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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Shorter product life cycles and increasing individualization of production leads to an increased reconfiguration demand in the domain of industrial 
automation systems, which will be dominated by cyber-physical production systems in the future. In constantly changing systems, however, not 
all configuration alternatives of the almost infinite state space are fully understood. Thus, certain configurations can lead to process instability, a 
reduction in quality or machine failures. Therefore, this paper presents an approach that enhances an intelligent Digital Twin with a self-organized 
reconfiguration management based on adaptive process models in order to find optimized configurations more comprehensively. 
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1. Introduction 

The concept of cyber-physical systems (CPSs) gains more 
and more importance in industrial automation, as is shown in a 
countless amount of literature, such as [1–4]. According to [5] 
the main aspects of such CPSs are, besides their physical com-
ponents, their connectivity and their abilities for information 
processing. Production systems consisting of several CPSs are 
also called cyber-physical production systems (CPPSs) [1]. 

In addition to the emerging trend of CPPSs in industrial au-
tomation, the “increasing volatility in the global and local econ-
omies, shortening innovation and product life cycles, as well as 
a tremendously increasing number of variants, call for produc-
tion systems, which comply with these changing demands“ [6]. 
These changing requirements lead to objectives for production 
systems that become increasingly unpredictable in the system 
design phase. Therefore, the adaption of systems during opera-
tion, i.e. reconfiguration, becomes the rule rather than the ex-
ception [7, 8]. 

To address this challenge, an automated reconfiguration 
management is needed, as derived in [9, 10]. CPPSs offer prom-
ising potentials for such an automated reconfiguration manage-
ment, e.g. through the models of the individual CPPS compo-
nents which are needed, to identify an existing reconfiguration 
demand as well as to determine and evaluate alternative config-
urations. However, existing approaches that aim to realize re-
configuration management only use models created during en-
gineering. A Digital Twin, on the other hand, always has syn-
chronous models of the real system and collects a large amount 
of process data during the entire life cycle [11]. Therefore, it is 
obvious to use the Digital Twin also for a reconfiguration man-
agement to get much more accurate models, which increase the 
quality of the reconfiguration. 

Models that are even more accurate can be obtained by com-
bining the synchronized models of the Digital Twin with pro-
cess data being incorporated into the Digital Twin. In this case, 
it is possible to continuously improve the models by the ac-
quired process data using learning techniques. 
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Therefore, this paper combines a reconfiguration manage-
ment with an intelligent Digital Twin, whose models are con-
tinuously improved by applying learning techniques on ac-
quired process data in order to further increase the quality of the 
reconfiguration management and to obtain more reliable and 
optimal results. Thus, this functionality is added to the capabil-
ities of the intelligent Digital Twin. 

The rest of this paper is structured as follows: Chapter 2 
gives an overview of work related to reconfiguration manage-
ment and the intelligent Digital Twin. Chapter 3 explains how 
adaptive process modeling approaches can be used to continu-
ously improve model accuracy, contains a detailed description 
of the reconfiguration management methodology, and incorpo-
rates both concepts in an intelligent Digital Twin. Chapter 4 
provides a conclusion and an outlook on future work. 

2. Related work 

2.1. Reconfiguration Management 

The topic of reconfiguration covers more than merely the 
conduction of reconfiguration measures. Thus, the term recon-
figuration management is specified in [9] and [10] to span the 
identification of reconfiguration demand, the generation of al-
ternative configurations, the evaluation of configurations, the 
selection of a new configuration and, as an optional extension 
the execution of reconfiguration measures. 

The authors of [12] describe an assistance approach for the 
reconfiguration of CPPSs, for human-robot interactive assem-
bly process. Therefore, they convert the AML file representing 
the current CPPS structure into a UML data model in order to 
conduct an attribute mapping between the CPPS capabilities 
and the production requirements based on defined rules. When-
ever a reconfiguration demand is identified, best practice solu-
tions are recommended to assist industrial operators. 

