
  

 

Abstract—Electronic devices are one of the key factors for 

recent advances in smart production systems or automotive. 

Reliability and robustness are key issues. To further increase 

this reliability, occurring failures in an electronic device has to 

be investigated in post-production failure analysis processes. 

One recent technique to detect and locate failures in electronic 

components is Time-Domain Reflectometry. This method offers 

the chance to detect several kinds of failures (e.g. a hard or soft 

failure) and localize the failure nondestructively. In theory, this 

can be determined following defined physical formulas. 

Nevertheless, the received signals are not perfect and mixed with 

noise from the measurement device or disturbed by nonoptimal 

material properties. In addition, complex architectures of 

devices are hard to model based on analytical models. Thus, 

these models solely are not sufficient for the failure analysis 

process. For this reason, a hybrid modeling approach is 

proposed, using a Machine Learning model in combination with 

physical models to detect and characterize the failure and its 

exact position. The Machine Learning model will be trained with 

simulated Time-Domain Reflectometry data. 

I. INTRODUCTION 

Electronic Components consisting of e.g. 
microelectromechanical systems (MEMS) are a key factor for 
the deployment of new functionalities. Recent examples are 
smart production or driver assistant functions in the 
automotive domain. These advanced functionalities are solely 
possible with the help of newly developed electronics. To 
ensure functionality over the expected lifecycle of a product, 
the reliability of an electronic device is an essential factor [1]. 
To improve the quality and reliability of an electronic device, 
occurring failures in an electronic component needs to be 
analyzed. The gained insights can be fed back to the 
development process. This makes the failure analysis a base to 
optimize the development and production of an electronic 
device. Based on this, the failure analysis tries to improve the 
quality of industrial production and with it the overall product 
quality [2]. 

The failure analysis process of electronic devices is 
becoming more and more complex due to new product 
demands like miniaturization or integration of more 
functionality into reduced volumes. Therefore conventional 
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nondestructively defect inspection techniques as Time-
Domain Reflectometry (TDR), Scanning Acoustic 
Microscopy (SAM) or X-Ray were adapted to the needs of 
novel concepts in microelectronics technologies [2]. 
Knowledge is available for these techniques as well as for the 
microelectronic technologies in the form of experts or physical 
models. However, manual failure analysis is costly and time-
consuming due to the few amounts of experts, the increasing 
complexity of the systems and the amount of generated data. 
For these reasons, new automated and intelligent approaches 
for failure analysis are required. 

Machine Learning algorithms are widely applied to handle 
complex data. These algorithms consume training data to 
model the observed input-output behavior in a data-driven 
approach and have shown impressive results in various 
domains (e.g. Natural Language Processing [3] or Image 
Recognition [4]). Due to data-driven learning, these models 
are considered as “black-box” whose outputs are not 
comprehensible. The performance of the models is depending 
on the choice, availability and distribution of training data. In 
contrast, existing physical models (white-box) were developed 
over a long period and represent extensive existing knowledge. 
These models are interpretable and need no training data to 
model the system. However, these models are not capable of 
modeling every arbitrary complex and nonlinear system with 
sufficient accuracy. Combining both, the data-driven and 
physical models, into a hybrid model shall use the advantages 
of both approaches and lead in the end to an improved model 
with higher accuracy, shorter training time, fewer required 
data as well as more interpretable results [5]. These coupled 
approaches have different names in literature and vary in their 
realization (e.g. hybrid models [6], Grey-Box models [7], 
physics-informed deep learning or neural networks [5], [8]). 
Overall, all approaches try to use existing knowledge as well 
as available data to improve the final model performance. In 
the following, we will refer to the term “hybrid model” for this 
approach. 

