
at – Automatisierungstechnik 2021; 69(3): 211–220

Methods

Benjamin Maschler*, Simon Kamm and Michael Weyrich

Deep industrial transfer learning at runtime
for image recognition
Deep Industrial Transfer Learning für Bilderkennung zur Laufzeit

https://doi.org/10.1515/auto-2020-0119
Received July 15, 2020; accepted December 18, 2020

Abstract: The utilization of deep learning in the field of
industrial automation is hindered by two factors: The
amount and diversity of training data needed as well as
the need to continuously retrain as the use case changes
over time. Both problems can be addressed by industrial
deep transfer learning allowing for the performant, con-
tinuous and potentially distributed training on small, dis-
persed datasets. As a specific example, a dual memory al-
gorithm for computer vision problems is developed and
evaluated. It shows the potential for state-of-the-art per-
formancewhile being trained only on fractions of the com-
plete ImageNet dataset at multiple locations at once.

Keywords: continual learning, deep learning, incremental
class learning, live image recognition, transfer learning

Zusammenfassung: Die Nutzung von Deep Learning auf
dem Gebiet der Industrie-Automatisierung wird durch
zwei Faktoren behindert: Die benötigte Menge und Viel-
falt von Trainingsdaten sowie die Notwendigkeit, fort-
laufend nachzutrainieren, wenn sich der Anwendungs-
fall im Laufe der Zeit wandelt. Beide Probleme kön-
nen durch Industrial Deep Transfer Learning gelöst wer-
den: Es ermöglicht performantes, kontinuierliches und
bedarfsabhängig verteiltes Lernen auf kleinen, verstreu-
ten Datensätzen. Als konkretes Beispiel wird ein Dual-
Memory-Algorithmus für Computer-Vision-Probleme ent-
wickelt und evaluiert. Er zeigt das Potenzial für state-of-
the-art Performanz, während er jeweils auf Ausschnitten
des kompletten ImageNet-Datensatzes an verschiedenen
Standorten gleichzeitig trainiert wird.

*Corresponding author: Benjamin Maschler, Institute of Industrial
Automation and Software Engineering, University of Stuttgart,
Pfaffenwaldring 47, 70550 Stuttgart, Germany, e-mail:
benjamin.maschler@ias.uni-stuttgart.de
Simon Kamm, Michael Weyrich, Institute of Industrial Automation
and Software Engineering, University of Stuttgart,
Pfaffenwaldring 47, 70550 Stuttgart, Germany, e-mails:
simon.kamm@ias.uni-stuttgart.de,
michael.weyrich@ias.uni-stuttgart.de

Schlagwörter: kontinuierliches Lernen, deep learning, in-
krementelles Klassenlernen, Bilderkennung zur Laufzeit,
Transferlernen

1 Introduction

The ongoing global trend towards connected industry, la-
beled e. g., Industry 4.0 or Industrial Internet of Things,
has created a world of cyber-physical production systems
providing awealth of industrial data and interfaces [8, 19].
However, together with this data and accessibility came a
substantial increase in the systems’ complexity aswell, re-
quiring automatic solutions to problems such as control
and monitoring tasks that still reflect each scenario’s spe-
cific characteristics.

Machine learning, especially in the formof deep learn-
ing, promises such automatic, data-driven adaption to
specific use case scenarios [30, 10]. However, although the
number of publications utilizing such approaches in in-
dustrial applications is sharply on the rise [18], substantial
practical problems hinder the practical use of these solu-
tions:
– Deep learning requires training datasets diverse and

large enough to include all relevant aspects of a given
problem [4, 27]. In practice, acquiring such datasets
poses a great challenge as data is oftentimes not
shared due to technical, legal or securital concerns
and cannot easily be collected by a single entity due
to quantitative and qualitative requirements [14, 29,
26].

– Training deep learning algorithms is computationally
intensive whereas using a trained algorithm does not
require much computing power. However, most in-
dustrial use cases are somewhat dynamic, requiring
the continuous gathering of data and, thus, retraining
of the respective algorithm. In practice, this poses a
challenge as an algorithm’s user therefore needs to
have the infrastructure not only to use, but to retrain
the algorithm continuously [26, 31, 17].

Open Access. © 2021 Maschler et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/auto-2020-0119
mailto:benjamin.maschler@ias.uni-stuttgart.de
mailto:simon.kamm@ias.uni-stuttgart.de
mailto:michael.weyrich@ias.uni-stuttgart.de

212 | B.Maschler et al., Deep industrial transfer learning at runtime for image recognition

Table 1: Notation.

Symbol Definition Symbol Definition

D Dataset i Instance counter
P() Distribution n Number of instances
X Instance set t Number of tasks
D Domain x Feature vector
T Task y Label
X Feature space α Learning rate
Y Label space ρ Threshold value

These twoproblems could be solvedbydeep learning algo-
rithms allowing cooperative, distributed and continuous
training on small datasets facilitating a transfer of previ-
ously acquired knowledge. To this end, methods from the
fields of transfer learning and continual learning can be
utilized [17]. To examine their potential for industrial ap-
plications, in this paper an image recognition task, rep-
resenting e. g., a vision-based quality control problem, is
solved using a continual learning approach trained on
small, distributed datasets.