In [13] an approach which combines optimization with ma-
terial flow simulation is utilized to derive optimized reconfig-
uration scenarios for production systems. Their decision sup-
port system contains the four components optimization (using 
CPLEX), layout generation (using the CRAFT-algorithm), 
simulation and a key performance indicators (KPI) dashboard 
to enable the comparison of reconfiguration scenarios based on 
stakeholder-specific KPIs. 

An integrated reconfiguration planning tool consisting of a 
product lifecycle management system and a process simulation 
for flexible assembly systems is presented in [14]. The authors 
employ an extended entity-relationship data model, which con-
tains a product-process-resource, a simulation, and a produc-
tion program partial model. The user is assisted in the genera-
tion of the simulation model and the simulation execution for 
different planning alternatives and is provided with evaluation 
parameters for comparing alternatives. 

The framework described in [15] aims to bring self-organ-
izing and self-adaption capabilities to the intelligent shop floor. 
The approach is based on CPSs and agents, in order to realize 
a fast allocation of resources in accordance with the production 
requirements and to reduce disturbances. A gray relational 
analysis is utilized to find the most appropriate assignment of 

tasks to machines within the given flexibility corridor of a 
CPPS during operation. 

This excerpt is part of an extensive literature review, which 
leads to the conclusion that currently no comprehensive recon-
figuration management approach with respect to the require-
ments formulated in [10] is presented by other authors. Further-
more, the reviewed approaches lack the usage of adaptive pro-
cess models. These models can possess different structures, 
such as internal and external dynamics [16], or require different 
amounts of a priori knowledge, such as white-box [17], grey-
box [18] and black-box approaches [19]. Based on the existing 
prerequisites, the selection and usage of appropriate process 
modeling approaches can improve the knowledge generation 
based on acquired operating data within Digital Twins [14]. 

2.2. Intelligent Digital Twin 

There is a variety of architectures for Digital Twins, [20] has 
investigated several architectures and presents its own architec-
ture of an intelligent Digital Twin, which combines all deter-
mined essential aspects of other architectures. Since this archi-
tecture thus draws a rather complete picture of the intelligent 
Digital Twin, this architecture is taken as the basis for this pa-
per. According to [20], the main components of the intelligent 
Digital Twin are: a unique ID, synchronous models that can be 
adapted to the real system at runtime, active process data aqui-
sition, the ability to co-simulate with other Digital Twins, and 
intelligent algorithms that both enhance the Digital Twin itself 
and can interact with other intelligent Digital Twins via ser-
vices. Other components are also mentioned, such as the tech-
nical and organizational documentation of the real system. 
However, these are not relevant for this contribution, therefore 
they will not be listed here. Further research approaches em-
phasize the enhancement of intelligent Digital Twins with 
transfer learning [21]. 

3. Self-organized Reconfiguration Management based on 
an Intelligent Digital Twin 

For the scope of this research, the production cycle of a dis-
crete production system can be divided into two main phases. 
The first phase represents the reconfiguration, and the second 
phase corresponds to the operation of the production system in 
the new configuration. 

3.1. Concept for Adaptive Process Modeling 

The cyber-physical production modules (CPPMs) of the 
CPPS offer services that execute discrete production processes. 
Between two process executions, the module waits in an idle or 
standby state for the next execution to be conducted. Hence, the 
behavior of each module is modeled as a finite state machine 
with two state types, namely standby and service. This section 
deals with adaptive process models for production processes 
that are executed within the service states and that learn during 
the operating phase. Each of these production processes is de-
signed and evaluated in simulation studies prior to the initial 
operation of the associated modules. For this purpose, the pro-
cess engineer usually generates numerical simulation models, 
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which contain the process physics according to the known ma-
terial and temperature laws. Thus, these models encapsulate the 
entirety of the existing expert knowledge of the process engi-
neer [22]. At the design time of the module, unknown correla-
tions are not considered in the simulation models. Hence, the 
basic assumption of all data-driven approaches is that the ex-
pert-generated process models do not represent all relations ex-
isting in reality, because certain effects and patterns are un-
known at design time. The operating phase shall now be used 
to enrich the existing models with knowledge gained from data 
and to specify them more accurately by means of a learning 
process. Different applications can benefit from adaptive mod-
els. In particular, an improved decision making in the scope of 
reconfigurations is realizable. Processes in discrete manufac-
turing can be characterized by nonlinear autoregressive exoge-
nous models (NARX models) which describe the influence of 
the applied control variables on the process output [17]. 