In this paper, a new hybrid modeling approach for the 
parameter estimation of an analytical reflection method in the 
failure analysis process of semiconductors will be introduced. 
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The novel approach outperforms existing techniques in the 
failure analysis on TDR data by bringing additional benefits 
from using existing knowledge and data-driven models. The 
used nondestructive testing method is TDR, where data is 
generated with the help of a simulation. The simulation data 
serves for training a machine learning model, in which the 
output is used to automatically characterize a failure based on 
the observed reflected wave with physical equations. 
Simulation data is used to generate a suitable amount of data 
for a first evaluation. Reproducing this with real measurements 
requires more time and cost for the preparation of the Device 
under test (DuT). A simplified example of a microstrip line 
with 150 mm length is used as DuT. The microstrip line from 
the simulation is shown in Fig. 1. It can have several 
conditions, e.g. “good”, “open” or “short”. “Open” and “short” 
represent hard failures at the microstrip line. Additional soft 
failures can occur, with small impedance changes to the 
characteristic load impedance. These soft failures give a first 
insight into a possible future hard failure. Thus, the final model 
shall be able to detect a soft and hard failure. 

The remaining paper is structured as follows: Section 2 
provides an overview and short discussion about the basics and 
related work of TDR, Machine Learning and the usage of 
Machine Learning for TDR analysis. In Section 3, the problem 
is described and the developed approach is introduced. The 
experimental setup is given in section 4 with the corresponding 
experimental data and model evaluation. In the final section 5, 
a conclusion is drawn and an outlook for future research is 
given. 

II. BASICS AND RELATED WORK 

A. Time-Domain Reflectometry 

TDR can be used to determine non-destructively an 
interconnection failure on e.g. a MEMS. With the obtained 
data localizing and analyzing the failure is possible [9]. The 
basic technique of TDR is reflectometry, which works on the 
same principle as radar or lidar. An injected signal is reflected 
by impedance discontinuities at the DuT. Based on the 
received reflectometry signatures, conclusions about the DuT 
can be drawn. In case of a failure, the location of it can be 
determined, too [10, 11]. In comparison to traditional test 
methods based on electrical resistance monitoring, TDR can 
distinguish between different failure modes and can 
additionally detect degradation before a hard failure (e.g. an 
open at a transmission line) occurs [12]. 

The TDR measurement (e.g. Fig. 3) shows the reflected 
signal 𝑉𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 . With that measured signal and the injected 

signal 𝑉𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 , the reflection coefficient Γ can be obtained, 
which gives a direct look at the DUT’s characteristics. The 
reflection coefficient is defined by (1) with 𝑍𝐿 denoting the 
impedance of the DuT and 𝑍0 the characteristic impedance of 
the circuit. 

Γ =
𝑉𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑

𝑉𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

=
𝑍𝐿 − 𝑍0

𝑍𝐿 + 𝑍0

 (1) 

The reflection coefficient for an open circuit (𝑍𝐿 = ∞) is 1 
and the reflection coefficient of a short circuit (𝑍𝐿 = 0) is -1. 
By obtaining the reflection coefficient Γ and knowing the 
characteristic impedance of the circuit 𝑍0, the impedance 𝑍𝐿 
of the DuT can be determined by (2). 

Z𝐿 = 𝑍0

1 + Γ

1 − Γ
 (2) 

Assuming 𝑍0 is real and noncomplex, a resistive mismatch 
can be detected and the degree of this mismatch can be 
calculated easily with the help of (2). With the propagation 
velocity 𝑣𝑝, the distance 𝐷 of the failure and thus the location 

of it can be calculated as given in (3). The transit time from the 
monitoring point to the reflection point and back again is given 
as 𝑇. The velocity of propagation has to be determined 
previously from measurement and is depending on the 
transmission line properties. 

𝐷 = 𝑣𝑝

𝑇

2
 (3) 

The reflections are behaving differently depending on the 
specific setup of the load impedance. A series R-L e.g. behaves 
differently from a parallel R-C combination (R as resistive, L 
as inductive and C as capacitive part). Based on these 
deviations, a soft failure of the DuT can be detected and 
characterized for complex load impedances, too. However, the 
detection capability of a soft failure is depending on the noise 
of the transmission line. When the noise covers the reflection 
signature of the soft failure, it cannot be detected. The TDR 
method is in general not only capable of detecting a hard 
failure like open or short but also can detect, characterize and 
localize a soft failure. 

