prediction, anom-

aly detection, control code generation, flexible control, ma-

chine condition evaluation or production sequence optimiza-

tion [7, 11]. The intelligent DT observes the environment using 

the operating data (sensor and actuator values) and analyzes it 

together with the models of the DT to gain new knowledge be-

yond the explicitly defined information in the existing models. 

In the case of an intelligent DT, the artificial intelligence algo-

rithms are an integral part and must have an information cou-

pling to the models and process data of the DT.  

So far, there are only standalone implementations which ex-

tract and analyze information from the digital twin without any 

feedback to or re-integration into the DT. This might be due to 

perceived technical obstacles in transferring knowledge back 

into the DT and updating it again whenever the need arises. 

2.2. Transfer learning 

In the field of machine learning, transfer learning refers to 

the transfer of knowledge and skills from previously learned 

tasks to new tasks in order to improve performance on the latter 

[15]. Although a lot of literature on this topic focusses on the 

application of transfer learning on visual recognition (esp. in 

the medical domain), natural language processing or commu-

nication tasks [16, 17], there has recently been increasing inter-

est from the industrial domain as well [5, 18]. 

Here, transfer learning is meant to solve two problems hin-

dering a more widespread deployment of deep learning tech-

niques: 

• Due to only very low numbers of identical industrial 

machinery, high standards of data protection and low 

levels of cooperation between different enterprises, suf-

ficiently large datasets and diverse for successful train-

ing are hard to acquire [6, 19]. 

• Due to increasing demand for frequent reconfigurations 

[20], changing processes and dynamic environments, 

quickly outdating datasets once acquired only provide 

short-term representations of the problem space neces-

sitating continuous data collection and algorithm re-

training [18, 21]. 

Transfer learning offers mitigation to those challenges by 

enabling algorithms to train not only on datasets characterizing 

the task at hand, but on related ones, e.g. from other lifecycle 
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phases, as well. Furthermore, it allows algorithms to adapt to 

changing tasks without requiring retraining from scratch. [22] 

To give some examples, in [23], the authors created an algo-

rithm capable of single-shot object recognition learning on dy-

namic tasksets. In [24], an anomaly detection algorithm toler-

ating changing input data dimensionality is presented. In [6], 

the authors propose to pre-train a quality management algo-

rithm on simulated data before fine-tuning it on the actual da-

taset collected from the real process. 

This transfer of knowledge between different modes of data, 

i.e. simulated and real data, or rather different lifecycle phases 

used in the last example is termed ‘cross-phase industrial trans-

fer learning’. It represents one of four base-use cases of indus-

trial transfer learning according to [5] (see Fig. 2). So far, only 

very few publications address this use case. This might be due 

to a perceived lack of beneficial applications or a lack of high-

quality datasets combining data collected from simulated and 

real assets. 

3. Concept 

Models are a means to replicate parts of a real asset and store 

this information, e.g. a DT’s models contain information de-

scribing the physical asset and its environment. Algorithms 

from the field of artificial intelligence could utilize this infor-

mation in order to deduct knowledge regarding the physical as-

set’s behavior and its interaction with the environment. 

More specifically, executing these models by simulation 

could make this information accessible to deep neural networks 

by providing them with training data. Obviously, this would 

only be beneficial if those algorithms can be trained on simula-

tion data in advance and then their knowledge be transferred to 

the real asset without much time needed. 

On the other hand, transfer learning directly used on algo-

rithms that are deployed on real assets might pose safety or se-

curity issues as the exact results of such a transfer are not pre-

dictable. Thus, even if a real asset could provide a direct oppor-

tunity for knowledge transfer, it might be preferable to take a 

de-tour into the virtual world in order to test the resulting sys-

tem in simulation first. 

We therefore propose to combine the two concepts of intel-

ligent DT and transfer learning in order to greatly advance their 

applicability as well as functionality. 

4. Case study 

In this chapter, we present case studies in which the poten-

tial of the aforementioned intelligent DT capable of cross-

phase transfer learning is analyzed. To this purpose, we intro-

duce an actual production system and its digital twin as an ex-

ample. 

4.1. Cyber-physical production system  

A cyber-physical production system is used to investigate 

and demonstrate the possibilities of flexible production systems 

and their DT. It was designed and built using actual industrial 

machinery on the research campus ARENA2036 (Active Re-

search Environment for the Next Generation of Automobile). It 

consists of three automated units (welding machine, movable 

robot and an intelligent warehouse) which each have their own 

decentralized control unit to control and provide the respective 

services. An additional head control unit is responsible for co-

ordinating the units to produce a model car from four sheet 

metal parts (see Fig. 3).  