 The process of generating the model is visualized in Fig. 1 
and described in the following. In the case of anomalies that, 
for instance, affect the actuation system this adaption process 
can be realized by a model extension regarding the actuating 
variables. The process model is realized as NARX model and 
extended by the autoregressive modeling of anomalies (3) be-
ing also projected onto a nonlinear time-variant model (4) and 
linked (2) to the process model (1): 

𝑦𝑦𝑦𝑦�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛 �𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 1), … ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦�,𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘), … ,𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢),𝑘𝑘𝑘𝑘� (1) 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ    𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) = 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) + ∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) (2) 

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎    𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 𝜏𝜏𝜏𝜏) = 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 𝜏𝜏𝜏𝜏) + ∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 𝜏𝜏𝜏𝜏)              𝜏𝜏𝜏𝜏 = 1, … ,𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢 (3) 

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎    ∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) = ℎ𝑛𝑛𝑛𝑛�∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 1),∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 2), … ,∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢),𝑘𝑘𝑘𝑘� (4) 

where the disturbance estimation is represented by ∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) 
in (4) and the past observed disturbances  𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 𝜏𝜏𝜏𝜏) are used 
as arguments and taken into consideration within the horizon 
𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢. The estimation of the refined process output 𝑦𝑦𝑦𝑦�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) is based 
on the past observed external disturbances ∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 −
1), … ,∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢) and the estimation of the current disturb-
ance ∆𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) [23]. This model describes the influence of the 
detected anomaly patterns on the actuating variables and thus 
indirectly on the process outputs of a module. To detect and 
model such unknown effects, and thus to improve the accuracy 
of the process model, neural networks can be used for 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛(∙) and 
ℎ𝑛𝑛𝑛𝑛(∙) [24]. These neural networks are utilized in the operating 
phase of the production system and self-adapt 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛(∙) and ℎ𝑛𝑛𝑛𝑛(∙) 
based on acquired data. Thus, previously unknown patterns and 
relations being relevant for the configuration decision can be 
integrated into the modeling. With each reconfiguration cycle, 
more accurate models can be accessed so that a reconfiguration 
management benefits sustainably and in the long term. 

When determining the optimal system configuration, the 
modeling accuracy of the underlying modules that create the 
respective system configurations plays a major role. Hence, it 
is beneficial for the evaluation of a system configuration to in-
clude the entire knowledge about existing dependencies be-
tween module configurations and to continuously extend this 
knowledge on the basis of data. The connection between pro-
cesses is established by the output of the preceding process 
step, namely the properties of the product, marking an input of 
the consecutive process step. The modeling approach is ex-
tended accordingly: 
𝑦𝑦𝑦𝑦�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛 �𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 1), … ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦�,𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘), … ,𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢),𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘),𝑘𝑘𝑘𝑘�   (5) 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ      𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) = 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛−1(𝑘𝑘𝑘𝑘 − 1)            ∀𝑘𝑘𝑘𝑘 ∈ ℕ                 (6) 
This incremental learning process enables the self-organized 

reconfiguration management to an improved consideration of 
dependencies between modules when deciding on a new sys-
tem configuration. For a faster and more robust learning pro-
cess, a model exchange between different CPPSs with similar 
or identical modules could take place so that learned anomalies 
and dependencies can be taken into account when reconfigur-
ing the CPPS under consideration [25].  