B. Machine Learning 

Machine learning is a data-driven approach, where a 
processing rule is learned based on observed training data. 
Conventional machine learning algorithms use extracted 
features and perform the desired task (e.g. regression or 
classification) based on them. The features are extracted based 
on defined rules, e.g. from a domain expert or based on 
mathematical formulas. However, widely used machine 
learning approaches nowadays are deep learning algorithms. 
A deep learning model (e.g. a deep neural network (DNN)) 
learns and performs feature extraction in combination with the 
desired task (e.g. classification or regression). The trained 
network can then perform a mapping 𝑓 of a given input vector 
𝑥 to the output 𝑦 based on the learned network parameters 𝜃𝑓 

as given in (4). 

𝑦 = 𝑓(𝑥; 𝜃𝑓) (4) 

By choosing suitable hyperparameters for the network 
(number of layers, neurons, activation functions), even a 
simple multi-layer perceptron can approximate an arbitrary 
continuous mapping. This property of neural networks enables 
them to be a universal function approximation [13]. By that, 
neural networks are capable of modeling, detecting and 
recognizing unknown patterns and complex relations in the 
data. This empowers deep learning methods for the failure 

 
Figure 1.  DuT – Microstrip line of 150 mm length 
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analysis of electronic devices, where highly complex relations 
between a measurement signal and a failure exist. 

Nevertheless, there are still open challenges for deep 
learning-based approaches [14]. Learning a suitable mapping 
function 𝑓 requires a large amount of training data to on the 
one hand ensure sufficient accuracy and on the other hand 
avoid overfitting of the model to few training samples. Here 
comes a challenge, since in failure analysis, training data for 
defects is often rare, since damaged products and data of it are 
limited. Besides, deep learning models are black-box models, 
where no knowledge about the data processing in the black-
box is available. The data is processed based on the learned 
function 𝑓(𝑥; 𝜃𝑓), which makes the result of the network 

neither understandable nor interpretable [15]. In case of the 
wrong behavior of the model, this property makes it hard to 
find the error inside it. Furthermore, there is not one way to 
build a DNN, but it is partially a try-and-error game since the 
underlying theory of some relations within a DNN is not clear 
yet [14]. Therefore, a lot of time has to be spent optimizing and 
choosing the correct parameters of the network. Examples are 
the number of layers or the number of nodes per layer. 
Moreover, there exist further hyperparameters such as the 
learning rate, dropout rate, etc. which have to be optimized 
with specific knowledge and understanding of the training 
process. Overall, training a deep learning model is a complex, 
time-consuming and computationally expensive task. 

C. Related Work 

Different works have been published to show the effective 
usage of TDR for failure analysis. In [9] the authors 
demonstrated the application of TDR for advanced integrated 
circuits (IC) packages, where isolation of soft failures is 
required. They showed that TDR can be used in the failure 
analysis flow to locate and analyze the failure and the 
application was proved in six different use cases. Smail et al. 
[10] proposed a multi-layer perceptron-based method for 
reconstructing a wiring network. Another work ([12]) showed, 
that the TDR reflection coefficient can be used to detect soft 
failures and thus identify nondestructively interconnect failure 
mechanisms. Huang et al. [16] proposed an idea to apply deep 
learning algorithms to predict the TDR impedance for high-
speed differential vias. This can be used in the design phase to 
predict the impedance of a high-speed differential via based on 
given design parameters. In [17] an intelligent approach for the 
diagnosis of wiring networks based on TDR is proposed. They 
use an artificial neural network for the classification of failure 
branches in a wiring network. A simple and fast localization 
and characterization algorithm is used to enable real-time 
diagnosis. However, just hard failures (open and short) are 
treated there. Overall, the different approaches tackle different 
parts of signal analysis based on TDR data.  