In this article, concepts regarding the transfer of
knowledge in industrial automation are introduced and a
suitable approach selected in Section 2. The methodology
used is then thoroughly described in Section 3 and eval-
uated experimentally in Section 4. Section 5 gives a short
conclusion and presents an outlook on the next steps nec-
essary to enhance theuseofmachine learning in industrial
automation.

2 Related work
In this chapter, first, an overview of the transfer of knowl-
edge in machine learning is given and from there the term
‘deep industrial transfer learning’ defined. Secondly, a
general approach for a vision-based deep industrial trans-
fer learning scenario is derived from literature.

For convenience, a list of symbols and their definitions
as used throughout this paper is given in Tab. 1.

2.1 Deep industrial transfer learning
In humans and animals, ‘natural’ intelligence allows the
transfer of knowledge from known problems and their
solution towards unknown ones or to adapt previously
learned lessons based upon new information – both while
retaining older information or skills. This is commonly
called ‘continual learning’ [13, 21].

In ‘artificial’ deep learning, such transfer or adaption
is not easily achieved, as new information simply tends

to overwrite old information without gaining a consider-
able advantage compared to learning from scratch using
only new information. This displacement process is called
‘catastrophic forgetting’ [3].

The term ‘continual learning’ describes approaches to
overcome the problem of catastrophic forgetting in ma-
chine learning. More specifically, it describes a field fo-
cused on solvingmulti-task problems in a common feature
space X1 = ⋅ ⋅ ⋅ = Xt with differing distributions of input
data P (X1) ̸= ⋅ ⋅ ⋅ ̸= P(Xt) and known source and target la-
bels. The goal is to learn those tasks sequentially without
forgetting previously learned tasks, so that eventually all
tasks can be solved by a single deep learning algorithm.
Building upon [6, 20], three different problem cases can
be differentiated:
– Incremental Task Learning (ITL) describes problems,

in which a deep learning algorithm is sequentially
trained on multiple observations Dt = {(x, y) | xi ∈
X ; yi ∈ Yt ; i = 1, . . . , nt} corresponding to t ∈ ℕ+ do-
mains and tasks in order to be able to infer any yj ∈ Yt
given (xj ∈ X , t). This is commonly achieved using a
multi-headed output layer of which only the head cor-
responding to task Tt is active.

– Incremental Domain Learning (IDL) describes prob-
lems, in which a deep learning algorithm is se-
quentially trained on multiple observations Dt =
{(x, y) | xi ∈ X ; yi ∈ Yt ; i = 1, . . . , nt} corresponding to
t ∈ ℕ+ domains and tasks in order to be able to infer
any yj ∈ Y given xj ∈ X .

– Incremental Class Learning (ICL) describes prob-
lems, in which a deep learning algorithm is se-
quentially trained on multiple observations Dt =
{(x, y) | xi ∈ X ; yi ∈ Yt ; i = 1, . . . , nt} corresponding to
t ∈ ℕ+ domains and tasks in order to be able to infer
any yj ∈ Yt given xj ∈ X .

Fig. 1 illustrates these continual learning problem classes
using the example of hand-written digit recognition: An
algorithm is sequentially trained to label images of hand-
written digits ‘1’ and ‘2’ (representing labels from the label
spaceY1) in task T1 and ‘3’ and ‘4’ (representing labels from
the label space Y2) in task T2.
– ITL describes this algorithm’s ability to correctly label

new images when given information as to which label
spaceYt shall be used – i. e., returning e. g., one of the
two possible answers ‘1’ and ‘2’ for an input image as-
sociated with task T1.

– IDL, in contrast, describes the algorithm’s ability to
correctly label new images without specifying the la-
bel space Yt used at all – i. e., returning one of the
merely two possible answers ‘1 or 3’ and ‘2 or 4’.

B. Maschler et al., Deep industrial transfer learning at runtime for image recognition | 213

Figure 1: Continual learning problem classes using the example of hand-written digit recognition.

– ICL, finally, describes the algorithm’s ability to cor-
rectly label new images using all labels from all label
spaces Yt – i. e., returning one of the four possible an-
swers ‘1’, ‘2’, ‘3’ and ‘4’.

According to [20], ICL is the most difficult, whereas ITL
is the easiest of those continual learning problem classes.
Numerous approaches to solve themhave been published,
of which [21] and [13] present recent surveys.