To map the model outputs 𝑦𝑦𝑦𝑦�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) onto three the general eval-
uation criteria of time, energy and cost, that are needed for the 
reconfiguration management, the necessary information is ex-
tracted and separated. Firstly, equation 5 is written in matrix 
notation: 

𝑦𝑦𝑦𝑦�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘) = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛�𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘−1,𝑈𝑈𝑈𝑈�𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘 ,𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘),𝑘𝑘𝑘𝑘� (7) 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ    𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘−1 = �𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 1), … ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦�� (8) 

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎    𝑈𝑈𝑈𝑈�𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘 = �𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘), … ,𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢)�  (9) 

where matrix 𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘−1  represents all previous output vectors 
and matrix 𝑈𝑈𝑈𝑈�𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘 the current and the previous actuation of mod-
ule 𝑛𝑛𝑛𝑛. Based on this matrix notation, sub-matrices can be de-
duced that capture the parts of the process model that are rele-
vant for the criteria time, energy, and cost. In the following, the 
derivation of this parts of the process model is exemplarily de-
scribed for one criterion and can be easily transferred to all fur-
ther criteria. The sub-matrix of 𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘−1

𝑧𝑧𝑧𝑧  regarding the general cri-
terion 𝑧𝑧𝑧𝑧 that contains all relevant relations for that criterion can 
be described as follows: 

𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘−1
𝑧𝑧𝑧𝑧 = 𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘−1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘−1
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �

𝑖𝑖𝑖𝑖 𝜖𝜖𝜖𝜖 �1,…,𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦�\𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧,   𝑖𝑖𝑖𝑖 𝜖𝜖𝜖𝜖 �1,…,𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦�\𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
 (10) 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ    𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧 ⊆ �1, … ,𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦� 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝐽𝐽𝐽𝐽𝑧𝑧𝑧𝑧 ⊆ �1, … ,𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦� (11) 

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎    𝑧𝑧𝑧𝑧 𝜖𝜖𝜖𝜖 {𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑦𝑦, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤} (12) 

where 𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧  and 𝐽𝐽𝐽𝐽𝑧𝑧𝑧𝑧 describe the subsets of the matrix dimen-
sions that are not considered for criterion 𝑧𝑧𝑧𝑧. The parameters 𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 
as well as 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 denote the number of process parameters for the 
regarded service and the time horizon of previous input-output-
pairs being relevant for the autoregressive model, respectively. 
The sub-matrix of actuation 𝑈𝑈𝑈𝑈�𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘

𝑧𝑧𝑧𝑧  that contains all relevant rela-
tions for criterion 𝑧𝑧𝑧𝑧 can be calculated accordingly. 

 
Hence, equation 7 can be reformulated for each criterion of 

time, energy and cost: 
𝑦𝑦𝑦𝑦�𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧(𝑘𝑘𝑘𝑘) = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧�𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘−1

𝑧𝑧𝑧𝑧 ,𝑈𝑈𝑈𝑈�𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘
𝑧𝑧𝑧𝑧 ,𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧(𝑘𝑘𝑘𝑘),𝑘𝑘𝑘𝑘� (13) 

 

Fig. 1. Steps to generate Adaptive Process Models 
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where the part of the process model capturing the relevant 
relations for 𝑧𝑧𝑧𝑧 is denoted by 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧(∙). The model output 𝑦𝑦𝑦𝑦�𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧(𝑘𝑘𝑘𝑘) in-
cludes all factors that influence the regarded criterion. These 
influencing factors have to be transformed to the target crite-
rion and summed up over all conducted process cycles 𝑝𝑝𝑝𝑝 for the 
considered module 𝑛𝑛𝑛𝑛. This results in the following formulation 
for each target criterion of each module in the service state: 

𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧 �𝑦𝑦𝑦𝑦�𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧(𝑘𝑘𝑘𝑘)�𝑝𝑝𝑝𝑝
𝑘𝑘𝑘𝑘=1   (14) 

where 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧(∙) represents the mapping function for all influ-
ence factors of a criterion to the criterion itself. 

The presented adaptive process models can be used to im-
prove a self-organized reconfiguration management, as the fol-
lowing chapter shows. 

3.2. Self-organized Reconfiguration Management 

The methodology for the self-organized reconfiguration 
management is depicted in Fig. 2 and evolved from the basic 
concept introduced in [9]. The concept specifies the conduction 
of the four steps identification of reconfiguration demand, gen-
eration of alternative configurations, evaluation of configura-
tions and selection of a new configuration. 