Although multiple approaches exist for using machine 
learning to perform intelligent signal analysis, there are still 
open fields to discover. For example, none of the introduced 

approaches showed the capability of detecting, locating and 
characterizing soft failures with the help of machine learning-
based signal analysis of the TDR data. Therefore, we will 
propose a new approach for the detection, localization and 
characterization of hard and soft failures for a DuT with TDR 
data. The soft failures not only contain resistive and thus real 
components but can also contain capacitive and inductive (i.e. 
complex) components. The final model should be able to 
characterize this kind of failure. Therefore not only data-driven 
methods are used, but also available analytical knowledge 
about the reflection behavior shall be used to form a hybrid 
modeling approach for the parameter estimation of analytical 
reflection models. This modeling approach shall enable 
advanced failure analysis of semiconductors. 

III. PROBLEM DESCRIPTION AND APPROACH 

In this chapter first, the investigated use case is described 
and the corresponding problem statement is derived for this 
use case. Based upon this, the proposed modeling approach is 
then introduced. 

A. Problem Description 

A simple microstrip line is used as DuT (Fig. 1) and the 
corresponding data is generated via simulation. The microstrip 
line can have different soft or hard failures or be in a “good” 
state. Hard failures are open and short. A pure resistance (R) 
or any combination of R with C or L (parallel or series R-L 
and R-C) represents the soft failures. This results in five 
possible soft failures, two hard failures and the normal state. 
For simplicity, the point of failure is not varied and is at 150 
mm at the end of the microstrip line. The variation of failure 
points can easily be done in simulation and will be part of 
future work. The characteristic impedance 𝑍0 is 50 Ohms. The 
incident signal is a step function with 𝑉𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 being 0.5 Volt. 
The rise time 𝑡𝑟 of the step is varied in the range of 0 and 50 
ps with 1 ps steps. For the soft failures the resistor was set to 
R=75 Ω, the capacitor to C=1pF and the inductor to L=1nH. 
The resulting scenarios are given in Table 1. The desired 
model shall be able to detect and locate a failure and classify 
it into the failure categories. The corresponding values for R, 
C and L and the location of failure shall then be estimated. 
Although the location of failures is the same in this paper, for 
further scenarios this is relevant. 

B. Modelling Approach 

To solve the previously introduced problem while using 
the existing knowledge (e.g. (1), (2) or (3)) in combination 
with a machine learning-based classification, we propose a 
hybrid modeling approach. The proposed model will use 
existing knowledge, which we denote as function 𝑔, which 

maps some input 𝑥 to an output 𝑦 based on selected parameters 

𝜃𝑔 as described in (5). 

𝑦 = 𝑔(𝑥; 𝜃𝑔) (5) 

TABLE I.  OVERVIEW OF CONSIDERED SCENARIOS 

Failure type Normal Hard Failure Soft Failure 

Setup Good Open Short R RL RC RpL RpC 

Description No failure Open 

end 

Short 

end 

Only R Series R and L Series R and C Parallel R and 

L 

Parallel R and 

C 
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 To combine knowledge-driven models with data-driven 
models, different approaches exist. By combining these 
models, new data-efficient physics-informed models shall be 
developed [8]. The combination of the knowledge-driven 
model 𝑔 and the data-driven model 𝑓 can in general be done 
in two ways: superposition or composition [6, 7]. 
Superposition combines the models in an additive way, where 
for example 𝑔 is used to estimate the mean prediction and 𝑓 
models the residual nonlinear error or noise, as stated in (6). 

𝑦 = 𝑔(𝑥; 𝜃𝑔) + 𝑓(𝑥; 𝜃𝑓) (6) 

Besides, the combination or coupling of the two models 
can be realized via composition. One model's output serves as 
input for the other model. This is described by (7). 

𝑦 = 𝑔(𝑓(𝑥; 𝜃𝑓); 𝜃𝑔) (7) 

In the described example, the output of the data-driven 
model 𝑓 serves as one of the inputs for the knowledge-driven 
model 𝑔. The data-driven model can e.g. model non-linear 
dependencies to estimate a parameter based on observation. 
This parameter can be used in 𝑔 by an analytical formula to 
calculate the desired final output 𝑦. This can also be realized 

in an inverted fashion, where the output of 𝑔 is used as input 
for 𝑓. 