However, these continual learning problem classes
only address a sub-space of the much greater problem
space regarding the transfer of knowledge. More precisely,
continual learning focusses on retaining old skills and
thereby leads to an algorithm’s generalization, focusing
on similarities between different (sub-)problems, e. g., rec-
ognizing characteristics of the same problem described
in different datasets. Contrastingly, ‘transfer learning’ fo-
cusses just on the new skills [22] and thereby leads to
an algorithm’s differentiation, focusing on differences be-
tween different (sub-)problems, e. g., forming clusters of
very similar problems described in different datasets. As
useful such a distinction might be in classifying algo-
rithms, it loses its usefulness when applied to practical
problems: Industrial automation use cases as described in
Section 1 usually require the generalization of information
contained across potentially dispersed sub-datasets, e. g.,
at different locations, and across small changes over time
as well as the differentiation between different variants of
a problem. This double requirement leads the authors of
this article to define the term ‘industrial transfer learning’
as encompassing both, continual and transfer learning.
More specifically, deep industrial transfer learning shall be
examined as amethod tomitigate the problems of conven-
tional deep learning as described in Section 1 [17].

Luckily, both, continual learning and transfer learn-
ing, need to overcome the so-called ‘stability-plasticity
dilemma’, which refers to the opposing aims of having an
algorithm stable enough to keep connections once learned
and flexible enough to learn new connections once en-
countered. This justifies the hypothesis, that at least some
continual learning approaches should deliver good results
when used for industrial transfer learning.

2.2 Dual memory method for image
recognition

One such promising continual learning approach suit-
able for deep industrial transfer learning as described
above is the dual-memory method [21, 9, 15]: A slow-
learning module (inspired by a mammalian brain’s neo-
cortex section) and a fast-learning module (inspired by a
mammalian brain’s hippocampus section) combine their
strengths to mitigate the stability-plasticity dilemma. The
slow-learning module, hereon called module A, is used to
extract general information from the input data and gen-
eralize it. In contrast, the fast-learning module, hereon
called module B, is used to extract specific information of
the input data and to save it as new memory.

This approach is not to be confused with the state-
of-the-art process of using pre-trained convolutional neu-
ral networks to solve image recognition tasks. Instead of
merely pre-training on a similar dataset, which would in-
deed solve the problem of training data availability, the
proposed approach continuously and efficiently re-trains
on every new instance provided and therefore solves the
problem of continuously changing dynamic processes as
well.

214 | B.Maschler et al., Deep industrial transfer learning at runtime for image recognition

Table 2: Deep learning based image recognition algorithms from literature.

Feature-Extraction-Algorithm No. of Para-meters Memory Consumption Top-1 Classification Accuracy Top-5 Classification Accuracy

MobileNet-V2 [24] 3.5 × 106 14MB 71.3% 90.1%
DenseNet121 [7] 8.1 × 106 33MB 75.0% 92.3%
Xception [2] 22.9 × 106 88MB 79.0% 94.5%
Inception-V3 [25] 23.9 × 106 92MB 77.9% 93.7%
ResNet-50V2 [5] 25.6 × 106 98MB 76.0% 93.0%
ResNet-152V2 [5] 60.4 × 106 232MB 78.0% 94.2%

Today, feature extraction, i. e., the extraction of gen-
eral information from input data, is usually carried out by
deep neural networks (DNN). Different DNNs can be used
for this purpose, but for image recognition tasks as ex-
amined here, convolutional neural networks (CNN) have
provenmost capable. Tab. 2 lists someof themost accurate
CNNs, whose performance shall be compared in Section 2.
Although the algorithms listed are full classification algo-
rithms, only their feature extraction components will be
used. Therefore, they are referred to as feature extraction
algorithms.

Whilemany CNN-based feature extractors can be used
as module A, the requirements for module B are more de-
manding. In order to facilitate transfer learning for the use
case described in Section 1, an appropriate algorithmmust
– be trainable on a data stream, where samples of the

different classes appear randomly in time and order,
– be able to classify already seen and trained classes at

all times,
– show a limited growth of computational complexity

and memory consumption as the number of known
classes grows and

– not need to store any raw data for training.

The first three criteria are met by Incremental Classi-
fier and Representation Learning (iCaRL) [23] and Fuzz-
yARTMAP [1, 12], while only FuzzyARTMAP fulfils all four.
Therefore, FuzzyARTMAP was chosen as a foundation for
module B. Its architecture allows it to solve the stability-
plasticity-dilemma [1] by adding new knowledge without
changing already trained information. The classification
is then based on a comparison between the input data and
the representations of known classes.

3 Methodology

Asoutlined in Section 2.2,wepropose anarchitecture com-
bining two different algorithms:

– Module A uses different, pre-trained image recogni-
tion CNNs from Tensorflow 2.0 with a fix learning rate
αA = 0. However, for each one of those, the last fully
connected layer is removed in order to just extract fea-
tures, which are then relayed to module B.

– Module B is based on the FuzzyARTMAP algorithm en-
hanced by an updating mechanism allowing it to rec-
ognize completely new classes, too. Thus, module B
serves as the aforementioned incremental, fast learn-
ing classifier.