Based on this concept, [10] gives a more detailed first con-
cretization of the first two steps. However, the optimization of 
production parameters is not described within the scope of that 
contribution. Therefore, the further evolved methodology is de-
scribed, whilst focusing the latter, the evaluation, and the se-
lection. 
3.2.1. Identification of reconfiguration demand 

To identify an existing reconfiguration demand, a compari-
son between the target production and the current configuration 
of the CPPS is realized utilizing the interface-oriented, formal-
ized process description presented in [26] as a conceptual basis 
for the modeling. I.e., the functional modeling of the resources 
capabilities and the production order is realized by a process 
operator with its input and output state description. On the one 
hand, this specifies the possible transformations that a produc-
tion resource offers, and on the other hand, the transformations 
required for a particular production order. 

In order to enable a quick comparison of production require-
ments and the capabilities of the production system, a CPPS 
capability model is employed to reveal all possible production 
sequences [10]. Whenever no possible production sequences 

can be derived from the CPPS capability model, a reconfigura-
tion demand has been identified and the generation of alterna-
tive configurations follows. 

3.2.2. Generation of alternative configurations 
The first sub-step of the generation of alternative configu-

rations is the generation of alternatives for production se-
quences. 

In the beginning, all CPPMs are provided with a description 
of the desired output product, after which the CPPMs conduct 
the integrated generation of alternatives at machine level. 
Therefore, each CPPM determines whether it can offer any pro-
cess operators to reach the desired output product, either in its 
current or an alternative configuration (at module, i.e. machine 
level). 

Consequently, a new system configuration is created for 
each of the found process operators. These system configura-
tions comprise the newly found process operator, with its cor-
responding CPPM configuration, connected to the desired out-
put product of the production order. Thereafter, a new (sub) 
production order, originating from the corresponding system 
configuration, is submitted to the CPPMs and the outlined pro-
cedure continues, until the defined input product is met, or no 
more suitable process operators can be found. By doing so, 
each system configuration organizes its own production se-
quence, resulting in a decentralized, parallelizable approach 
where a tree consisting of branches represented by alternative 
system configurations is formed. 

The determination of layout variants of the alternatives for 
each of the found possible system configurations is conducted 
by utilizing a simple brute force approach. Thereby, this sub-
step relies on the given layout structure of the CPPS. Thus, the 
layout of the CPPS is modeled as a graph in which the possible 
machine locations for the CPPMs are numbered and transport 
connections between them are represented through the usage of 
nodes and edges. At this point, it is crucial to determine the 
effort for the reconfiguration measures at system level 
𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛  that result from the transition into the respec-
tive new system configuration, based on the layout information 
of the current configuration and the reconfiguration efforts of 
the CPPMs, for each of the criteria 𝑧𝑧𝑧𝑧 (time, cost, and energy). 
As a result, all different layout variants are represented through 
a respective system configuration. 

The last sub-step is the optimization of production parame-
ters of production steps. It aims on minimizing the production 

 

Fig. 2. Reconfiguration Management Methodology 
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efforts 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 with regard to the weighted criteria (time, 
cost, and energy) for each alternative system configuration by 
performing a simulation-based multi-criteria optimization. 
Therefore, a hierarchical combination of simulation and opti-
mization is employed. 

Due to the complexity of the CPPS control logic, the objec-
tive function cannot be expressed in a closed form. Conse-
quently, the simulation-based optimization is realized through 
a category D approach [27], where the hierarchical combina-
tion is realized through the integration of the simulation within 
the optimization. 

Therefore, the standby effort fn,z,standby with regard to a cri-
terion 𝑧𝑧𝑧𝑧 is calculated as: 

𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦 = ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧�𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦,𝑘𝑘𝑘𝑘� 𝑠𝑠𝑠𝑠
𝑘𝑘𝑘𝑘=1   (15) 

where 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦  originates from the model of the respec-
tive module configuration and is summed up over all occurring 
standby cycles 𝑐𝑐𝑐𝑐 for the considered module 𝑛𝑛𝑛𝑛. 