In this work, the composition is used as a coupling 
approach. Based on that, the overall approach for TDR data is 
built, which is shown in Fig. 2. The proposed approach 
consists of three parts and will be explained in the following. 
It starts with a new TDR measurement 𝑥, which shall be 

analyzed. 

The first part performs anomaly detection with failure 
localization. Within that part, anomalous data shall be 
detected and the failure shall be localized. Therefore, first, 
baselining is performed. This step allows removing 
unintended effects from the measurement setup. In this paper, 
a simple approach is used. A previous performed and stored 
“good” measurement 𝑥0 is subtracted from the measurement 

to gain a baseline measurement 𝑥𝐵 by (8). In more complicated 

setups this step can also be realized with the help of machine 
learning algorithms to detect and remove unintended 
signatures from the measurement embedding. 

𝑥𝐵 = 𝑥 − 𝑥0 (8) 

The baseline data is then checked for anomalous patterns 
in the thresholding step. When a threshold 𝑡 is reached, the 
measurement is seen as “anomalous”, while it is declared 
“good” when it is below. Comparison can be done in different 
ways. The approach, which is used in this paper, is to define a 
time window of length 𝑤 and calculate a mean squared error 
(MSE) of each window as given in (9). The MSE of each 
window is then compared to 𝑡. 

𝑀𝑆𝐸𝑤𝑖𝑛𝑑𝑜𝑤 =
1

𝑤
∑ 𝑥𝐵,𝑖

2

𝑤

𝑖=1

=
1

𝑤
∑(𝑥𝑖 − 𝑥0,𝑖)

2 

𝑤

𝑖=1

 (9) 

Based on the detected “anomalous” windows the Region of 
Interest (RoI) is extracted. In this step, the possible faults are 
extracted and localized. The exact location of the failure is 
determined. Around this identified failure location, the RoI is 

determined resulting in one “failure” vector 𝑥𝑓 per possible 

failure for the parameter estimation. 

After the localization of and detection of an anomaly, the 
anomalous measurement 𝑥 is fed into a data-driven classifier 

for failure classification, which maps the input to a categorical 
output, as given in (4). The possible categories in our scenario 
are obtained from Table 1 with seven possible failure 
categories 𝐶𝑗 , 𝑗 ∈ [0,6] (two hard failures and five soft 

failures). Multiple models can realize the classifier. In this 
work, a convolutional neural network (CNN) is used for the 
time-series classification, since they have already shown good 
results for this task [18]. 

A classified hard failure is finally classified, while a soft 
failure has to be further analyzed in the knowledge-based 
parameter estimation to determine the severity and kind of 
failure. In this step, the corresponding parameters R, L and C 
are estimated using the known analytical equations 

𝑔(𝑥𝑓 , 𝐶; 𝜃) (observed from [19]). To select the correct 

analytical equation, the output 𝐶 of the black-box classifier of 
the previous part is needed to estimate the parameters 
correctly. 

With these previously described steps, the failure can be 
localized, classified and characterized. For soft failures, the 
severity of the soft failure can be estimated via the hybrid 
model. The procedure is given as pseudocode in Algorithm 1. 

IV. EXPERIMENTAL SETUP 

To evaluate the first prototypical implementation of the 
novel approach, different setups as given in Table 1 have been 
considered for a microstrip line: Two hard failures as well as 
five different soft failures located at the end of the microstrip 
line. A simple scenario is chosen to understand the weaknesses 
of the approach and have a good data understanding. 