The resulting classification process by this distributed in-
cremental class learning algorithm (DICLA) is depicted in
Fig. 2:
1. DICLA is presentedwith images x. The pre-trained fea-

ture extraction algorithm fA from module A reduces
those to a feature vector fA (x) = I.

2. This feature vector I is then relayed tomodule Bwhere
it is compared against a set of N stored feature vectors
called representationsRn (n ∈ [1,N]) by computing the
pair-wise cosine similarity p(Rn) as defined in equa-
tion (1).

p (Rn) =
I ∗ Rn
‖I‖2
""""Rn
""""2
. (1)

These representations are mapped to the set of known
classes Cm (m ∈ [1,M]): Each stored representation
represents exactly one class while each class can be
represented by one to many representations.
Such stored representations do not violate the require-
ment not to store raw data for training, because those
representations are to be considered as abstract repre-
sentations of knowledge, i. e., learning results, rather
than raw data.

3. The updater now evaluates the result of the compari-
son process by comparing it with a threshold value ρ.
This threshold value can either be fix or be adaptive.
An adaptive threshold ρadaptive is proposed in equa-
tion (2). It shall ensure a “clear” winner by factorizing
the mean of all similarity values with an additional

B. Maschler et al., Deep industrial transfer learning at runtime for image recognition | 215

Figure 2: Structure of the Distributed Incremental Class Learning Algorithm (DICLA) based upon [16].

thresholding parameter s, which typically is slightly
larger than 1, e. g., s = 1.1. With this parameter, the
desired unambiguity of the winner representation is
adjusted.

ρadaptive = s ∗
1
N

N
∑
i=1 p(Ri). (2)

a) If the similarity between the input feature vector
and one of the representations passes the thresh-
old value, then this input picture is classified by
module B as belonging to the class associated
with the representation the pictures’ feature vec-
tor matched. When the algorithm is in training
mode, the winning representation Rn is adapted
(“trained”) with the information obtained by the
new input feature vector I and according to learn-
ing rate αB as given in equation (3).

Rn adapted = (1 − αB)Rn + αBI . (3)

b) However, if the threshold value is not passed, then
the input image is considered to manifest a new
representation. This representation is thenmanu-
ally assigned to a class.
i. If the representation belongs to a previously

unknown class, a new class is created and the
input feature vector used as a representation
of this class.

ii. If the representation adds new information to
a previously known class, the input feature
vector is used as a new representation of this
already existing class.

Thus, both cases lead to an expansion of the algo-
rithm’s knowledge base during runtime. Furthermore,

in both cases, module B outputs the class associated
with that representation.

The number of representations associated with a class can
be reduced by consolidation, a form of flattening. Consol-
idation is not depicted in Fig. 2.

4 Experiments

In the following section, first, the influence of different fea-
ture extraction algorithms on DICLA’s incremental learn-
ing performance shall be examined. The resulting, optimal
version of DICLA is then compared to state-of-the-art in-
cremental learning algorithms. Finally, this version of DI-
CLA is evaluated regarding its distributing learning capa-
bilities.

4.1 Incremental learning: comparison of
different feature extractors on
ImageNet-10

The following experiments compare the different feature
extraction algorithms from Tab. 2 regarding their perfor-
mance when used in module A. The experiments were ex-
ecuted on the ImageNet-10-dataset, a subset of the larger
ImageNet-dataset. It can be characterized by a small num-
ber of different classes (10) and a large number of highly
different natural images per class (>1250), challenging any
image recognition algorithm todistinguish small aswell as
large differences.

216 | B.Maschler et al., Deep industrial transfer learning at runtime for image recognition

Table 3: Comparison of the impact of the number of training images per class for every feature extraction algorithm from Tab. 2 regarding
training time and final accuracy (double standard deviation indicated) averaged over five runs.

No. of Training Images per Class
1 10 50 100 250 500 750 1000 1250

Mobile-Net-V2 Avg. Training Time [s] 12.9 13.8 23.4 34.3 74.4 144.7 239.4 331.8 439.7
Avg. Final Accuracy [%] 47.8±3.8 67.6±1.3 75.4±2.8 75.4±3.9 75.7±2.5 74.5±2.4 76.3±2.1 75.9±2.1 75.4±2.7

DenseNet121 Avg. Training Time [s] 28.5 30.8 51.8 79.2 168.9 334.5 514.2 729.8 1017.9
Avg. Final Accuracy [%] 37.1±5.2 56.5±3.5 69.4±2 69.7±2.9 71.2±2.2 73.2±3.4 72±3.7 72.3±1.1 72.9±2.1

Xception Avg. Training Time [s] 14.7 18.5 40.7 66.7 164.1 393.1 700.1 1051.7 1647.6
Avg. Final Accuracy [%] 34.9±5.9 55.2±3 63.6±1.9 64±1.8 63.6±0.8 67±2.8 65.8±0.8 65.7±1.9 66.3±3.1