The total effort 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 of a respective module 𝑛𝑛𝑛𝑛 with regard 
to the criteria 𝑧𝑧𝑧𝑧 can then be determined as: 

𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (16) 

with 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 from (15). 
Consequently, the outputs of the simulation, which repre-

sent the resulting production efforts with regard to the respec-
tive criteria 𝑧𝑧𝑧𝑧, can be calculated as: 

𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧 = ∑ 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛=1   (17) 

summed up over all modules 𝑛𝑛𝑛𝑛. Note that the calculation for 
the time criterion 𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 forms an exception and can simply be 
determined as: 

𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓𝑓𝑓1,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (18) 

as the sum of the standby and service cycles time of each 
module (e.g. module 1) already corresponds to the time needed 
to complete the entire production order. To transform the multi-
criteria problem into an optimization problem with only one 
objective function, and to realize the above mentioned, the fol-
lowing procedure is conducted for each alternative system con-
figuration. 

First, a simulation model for the system configuration of the 
CPPS is built utilizing the modeling concept of state machines 
to set up the discrete event simulation. Here, the adaptive pro-
cess models for production processes offered by services are 
used. Furthermore, to simulate the real production behavior, the 
applied control logic of the CPPS is depicted within the simu-
lation. 

To achieve uniform scaling of the objective functions, each 
determined system configuration is first optimized separately 
for each individual objective criterion 𝑧𝑧𝑧𝑧  (time, cost and en-
ergy). From the individual optimization results the reference 
range between the minimum value 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and the maximum 
value 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚 of a target criterion 𝑧𝑧𝑧𝑧 can be determined. Note that 
𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚  corresponds to the highest value of 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧  occurring 
amongst the results of the individual optimization of any crite-
rion except 𝑧𝑧𝑧𝑧. Thus, the objective functions of the criteria can 
be normalized, and the generalized overall optimization prob-
lem then reads as follows: 

min𝐹𝐹𝐹𝐹(𝑈𝑈𝑈𝑈) = ∑ 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧 ∙
𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧(𝑈𝑈𝑈𝑈)− 𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚− 𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑧𝑧𝑧𝑧   (19) 

where 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧  is the weight of a respective criterion z, with 
∑ 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧 = 1𝑧𝑧𝑧𝑧  and 𝑈𝑈𝑈𝑈 is the set of adjustable production parameters 
for all modules 𝑛𝑛𝑛𝑛 of a system configuration. It applies: 

𝑈𝑈𝑈𝑈 = [𝑢𝑢𝑢𝑢1(𝑘𝑘𝑘𝑘), … ,𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑘𝑘𝑘𝑘)]  (20) 

The outcome of this step is a set of system configurations 
with optimized production parameters 𝑈𝑈𝑈𝑈∗  that furthermore 
contains the respective optimization result (i.e. the optimized 
production efforts), which can subsequently be used for a com-
parison. 

3.2.3. Evaluation of configurations 
For the evaluation of the system configurations, a cost-util-

ity analysis is carried out. Thereby, a utility value 𝑣𝑣𝑣𝑣 is deter-
mined for each system configuration depending on the effort 
value and criteria weighting. 

First, the reconfiguration efforts 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛  and the 
production efforts 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (i.e. 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧(𝑈𝑈𝑈𝑈∗)  with 𝑈𝑈𝑈𝑈∗  deter-
mined through the optimization) of a system configuration are 
summed up for each evaluation criterion z: 

𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 + 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (21) 

Following, for each criterion z the maximum effort value 
𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚  and the minimum effort value 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  are deter-
mined amongst all possible system configurations. These are 
assigned to the evaluation value 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 = 0 (maximum value) and 
𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 = 1 (minimum value). The evaluation values 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 for each re-
spective criterion z of the remaining system configurations are 
calculated using the following formula: 

𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 = 𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
  (22) 

Thus, for each effort value 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 of a system configuration 
a normalized evaluation value 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 is obtained. Each of a system 
configurations evaluation value 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 is then weighted by means 
of the respective criteria weighting 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧, and summed up with 
the results of the other criteria. Thus, the utility value 𝑣𝑣𝑣𝑣 for each 
system configuration is calculated as follows: 

𝑣𝑣𝑣𝑣 = ∑ 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧 ∗ 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧   (23) 

3.2.4. Selection of a new configuration 
To determine the most suitable configuration, all system 

configurations are compared according to their utility value 𝑣𝑣𝑣𝑣, 
with the most suitable system configuration corresponding to 
the highest value of 𝑣𝑣𝑣𝑣. 