 
Figure 2.  Proposed approach for the hybrid modelling 
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Measurement

Anomaly 

Detection with 

Failure 

Localization
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Algorithm 1 Hybrid Modelling for Failure Localization, 

Classification and Characterization 

Input Measurement data 𝑥 

Output Failure Category 𝐶, Failure Location 𝑑, Failure 

Parameters 𝜃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑥𝐵 ← 𝑥 − 𝑥0 

if 𝑀𝑆𝐸𝑤𝑖𝑛𝑑𝑜𝑤 < 𝑡 

 𝑦 ←”good” 

else 

 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑖𝑑𝑥 ← 𝑖𝑑𝑥 𝑤ℎ𝑒𝑟𝑒 𝑀𝑆𝐸𝑤𝑖𝑛𝑑𝑜𝑤 > 𝑡 

 𝑥𝑓 ← 𝑥(𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑖𝑑𝑥) 

 𝑑 ← 𝑣𝑝
𝑇(𝑥𝑓)

2
 

 𝐶 ←  𝑓(𝑥; 𝜃𝐶𝑁𝑁) 

𝜃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ← 𝑔(𝑥𝑓, 𝐶 ; 𝜃𝑔)  

END 
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A. Experimental Data 

The experimental data in this paper comes from a simple 
microstrip line of length 150 mm. The propagation velocity is 
assumed to be the speed of light. The data is generated via 
simulation in ADS (Advanced Design System). The time step 
within the simulation is 100 fs with a simulation time of 5 ns. 
Different failures (Table 1) are simulated, which are all located 
at the end of the microstrip line. Different rise times 𝑡𝑟 are used 
within the range 0 to 50 ps with 1 ps steps, resulting in 51 
simulation curves per setup. Fig. 3 shows exemplarily the 
simulated data for a good, open and short setup with a rise time 
of 10 ps. 

B. Model Evaluation 

The approach is evaluated based on the previously 
described data. Within the approach (Fig. 2), different 
parameters have to be set. These parameters contain the 
threshold 𝑡 and the window length 𝑤. In addition to those, the 
CNN has separate hyperparameters, e.g. the number of layers, 
number of neurons per layer, learning rate. For brevity, we just 
name the corresponding values. The values are chosen 
experimentally with 𝑡=0.005 and 𝑤=1000. 

 The CNN for failure classification consists of five 
convolutional blocks followed by two fully connected layers 
(with 128 and 7 neurons respectively). The input layer has 
50.000 neurons to capture the input signal with its time steps. 
Each convolutional block consists of a 1d-convolutional layer, 
a 1d-MaxPooling layer and a dropout layer. The pooling size 
is 4 and the dropout rate is 0.25. The 1d-convolutional layers 
have filter sizes of 64, 32, 16, 8, 4 and kernel sizes of 5, 5, 3, 3 
and 3. For all hidden layers (five convolutional and one fully 
connected) a rectifier linear unit is used as the activation 
function. The output layer with seven neurons uses the softmax 
activation function. We train the model with categorical cross-
entropy loss and the Adam optimizer with a learning rate of 
0.001, 50 epochs and a batch size of 16. We split the available 
data by a ratio of 70/10/20 % into training, validation and test 
data resulting in 252/42/84 measurements. 

For the parameter estimation, a least-squares estimator is 
used. The least-squares estimator uses the trust-region 
reflective algorithm [20] to minimize the cost function 𝐽(𝜃) 

given in (10). 

min
𝜃𝑔

𝐽(𝜃𝑔) = min
𝜃𝑔

∑[𝑦𝑛 − 𝑔(𝑥𝑓,𝑛; 𝜃𝑔)]
2

𝑁

𝑛=1

 (10) 

In the following, the obtained results from the 
classification module and the parameter estimation method are 
shown. For the data-driven classification module, an 
exemplary training and validation loss, as well as the 
corresponding accuracy over number of epochs, is shown in 
Fig. 4. K-fold cross-validation (with k=10) is performed with 
a random selection of training, validation and test data to 
evaluate the model's mean performance and its variance. For 
the CNN as classification module, a mean training accuracy of 
79.63% and mean validation accuracy of 86.67% is achieved. 
The accuracy on new unseen test data is given in Table 2 with 
86.15%. Table 2 shows additionally the obtained accuracies 
and standard deviations (std) for the further tasks, namely 
failure localization and characterization. 