Inception-V3 Avg. Training Time [s] 26.0 30.1 60.8 96.8 223.7 493.4 826.6 1344.4 2119.8
Avg. Final Accuracy [%] 23.8±0.8 39.6±3.1 49.5±2.1 52.5±3.1 55.3±1.7 56.8±2.4 57±3.5 56.7±2.6 58±2.4

ResNet-50V2 Avg. Training Time [s] 17.7 22.0 47.4 80.3 197.1 442.9 779.7 1172.2 1679.5
Avg. Final Accuracy [%] 34.9±5.3 54.9±3.5 62.4±1.4 65.7±1.8 65.2±2.3 66.7±2.9 65.4±3.8 67±5.8 66.3±2.2

ResNet-152V2 Avg. Training Time [s] 43.4 49.4 98.0 155.9 360.7 778.4 1343.4 2130.8 2888.5
Avg. Final Accuracy [%] 34.9±4.2 54.2±3.1 61.7±2 65.1±3.1 68.1±1 67.3±2.4 69.6±2.6 66.9±1 67.6±2.4

The training of DICLA was executed with one epoch
per incremental step, so that every training image is seen
just once. As described in Section 3, DICLA contains dif-
ferent hyperparameters, which were optimized based on
a grid search. Because the feature extractor, module A,
was fixed for these experiments (αA = 0), solely hyper-
parameters of module B, threshold value ρ and the learn-
ing rate αB, were optimized. Both parameters can range
from 0 to 1 and were investigated in this range with a
step width of 0.1, resulting in 121 combinations for the
grid search. To ensure meaningful results, we performed
cross validation. We split the training data (<1250 images)
into a training set of 20 and a validation set of 100 ran-
domly drawn images per execution. This was repeated five
times per possible combination, resulting in a total of 606
tests. Based on this hyperparameter optimization, the fol-
lowing parameter were chosen for conducting the final re-
sults:
– Training images per class: 10 to 1250 – randomly

drawn
– Test images per class: 50 (all available images)
– Threshold value ρ = 0.5 (fix threshold)
– Learning rate of module B αB = 0.2

Experiments were carried out on an Intel i5-6500 CPU
at 3.2 GHz, a NVIDIA Geforce 1050Ti 3 GB GPU and 8GB
memory using CuDNN-supported Tensorflow 2.0.

Tab. 3 lists the average training time, the average fi-
nal accuracy and the average final accuracy’s double stan-
dard deviation for every feature extraction algorithm from
Tab. 2 on different numbers of randomly drawn training
images ranging from 1 to 1250. Averages and deviations
are calculated based upon five runs. It can be seen that

with an increase in the number of training images per
class, the final recognition accuracy rises at the cost of a
higher training time. However, while the calculative load
increase for higher numbers of training images per class
rises sharply, the accuracy gain decreases rapidly. While
this is true for every feature extraction algorithm, the ex-
tend differs, e. g., MobileNet-V2 already comes close to
its peak accuracy using only 50 training images and tak-
ing 23.4 s whereas Inception-V3 needs at least 500 im-
ages and 493.4 s to do the same. Furthermore, the algo-
rithms greatly vary in their peak accuracy and the training
time needed, ranging from 58% (Inception-V3) to 76.3%
(MobileNet-V2) and from 439.7 s (MobileNet-V2) to 2888.5 s
(ResNet152V2).

To further compare the different algorithms’ accura-
cies against each other, Fig. 3 shows their performance on
10, 100 and 1000 training images per class and 1, 2, 5 and
10 incremental learning steps, eachaveragedover five runs
for each of the six feature extraction algorithms listed in
Tab. 2 respectively used for module A.

The diagrams on the left side depict the accuracy after
each group’s training in a scenario where the ten classes
are split into ten groups of one class each and learned
sequentially using 10 (top), 100 (middle) or 1000 (bot-
tom) training images per class. While the small number
of training samples in the top diagram leads to several al-
gorithms not starting out with 100% accuracy after just
one trained class, this gets better with an increase in the
number of training images. Inception-V3 consistently per-
formsmuchweaker than the other feature extraction algo-
rithms, which perform similarly well except forMobileNet-
V2 and to a lesser extend DenseNet121 reaching better ac-
curacies.

B. Maschler et al., Deep industrial transfer learning at runtime for image recognition | 217

Figure 3: Results for DICLA using different feature extraction algorithms and different parameter sets on the ImageNet-10 dataset.

The right diagrams depict the final accuracy after the
complete, sequential training of a scenario where the ten
classes are split into 1, 2, 5 or 10 training groups using 10
(top), 100 (middle) or 1000 (bottom) training images per
class. Altogether, the number of training groups does not
appear to have a large influence on the algorithms’ perfor-
mance. This supports the claim that DICLA is capable of
performant incremental learning, thereby mitigating the
plasticity-stability-dilemma so that old skills are retained
while new ones are learned.