The resulting new system configuration encompasses infor-
mation at machine and at system level that includes the config-
uration of each CPPM and its positioning within the CPPS lay-
out as well as optimized production parameters. Consequently, 
these production parameters can be applied to real production 
with the new configuration. 

3.3. Mapping to the Intelligent Digital Twin 

Although it would be possible to implement the concepts 
described in this chapter as stand-alone applications without 
the help of an intelligent Digital Twin, the latter offers all the 
prerequisites to support the concepts. Therefore, in this sub-
chapter the presented concepts are mapped to the intelligent 
Digital Twin. 

The models needed for reconfiguration management are a 
mandatory part of the Digital Twin. In addition, the ability for 



	 Timo Müller  et al. / Procedia CIRP 104 (2021) 786–791� 791
 T. Müller et al. / Procedia CIRP 00 (2021) 000–000  5 

efforts 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 with regard to the weighted criteria (time, 
cost, and energy) for each alternative system configuration by 
performing a simulation-based multi-criteria optimization. 
Therefore, a hierarchical combination of simulation and opti-
mization is employed. 

Due to the complexity of the CPPS control logic, the objec-
tive function cannot be expressed in a closed form. Conse-
quently, the simulation-based optimization is realized through 
a category D approach [27], where the hierarchical combina-
tion is realized through the integration of the simulation within 
the optimization. 

Therefore, the standby effort fn,z,standby with regard to a cri-
terion 𝑧𝑧𝑧𝑧 is calculated as: 

𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦 = ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧�𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦,𝑘𝑘𝑘𝑘� 𝑠𝑠𝑠𝑠
𝑘𝑘𝑘𝑘=1   (15) 

where 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦  originates from the model of the respec-
tive module configuration and is summed up over all occurring 
standby cycles 𝑐𝑐𝑐𝑐 for the considered module 𝑛𝑛𝑛𝑛. 

The total effort 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 of a respective module 𝑛𝑛𝑛𝑛 with regard 
to the criteria 𝑧𝑧𝑧𝑧 can then be determined as: 

𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (16) 

with 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 from (15). 
Consequently, the outputs of the simulation, which repre-

sent the resulting production efforts with regard to the respec-
tive criteria 𝑧𝑧𝑧𝑧, can be calculated as: 

𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧 = ∑ 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛,𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛=1   (17) 

summed up over all modules 𝑛𝑛𝑛𝑛. Note that the calculation for 
the time criterion 𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 forms an exception and can simply be 
determined as: 

𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓𝑓𝑓1,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (18) 

as the sum of the standby and service cycles time of each 
module (e.g. module 1) already corresponds to the time needed 
to complete the entire production order. To transform the multi-
criteria problem into an optimization problem with only one 
objective function, and to realize the above mentioned, the fol-
lowing procedure is conducted for each alternative system con-
figuration. 

First, a simulation model for the system configuration of the 
CPPS is built utilizing the modeling concept of state machines 
to set up the discrete event simulation. Here, the adaptive pro-
cess models for production processes offered by services are 
used. Furthermore, to simulate the real production behavior, the 
applied control logic of the CPPS is depicted within the simu-
lation. 