The following functionalities are implemented: The intelli-

gent warehouse provides prefabricated metal parts in work-

piece carriers and withdraws empty carriers. The material flow 

inside this warehouse is controlled by 24 actuators and moni-

tored by 37 sensors, which represent the current state of 

               

Fig. 3. Cyber-physical production system at the ARENA2036 (left: CAD model; right: photo of real asset)  

 

Fig. 2. Cross-phase industrial transfer learning applied to an excerpt of 

the industry 4.0 lifecycle according to [22]  
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system and its Digital Twin used therein. Finally, a conclusion 

and an outlook are given in chapter 5. 
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occupation. This information is made available to the other sys-

tem participants by the warehouse PLC via industrial WLAN. 

The movable robot collects the metal parts in carriers from the 

warehouse, assembles the model car and transfers it to the 

welding machine. Because of this connection by mobile robot 

which acts as a driverless transport vehicle, the units do not 

have to be arranged in a fixed, linear chain. Furthermore, not 

only the robot but also the warehouse is equipped with wheels 

and can therefore easily be moved which enables a variable and 

easily modifiable production process. 

The cross-domain models of the DT were created during the 

design phase using a PLM system and is the cyber part of the 

production system. These PLM systems are able to integrate 

and manage numerous tools and their models during design, 

operation and maintenance. The DT of the system consists of 

mechanical models, kinematic definitions, electrical models, 

process simulations and automation software models. It was 

used to, e.g., virtually verify in advance that the robot could 

reach the carriers and the clamping fixtures inside the welding 

machine. 

4.2. Scenario 1: Design of deep neural networks 

In the design of deep learning algorithms based upon deep 

neural networks, many parameters (e.g. types and numbers of 

nodes, topology, data preprocessing) need to be fitted to the 

specific use case at hand. Studies show that the quality of this 

fit greatly influences the resulting algorithm’s performance 

[25]. Furthermore, the factors that support or hinder the adap-

tion of algorithms proven to solve similar use cases are still 

largely unknown [21], making diligent testing of proposed so-

lutions a key priority. 

If such testing and the ensuing redesign of a deep learning 

algorithm could be carried out prior to the assembling of the 

actual system, i.e. the real asset, one would save valuable time 

in the commissioning phase. This can be achieved by the pro-

posed enhancement of intelligent DT with transfer learning: 

Through the use of high-quality models incorporated in the 

DT and data generated by executing them, one can make and 

test the necessary design choices regarding the deep neural net-

work virtually during design phase (see Fig. 4). Naturally, the 

transferability of the resulting algorithm then depends on 

whether the DT does indeed resemble the real asset in all im-

portant aspects. 

Example: The DT of our cyber physical production system 

(see chapter 4.1) shall be equipped with an anomaly detection 

algorithm, e.g. based upon LSTM-networks. In order to decide 

on the relevant parameters (e.g. number of nodes, number of 

layers, learning rate), tests are carried out using the DT already 

available at late stages in the design phase. Transfer learning is 

then used to safeguard the algorithm’s adaption from simula-

tion to real asset. 

Because all basic features and functionalities of the real as-

set are included at this stage, the resulting algorithm will – with 

a high degree of certainty – be able to perform on the real asset 

as well. Even today, such assumptions are commonly made, 

e.g. in the case of virtual commissioning, which also depends 

on a high degree of similarity between DT and real asset. 

4.3. Scenario 2: Deployment of deep neural networks 

In addition to – but not necessarily building on - Scenario 

one (see chapter 4.2), valuable time can also be saved in the 

deployment of deep neural networks: 

When deep learning algorithms are trained, large and di-

verse datasets are needed but hard to acquire (see chapter 2.2). 

Even after commissioning, generating training datasets might 

require months-long data collection runs in which the algo-

rithm would still be untrained and therefore functionally una-

vailable.    

If pre-training could be carried out prior to commissioning, 

one would reduce the amount of data needed from the real as-

set, thereby shorten the duration of data collection runs and 

speeding up the availability of the fully trained algorithm. This 

can be achieved by the proposed enhancement of intelligent DT 

with transfer learning: 

Through the use of high-quality models incorporated in the 

DT in simulations to generate a training dataset, one can pre-

train the deep neural network virtually during design phase. 

Once the real asset is assembled and some data collected, this 

 

Fig. 4. Design of deep learning (DL) algorithms for the intelligent digital 

twin during design phase (see Scenario 1) 

 

Fig. 5. Training of deep learning (DL) algorithms for the intelligent digi-

tal twin during design and commissioning or reconfiguration and recom-

missioning phase (see Scenario 2) 
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algorithm would merely need to be fine-tuned, which requires 

far less data than the complete training would have (see Fig. 5). 