Concludingly, the experiments on ImageNet-10 clearly
point towards the use of MobileNet-V2 in module A, com-
bining the highest final accuracieswith the lowest training
time needed among all feature extractors compared. Fur-
thermore, MobileNet-V2 is the feature extractor with the
smallest memory footprint (see Tab. 2).

4.2 Incremental learning: evaluation of
DICLA using MobileNet-V2 on ImageNet

Based upon the findings in the previous section, a version
of DICLA using MobileNet-V2 in module A is further evalu-
ated. To this extend, experiments are executed on the full
ImageNet-dataset, which can be characterized by a large
number of different classes (1000) and a large number of
highly different natural images per class (>1250), challeng-
ing any image recognition algorithm to distinguish small
as well as large differences. Thewell-published algorithms
iCaRL and Learning without Forgetting (LwF) [11] are used
for comparison (accuracies obtained from [28]).

Training of DICLA is executed using the same para-
meters as in the previous section and 10 and 100 training
images per class.

218 | B.Maschler et al., Deep industrial transfer learning at runtime for image recognition

Table 4: Comparison of the accuracy after each trained group of classes of DICLA using 10 training images per class, DICLA using 100 train-
ing images per class, iCaRL and LwF on the full ImageNet dataset (best value indicated in bold print).

Number of Trained Classes 100 200 300 400 500 600 700 800 900 1000

DICLA10 [%] 67.9 60.2 55.4 51.6 47.9 45.8 44.1 42.2 40.8 39.3
DICLA100 [%] 75.1 68.5 64.1 62.5 59.4 57.3 55.1 53.3 51.5 49.6
iCaRL [%] 90 83 77.5 70.5 63 57.5 53.5 50 48 44
LwF [%] 90 77 68 59.5 52.5 49.5 46.5 43 40.5 39

Figure 4: Results of DICLA using 10 training images per class, DI-
CLA using 100 training images per class, iCaRL and LwF on the full
ImageNet dataset.

Fig. 4 and Tab. 4 show the resulting accuracies: iCaRL
and LwF start out at 90% accuracy, DICLA using 100
training images per class (DICLA100) at 75.1% and using
10 training images per class (DICLA10) at 67.9%. How-
ever, over the course of the incremental learning process,
this gap between DICLA and the other algorithms nar-
rows considerably. In the end, DICLA10 is even slightly
more accurate than LwF (39.3% to 39%) and DICLA100
considerably more accurate than iCaRL (49.6% to 44%).
This is despite the fact, that iCaRL as well as LwF uti-
lize a ResNet-Architecture for feature extraction, which
generally achieves a better classification accuracy than
MobileNet-V2 (see Tab. 2) and both perform 100 epochs per
incremental step and use all about 1,300 training images
per class of which iCaRL saves about 20,000.

4.3 Distributed learning: evaluation of DICLA
using MobileNet-V2 on ImageNet-10

Finally, DICLA using MobileNet-V2 in module A is experi-
mentally evaluated regarding its distributed learning ca-
pabilities. To this end, the ten classes of ImageNet-10 are
evenly distributed to 1, 2, 5 and 10 edge devices conduct-
ing the training, so that every edge device has the same
number of classes to learn. Training is executed using the
same parameters as in the previous sections and 100 train-

ing images per class. After the training, the knowledge ac-
quired is then shared between the edge devices and the al-
gorithm’s performance is tested on the evaluation dataset
consisting of the test images.

Tab. 5 shows the results of this experiment: It can be
seen that the average final accuracy is almost fully inde-
pendent from the number of edge devices. Because of the
design of DICLA, this could be expected, because repre-
sentations and class assignments can easily and losslessly
be exchanged between different edge devices. Small differ-
ences could be explained by the still rather large spread
of the results and a slight advantage for more centralized
learning, i. e., on a smaller number of edge devices, due to
cross-effects.

5 Conclusion and outlook

In order to allow the utilization of the benefits of deep
learning without having to aggregate large amounts of di-
verse data on a single resource or train the algorithms from
scratch every timenewdata is collected,methods allowing
a transfer of knowledge between different locations and
stages of an algorithm’s training should be used.

In combining the differentiation capabilities of trans-
fer learning with the generalization capabilities of contin-
ual learning, so-called deep industrial transfer learning is
well suited for the challenges imposed by real-life learn-
ing scenarios, e. g., in industrial automation. Still, some
specific continual learning methods should be applicable
to those problems. Therefore, the dual-memory method is
used for the complex image recognition task examined in
this article.

The algorithmpresented is capable of sequential or in-
cremental learning by transferring knowledge from previ-
ous trainings to the current one without storing any raw
data. Its performance is better than state-of-the-art ma-
chine learning methods while using less computational
resources and less time. This allows for inline utilization,
e. g., in live production lines.

B. Maschler et al., Deep industrial transfer learning at runtime for image recognition | 219

Table 5: Comparison of the impact of the number of edge devices carrying out the training distributedly regarding the final accuracy (single
standard deviation indicated) averaged over ten runs.