Localization is performed by identifying anomalous 
windows in the data. A failure in TDR data is typically not just 
resulting in one anomalous window but in multiple 
consecutive anomalous windows. By identifying the first 
window and the start of the anomalous behavior in it, the 
location can be calculated with the help of (3). The final result 
is given in Table 2. We obtain a mean deviation in the failure 
localization of 1.31%, which gives the localization accuracy of 
1.96 mm in the investigated scenarios. The anomalous 
behavior can be detected correctly in 100% of the cases. 

The parameter estimation is performed as described 
previously. Based on the classified failure, the corresponding 
formula is used to estimate the parameters with (10), where 𝑦 

is real extracted failure behavior 𝑥𝑓 and 𝑔(𝑡𝑓; 𝜃𝑔) is the 

modelled physical equation with the time 𝑡𝑓 and the related 

parameters 𝜃𝑔. To evaluate the performance of this approach, 

we assume perfectly classified failures (100% accuracy) and 
perform the parameter estimation for the given scenarios. The 
overall metric is given as a deviation of the estimated 
parameter relative to the correct parameter values over all 
scenarios and parameters in percent. The result is given in 
Table 2 with 13.61% mean deviation. However, this metric 
varies heavily for the different parameters, which have to be 
estimated. The mean deviation for the resistance parameter is 
4.51% (in absolute values 75±3.38 Ω), for the capacitance 
parameter 14.38% (1±0.14 pF) and the inductive parameter 

 
Figure 3.  Exemplary data for a good (green) measurement , an open 

(black) and a short (blue) failure with a rise time of 10 ps 

 
Figure 4.  Training progress classification model (CNN) 
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31.05% (1±0.31nH). The inductive parameter seems to be the 
most challenging one to estimate. 

Overall, the introduced approach can use the given data 
and available knowledge to identify, classify and characterize 
the failure within the DuT. Previously introduced existing 
approaches are not able to perform these steps for soft failures, 
which shows the additional benefit of the novel approach. 
Thus, comparison can only be performed for hard failures. The 
most recent approach in [17] achieves a mean deviation of  
0.165% for the failure localization is given with their 
approach. The novel approach in this paper achieves a mean 
deviation of 0.77% for failure localization on hard failures. 
The novel approach as well as the approach in [17] achieve a 
classification accuracy of 100% for hard failures. In addition 
to this comparison, the novel approach can handle soft failures, 
which is not fulfilled from existing approaches. The approach 
delivers promising results across the different tasks also for 
soft failures. Nevertheless, the different steps within the 
approach have to be refined and optimized further. 

V. CONCLUSION AND OUTLOOK 

To handle the increasing complexity of failure analysis for 

electronic devices, a new hybrid modeling approach is 

introduced, which uses data-driven and knowledge-based 

methods to obtain an advanced failure analysis: 

 Existing approaches for TDR are compared. They 
showed the need for an advanced approach for the 
intelligent analysis of the failure for complex devices. 

 A new hybrid approach for the localization, 
classification and characterization of a failure is 
introduced. 

 The presented approach is realized for a first use case, 
where different hard and soft failures on a microstrip 
line are simulated for TDR signals. 

 The hybrid modeling approach can identify a failure. 
In case of a failure, it is located and classified. When 
a soft failure exists, this failure is characterized and the 
corresponding parameters of the soft failures are 
estimated. 

Future work will take a deeper look into the different steps 
of the hybrid modeling approach. Further approaches, as well 
as data processing techniques, shall be investigated and 
evaluated for the different steps. Additionally, the approach 
will be transferred on measurement data to evaluate the 
performance there as well as with other DuTs. Measurements 
are planned with SiC transistors. Further, the approach shall 
also be transferred to other failure analysis techniques (e.g. 
SAM data) to prove the generalization capabilities. 
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TABLE II.  FINAL ACCURACY AND DEVIATION OF THE MODELS 

ON TEST DATA 

RoI Extraction 

(Failure 

localization) 

Failure 

Classification 

Parameter 

Estimation (Failure 

characterization) 

Mean and std of 

deviation in % 

Mean Accuracy and 

std. in % 

Mean and std of 

deviation in % 

0.46±0.96 86.15±9.04 13.61±14.92 
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