This feature can be used not only in the initial design and 

commissioning, but also in the event of reconfiguration and re-

commissioning – always allowing a virtual pre-training to 

speed up the roll-out of the final, fully functional algorithm. 

Example: The DT of our cyber-physical production system 

(see chapter 4.1) shall still be equipped with an anomaly detec-

tion algorithm. In order to pre-train it, simulations are carried 

out using the DT already available at late stages in the design 

phase. During these simulations, data describing the desired 

system behavior is collected and the algorithm trained with it. 

As soon as the real asset is available, a smaller training dataset 

is collected from it in matter of a few hours, facilitating the al-

gorithm’s adaption to the real asset using fine-tuning based on 

transfer learning. Furthermore, this allows for the automatic 

adaption of models to changes possibly occurring during com-

missioning. 

4.4. Scenario 3: Injection of rare faults 

Further extending Scenario two (see chapter 4.3) the overall 

performance and robustness of the algorithm ca be increased 

additionally to the time savings. 

One challenge in training data collection is achieving the 

necessary diversity (see chapter 2.2): In order to train an algo-

rithm’s behavior for events involving (rare) faults, one needs 

data describing such faults. Using the real asset, this data might 

not be obtainable as the faults might occur to seldomly or might 

be too much of a safety or security risk for them to be allowed 

to occur.  

The proposed enhancement of intelligent DT with transfer 

learning solves this problem: Using the high-quality models in-

corporated in the DT in simulations to generate a training da-

taset, one can inject those faults into the virtual system in order 

to generate corresponding training data [26] (see Fig. 6). Again, 

the transferability of the resulting, trained algorithm depends 

on whether the DT does indeed resemble the real asset in all 

important aspects – an assumption readily made in other con-

texts. A remaining challenge is the evaluation of results ac-

quired this way. 

Example: We want to make sure that the intelligent DT of 

our cyber-physical production system’s (see chapter 4.1) 

anomaly detection algorithm reliably detects some specific 

faults, e.g. rare sensor failures or dangerous sabotage by coat-

ing the metal parts with a combustible substance. We therefore 

inject those faults into the simulation running the DT’s models 

and collect the resulting data to test – and potentially retrain – 

the algorithm. Such an algorithm can then be adapted to the real 

asset using transfer learning in order to prevent the error, e.g. 

by conducting counter measures, or to work towards tolerating 

the error. Furthermore, we could try to create more (rare) situ-

ations addressing the algorithm’s known weaknesses. 

4.5. Scenario 4: Enabling reinforcement learning 

Whereas Scenarios one to three are today only seldomly de-

scribed in literature, studies regarding reinforcement learning 

in simulated environments are widely available. However, they 

usually do not highlight their implicit reliance on the concepts 

of DT and transfer learning: 

When reinforcement learning is used, acquiring a fully 

trained deep learning algorithm can take a long time as the al-

gorithm finds the optimal parameters by trial and error, merely 

guided by feedback information. Even on simple tasks this can 

take thousands of trials, costing considerable amounts of time 

[27]. Furthermore, if conducted on the real asset, all unsuccess-

ful trials occur in reality, leading to hundreds of unwanted sys-

tem states, potentially even harmful ones.  

Transferring reinforcement learning into the virtual realm is 

therefore necessary to enable its wide-spread utilization. Natu-

rally, such a virtual realm needs to feature the necessary high-

quality models and be simulable. Furthermore, in order to be 

able to transfer the results back onto the real asset, this virtual 

 

Fig. 6. Injection of rare faults into the intelligent digital twin during design 

or reconfiguration phase (see Scenario 3) 

 

Fig. 7. Reinforcement learning (RL) conducted inside the intelligent digi-

tal twin during design or reconfiguration phase (see Scenario 4) 
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occupation. This information is made available to the other sys-

tem participants by the warehouse PLC via industrial WLAN. 

The movable robot collects the metal parts in carriers from the 

warehouse, assembles the model car and transfers it to the 

welding machine. Because of this connection by mobile robot 

which acts as a driverless transport vehicle, the units do not 

have to be arranged in a fixed, linear chain. Furthermore, not 

only the robot but also the warehouse is equipped with wheels 

and can therefore easily be moved which enables a variable and 

easily modifiable production process. 