No. of Edge Devices 1 2 5 10

Avg. Final Accuracy [%] 76.4 (±1.2) 76.3 (±1.5) 73.4 (±2.5) 74.9 (±2.1)

Furthermore, the algorithm is capable of distributed
learning by transferring knowledge among different train-
ing devices without exchanging any raw data. It could be
shown, that such adistribution of trainingdoes not signifi-
cantly deteriorate the learning performance. This allows
for cooperative learning approaches across different sites
even though the data used might be highly confidential.

Future research shall focus on data types apart from
images, more specifically on developing a version adapted
to time series datasets as used in e. g., predictive mainte-
nance scenarios. This shall further highlight the potentials
of the algorithmpresented for industrial automation appli-
cations.

References
1. Carpenter, G. A., Grossberg, S.: Adaptive Resonance Theory.

Springer, New York, 2010.
2. Chollet, F.: Xception: Deep Learning With Depthwise Separable

Convolutions. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Honolulu, pp. 1251–1258, 2017.

3. French, R.: Catastrophic forgetting in connectionist networks.
Trends in Cognitive Sciences 4/3, pp. 128–135, 1999.

4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press, Cambridge (USA), 2016.

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Las Vegas, pp. 770–778,
2016.

6. Hsu, Y.-C., Liu, Y.-C., Ramasamy, A., Kira, Z.: Re-evaluating
Continual Learning Scenarios: A Categorization and Case for
Strong Baselines. In NeurIPS Continual Learning Workshop
2018. arXiv:1810.12488.

7. Huang,G., Liu, Z, van der Maaten, L., Weinberger, K. Q.: Densely
Connected Convolutional Networks. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Honolulu,
pp. 4700–4708, 2017.

8. Kagermann, H.: Change Through Digitization—Value Creation in
the Age of Industry 4.0. In Albach, H., Meffert, H. et al., (Eds.):
Management of Permanent Change. Springer Fachmedien.
Wiesbaden, pp. 23–45, 2015.

9. Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.:
Measuring Catastrophic Forgetting in Neural Networks. In
2018 AAAI Conference on Artificial Intelligence. New Orleans,
pp. 3390–3398, 2018.

10. Lindemann, B., Fesenmayr, F., Jazdi, N., Weyrich, M.:
Anomaly Detection in Discrete Manufacturing Using

Self-Learning Approaches. In 2018 CIRP Conference on
Intelligent Computation in Manufacturing Engineering. Naples,
pp. 313–318, 2018.

11. Li, H., Hoiem, D.: Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelligence
40, pp. 2935–2947, 2018.

12. Merten, A.M.: Adaptive Resonance Theory [ART] – Ein neuer
Ansatz lernender Computer. Lecture Notes, University of Ulm,
2003. http://www.informatik.uni-ulm.de/ni/Lehre/WS03/
ProSemNN/ART.pdf, Accessed on: 24.03.2020.

13. Maltoni, D., Lomonaco V.: Continuous learning in
single-incremental-task scenarios. Neural Networks 116,
pp. 56–73, 2019.

14. Maschler, B., Jazdi, N., Weyrich, M.: Maschinelles Lernen
für intelligente Automatisierungssysteme mit dezentraler
Datenhaltung am Anwendungsfall Predictive Maintenance.
In 20. Leitkonferenz der Mess- und Automatisierungstechnik
Automation. Baden-Baden, pp. 739–751, 2019.

15. Maschler, B., Kamm, S., Jazdi, N., Weyrich, M.: Distributed
Cooperative Deep Transfer Learning for Industrial Image
Recognition. In 2020 CIRP Conference on Manufacturing
Systems (CMS). Chicago, pp. 437–442, 2020.

16. Maschler, B., Weyrich, M.: Deep Transfer Learning at Runtime
for Image Recognition in Industrial Automation Systems.
In 2020 Technical Conference EKA – Design of Complex
Automation Systems. Magdeburg, 2020.

17. Maschler, B., Weyrich, M.: Deep transfer learning for industrial
automation: a review and discussion of new techniques for
data-driven machine learning. Industrial Electronics Magazine
(accepted), 2021.

18. Maschler, B., White, D., Weyrich, M.: Anwendungsfälle
und Methoden der künstlichen Intelligenz in der
anwendungsorientierten Forschung im Kontext von Industrie
4.0. In ten Hompel, M., Vogel-Heuser, B., et al. (Eds.):
Handbuch Industrie 4.0. Springer Reference Technik. Springer
Vieweg, Berlin, Heidelberg, pp. 1–15, 2015.

19. Müller, T., Jazdi, N., Schmidt, J.-P., Weyrich, M.: Cyber-Physical
Production Systems: Enhancement with a Self-organized
Reconfiguration Management. In 2020 CIRP Conference on
Intelligent Computation in Manufacturing Engineering (ICME).
Naples, 2020.

20. van de Ven, G.M., Tolias, A. S.: Three Scenarios for Continual
Learning. In NeurIPS Continual Learning Workshop, 2018.
arXiv:1904.07734.

21. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., Wermter, S.:
Continual lifelong learning with neural networks: A review.
Neural Networks 113, pp. 54–71, 2019.

22. Pan, S. J., Yang, Q.: A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22,
pp. 1345–1359, 2010.

23. Rebuffi, S.-A., Kolesnikov, A., Sperl, G., Lampert, C. H.: iCaRL:

http://arxiv.org/abs/arXiv:1810.12488
http://www.informatik.uni-ulm.de/ni/Lehre/WS03/ProSemNN/ART.pdf
http://www.informatik.uni-ulm.de/ni/Lehre/WS03/ProSemNN/ART.pdf
http://arxiv.org/abs/arXiv:1904.07734

220 | B.Maschler et al., Deep industrial transfer learning at runtime for image recognition

Incremental Classifier and Representation Learning. In 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Honolulu, pp. 5533–5542, 2017.

24. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.:
MobileNetV2: Inverted Residuals and Linear Bottlenecks.
In 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Salt Lake City, pp. 4510–4520, 2018.

25. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.:
Rethinking the Inception Architecture for Computer Vision.
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, pp. 2818–2826, 2016.

26. Tercan, H, Guajardo, A., Meisen, T.: Industrial Transfer
Learning: Boosting Machine Learning in Production. In 2019
IEEE Conference on Industrial Informatics (INDIN). Helsinki,
pp. 274–279, 2019.

27. Wang, J., Ma, Y., Zhang, L., Gao, R. X., Wu, D.: Deep learning for
smart manufacturing. Journal of Manufacturing Systems 48,
pp. 144–156, 2018.

28. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y. et al.: Large
Scale Incremental Learning. In 2019 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Long Beach,
pp. 374–382, 2019.

29. Xu, G., Liu, M., Wang, J., Ma, Y., Wang, J., Li, F., Shen, W.:
Data-Driven Fault Diagnostics and Prognostics for Predictive
Maintenance: A Brief Overview. In 2019 IEEE International
Conference on Automation Science and Engineering (CASE).
Vancouver, pp. 103–108, 2019.

30. Yao, X., Zhou, J., Zhang, J, Boer, C. R.: From Intelligent
Manufacturing to Smart Manufacturing for Industry 4.0.
Driven by Next Generation AI and Further On. In 2018 IEEE
International Conference on Enterprise Systems. Beijing,
pp. 311-318, 2017.

31. Zellinger, W., Grubinger, T., Zwick, M., Lughofer, E., Schöner,
H., Natschläger, T., Saminger-Platz, S.: Multi-source transfer
learning of time series in cyclical manufacturing. Journal of
Intelligent Manufacturing 31, pp. 777–787, 2020.

Bionotes
Benjamin Maschler
Institute of Industrial Automation and
Software Engineering, University of
Stuttgart, Pfaffenwaldring 47,
70550 Stuttgart, Germany
benjamin.maschler@ias.uni-stuttgart.de

Benjamin Maschler, M. Sc., studied Renewable Energies and Sus-
tainable Electrical Energy Supply at the Universities of Stuttgart
and Cape Town. Since 2017, he has been a research assistant at
the Institute of Industrial Automation and Software Engineering at
the University of Stuttgart. His research focusses on solving prac-
tical decentralized deep learning problems without an exchange of
datasets, so-called deep industrial transfer learning, using methods
from transfer and continual learning.

Simon Kamm
Institute of Industrial Automation and
Software Engineering, University of
Stuttgart, Pfaffenwaldring 47,
70550 Stuttgart, Germany
simon.kamm@ias.uni-stuttgart.de

Simon Kamm, M. Sc., studied Electrical Engineering and Information
Technology at the University of Stuttgart. Since 2020, he has been
a research assistant at the Institute of Industrial Automation and
Software Engineering at the University of Stuttgart. His research fo-
cusses on machine learning based on heterogeneous data sources
and types.

Michael Weyrich
Institute of Industrial Automation and
Software Engineering, University of
Stuttgart, Pfaffenwaldring 47,
70550 Stuttgart, Germany
michael.weyrich@ias.uni-stuttgart.de

Prof. Dr.-Ing. Michael Weyrich teaches at the University of Stuttgart
and is head of the Institute of Industrial Automation and Software
Engineering. His research focusses on intelligent automation sys-
tems, complexity control of cyber-physical systems and validation
and verification of automation systems.

	Deep industrial transfer learning at runtime for image recognition
	1 Introduction
	2 Related work
	2.1 Deep industrial transfer learning
	2.2 Dual memory method for image recognition

	3 Methodology
	4 Experiments
	4.1 Incremental learning: comparison of different feature extractors on ImageNet-10
	4.2 Incremental learning: evaluation of DICLA using MobileNet-V2 on ImageNet
	4.3 Distributed learning: evaluation of DICLA using MobileNet-V2 on ImageNet-10

	5 Conclusion and outlook
	References