The cross-domain models of the DT were created during the 

design phase using a PLM system and is the cyber part of the 

production system. These PLM systems are able to integrate 

and manage numerous tools and their models during design, 

operation and maintenance. The DT of the system consists of 

mechanical models, kinematic definitions, electrical models, 

process simulations and automation software models. It was 

used to, e.g., virtually verify in advance that the robot could 

reach the carriers and the clamping fixtures inside the welding 

machine. 

4.2. Scenario 1: Design of deep neural networks 

In the design of deep learning algorithms based upon deep 

neural networks, many parameters (e.g. types and numbers of 

nodes, topology, data preprocessing) need to be fitted to the 

specific use case at hand. Studies show that the quality of this 

fit greatly influences the resulting algorithm’s performance 

[25]. Furthermore, the factors that support or hinder the adap-

tion of algorithms proven to solve similar use cases are still 

largely unknown [21], making diligent testing of proposed so-

lutions a key priority. 

If such testing and the ensuing redesign of a deep learning 

algorithm could be carried out prior to the assembling of the 

actual system, i.e. the real asset, one would save valuable time 

in the commissioning phase. This can be achieved by the pro-

posed enhancement of intelligent DT with transfer learning: 

Through the use of high-quality models incorporated in the 

DT and data generated by executing them, one can make and 

test the necessary design choices regarding the deep neural net-

work virtually during design phase (see Fig. 4). Naturally, the 

transferability of the resulting algorithm then depends on 

whether the DT does indeed resemble the real asset in all im-

portant aspects. 

Example: The DT of our cyber physical production system 

(see chapter 4.1) shall be equipped with an anomaly detection 

algorithm, e.g. based upon LSTM-networks. In order to decide 

on the relevant parameters (e.g. number of nodes, number of 

layers, learning rate), tests are carried out using the DT already 

available at late stages in the design phase. Transfer learning is 

then used to safeguard the algorithm’s adaption from simula-

tion to real asset. 

Because all basic features and functionalities of the real as-

set are included at this stage, the resulting algorithm will – with 

a high degree of certainty – be able to perform on the real asset 

as well. Even today, such assumptions are commonly made, 

e.g. in the case of virtual commissioning, which also depends 

on a high degree of similarity between DT and real asset. 

4.3. Scenario 2: Deployment of deep neural networks 

In addition to – but not necessarily building on - Scenario 

one (see chapter 4.2), valuable time can also be saved in the 

deployment of deep neural networks: 

When deep learning algorithms are trained, large and di-

verse datasets are needed but hard to acquire (see chapter 2.2). 

Even after commissioning, generating training datasets might 

require months-long data collection runs in which the algo-

rithm would still be untrained and therefore functionally una-

vailable.    

If pre-training could be carried out prior to commissioning, 

one would reduce the amount of data needed from the real as-

set, thereby shorten the duration of data collection runs and 

speeding up the availability of the fully trained algorithm. This 

can be achieved by the proposed enhancement of intelligent DT 

with transfer learning: 

Through the use of high-quality models incorporated in the 

DT in simulations to generate a training dataset, one can pre-

train the deep neural network virtually during design phase. 

Once the real asset is assembled and some data collected, this 

 

Fig. 4. Design of deep learning (DL) algorithms for the intelligent digital 

twin during design phase (see Scenario 1) 

 

Fig. 5. Training of deep learning (DL) algorithms for the intelligent digi-

tal twin during design and commissioning or reconfiguration and recom-

missioning phase (see Scenario 2) 
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algorithm would merely need to be fine-tuned, which requires 

far less data than the complete training would have (see Fig. 5). 

This feature can be used not only in the initial design and 

commissioning, but also in the event of reconfiguration and re-

commissioning – always allowing a virtual pre-training to 

speed up the roll-out of the final, fully functional algorithm. 

Example: The DT of our cyber-physical production system 

(see chapter 4.1) shall still be equipped with an anomaly detec-

tion algorithm. In order to pre-train it, simulations are carried 

out using the DT already available at late stages in the design 

phase. During these simulations, data describing the desired 

system behavior is collected and the algorithm trained with it. 

As soon as the real asset is available, a smaller training dataset 

is collected from it in matter of a few hours, facilitating the al-

gorithm’s adaption to the real asset using fine-tuning based on 

transfer learning. Furthermore, this allows for the automatic 

adaption of models to changes possibly occurring during com-

missioning. 

4.4. Scenario 3: Injection of rare faults 

Further extending Scenario two (see chapter 4.3) the overall 

performance and robustness of the algorithm ca be increased 

additionally to the time savings. 

One challenge in training data collection is achieving the 

necessary diversity (see chapter 2.2): In order to train an algo-

rithm’s behavior for events involving (rare) faults, one needs 

data describing such faults. Using the real asset, this data might 

not be obtainable as the faults might occur to seldomly or might 

be too much of a safety or security risk for them to be allowed 

to occur.  

The proposed enhancement of intelligent DT with transfer 

learning solves this problem: Using the high-quality models in-

corporated in the DT in simulations to generate a training da-

taset, one can inject those faults into the virtual system in order 

to generate corresponding training data [26] (see Fig. 6). Again, 

the transferability of the resulting, trained algorithm depends 

on whether the DT does indeed resemble the real asset in all 

important aspects – an assumption readily made in other con-

texts. A remaining challenge is the evaluation of results ac-

quired this way. 

Example: We want to make sure that the intelligent DT of 

our cyber-physical production system’s (see chapter 4.1) 

anomaly detection algorithm reliably detects some specific 

faults, e.g. rare sensor failures or dangerous sabotage by coat-

ing the metal parts with a combustible substance. We therefore 

inject those faults into the simulation running the DT’s models 

and collect the resulting data to test – and potentially retrain – 

the algorithm. Such an algorithm can then be adapted to the real 

asset using transfer learning in order to prevent the error, e.g. 

by conducting counter measures, or to work towards tolerating 

the error. Furthermore, we could try to create more (rare) situ-

ations addressing the algorithm’s known weaknesses. 

4.5. Scenario 4: Enabling reinforcement learning 

Whereas Scenarios one to three are today only seldomly de-

scribed in literature, studies regarding reinforcement learning 

in simulated environments are widely available. However, they 

usually do not highlight their implicit reliance on the concepts 

of DT and transfer learning: 

When reinforcement learning is used, acquiring a fully 

trained deep learning algorithm can take a long time as the al-

gorithm finds the optimal parameters by trial and error, merely 

guided by feedback information. Even on simple tasks this can 

take thousands of trials, costing considerable amounts of time 

[27]. Furthermore, if conducted on the real asset, all unsuccess-

ful trials occur in reality, leading to hundreds of unwanted sys-

tem states, potentially even harmful ones.  

Transferring reinforcement learning into the virtual realm is 

therefore necessary to enable its wide-spread utilization. Natu-

rally, such a virtual realm needs to feature the necessary high-

quality models and be simulable. Furthermore, in order to be 

able to transfer the results back onto the real asset, this virtual 

 

Fig. 6. Injection of rare faults into the intelligent digital twin during design 

or reconfiguration phase (see Scenario 3) 

 

Fig. 7. Reinforcement learning (RL) conducted inside the intelligent digi-

tal twin during design or reconfiguration phase (see Scenario 4) 
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realm needs to be able to synchronize itself with the real asset 

and collect data on its behavior – thus, it needs to be a DT. 

Featuring artificial intelligence functionalities, it needs to be an 

intelligent DT and to bridge the gap between the digital models 

and the real asset, it needs transfer learning capabilities (see 

Fig. 7). 

Example: There are numerous examples on this topic. For 

our cyber-physical production system (see chapter 4.1), train-

ing the robot arm for picking up the metal parts and assembling 

the model car can be done using reinforcement learning on the 

digital twin. Transfer learning is then used to bridge the gap 

between simulation and real asset. This speeds up the process, 

e.g. by learning on multiple instances parallelly, and avoiding 

errors in real life, e.g. dropped metal parts that would have to 

be picked up by a human operator. 

5. Conclusion 

The presented scenarios highlight potential benefits that 

arise from enhancing intelligent digital twins with cross-phase 

transfer learning when deep learning algorithms are used: 

Transfer learning allows deep learning algorithms to be de-

signed, trained and possibly enhanced with fault injection using 

the digital twin’s simulation capabilities and then to be adapted 

onto the real asset. This leads to time savings or performance 

increases. Evaluations of the specific extend of these benefits 

are still ongoing and will be included in later publications. 

Furthermore, it could be demonstrated that the necessary, 

underlying assumption of similarity between simulation and re-

ality can readily be made if the digital twin used is detailed 

enough. In fact, even today it already is frequently made when-

ever reinforcement learning algorithms are used.  

Concludingly, intelligent digital twins would greatly profit 

from a more wide-spread utilization of the proposed concept – 

in terms of expanded functionality, reduced training efforts and 

increased robustness.  

Although the very first implementations outside of the field 

of reinforcement learning have been made, there still is a great 

need for further research regarding a greater variety of refer-

ence implementations, benchmark comparisons and more real-

life applications. 
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