To achieve uniform scaling of the objective functions, each 
determined system configuration is first optimized separately 
for each individual objective criterion 𝑧𝑧𝑧𝑧  (time, cost and en-
ergy). From the individual optimization results the reference 
range between the minimum value 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and the maximum 
value 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚 of a target criterion 𝑧𝑧𝑧𝑧 can be determined. Note that 
𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚  corresponds to the highest value of 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧  occurring 
amongst the results of the individual optimization of any crite-
rion except 𝑧𝑧𝑧𝑧. Thus, the objective functions of the criteria can 
be normalized, and the generalized overall optimization prob-
lem then reads as follows: 

min𝐹𝐹𝐹𝐹(𝑈𝑈𝑈𝑈) = ∑ 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧 ∙
𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧(𝑈𝑈𝑈𝑈)− 𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚− 𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑧𝑧𝑧𝑧   (19) 

where 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧  is the weight of a respective criterion z, with 
∑ 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧 = 1𝑧𝑧𝑧𝑧  and 𝑈𝑈𝑈𝑈 is the set of adjustable production parameters 
for all modules 𝑛𝑛𝑛𝑛 of a system configuration. It applies: 

𝑈𝑈𝑈𝑈 = [𝑢𝑢𝑢𝑢1(𝑘𝑘𝑘𝑘), … ,𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑘𝑘𝑘𝑘)]  (20) 

The outcome of this step is a set of system configurations 
with optimized production parameters 𝑈𝑈𝑈𝑈∗  that furthermore 
contains the respective optimization result (i.e. the optimized 
production efforts), which can subsequently be used for a com-
parison. 

3.2.3. Evaluation of configurations 
For the evaluation of the system configurations, a cost-util-

ity analysis is carried out. Thereby, a utility value 𝑣𝑣𝑣𝑣 is deter-
mined for each system configuration depending on the effort 
value and criteria weighting. 

First, the reconfiguration efforts 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛  and the 
production efforts 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (i.e. 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧(𝑈𝑈𝑈𝑈∗)  with 𝑈𝑈𝑈𝑈∗  deter-
mined through the optimization) of a system configuration are 
summed up for each evaluation criterion z: 

𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 + 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (21) 

Following, for each criterion z the maximum effort value 
𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚  and the minimum effort value 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  are deter-
mined amongst all possible system configurations. These are 
assigned to the evaluation value 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 = 0 (maximum value) and 
𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 = 1 (minimum value). The evaluation values 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 for each re-
spective criterion z of the remaining system configurations are 
calculated using the following formula: 

𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 = 𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
  (22) 

Thus, for each effort value 𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 of a system configuration 
a normalized evaluation value 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 is obtained. Each of a system 
configurations evaluation value 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 is then weighted by means 
of the respective criteria weighting 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧, and summed up with 
the results of the other criteria. Thus, the utility value 𝑣𝑣𝑣𝑣 for each 
system configuration is calculated as follows: 

𝑣𝑣𝑣𝑣 = ∑ 𝑤𝑤𝑤𝑤𝑧𝑧𝑧𝑧 ∗ 𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧   (23) 

3.2.4. Selection of a new configuration 
To determine the most suitable configuration, all system 

configurations are compared according to their utility value 𝑣𝑣𝑣𝑣, 
with the most suitable system configuration corresponding to 
the highest value of 𝑣𝑣𝑣𝑣. 

The resulting new system configuration encompasses infor-
mation at machine and at system level that includes the config-
uration of each CPPM and its positioning within the CPPS lay-
out as well as optimized production parameters. Consequently, 
these production parameters can be applied to real production 
with the new configuration. 

3.3. Mapping to the Intelligent Digital Twin 

Although it would be possible to implement the concepts 
described in this chapter as stand-alone applications without 
the help of an intelligent Digital Twin, the latter offers all the 
prerequisites to support the concepts. Therefore, in this sub-
chapter the presented concepts are mapped to the intelligent 
Digital Twin. 

The models needed for reconfiguration management are a 
mandatory part of the Digital Twin. In addition, the ability for 
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simulation as well as for co-simulation between several Digital 
Twins, can be used for the optimization of production parame-
ters of production steps. Furthermore, an intelligent Digital 
Twin automatically collects process data, which is needed for 
the improvement of the models. Moreover, the intelligent Dig-
ital Twin includes intelligent algorithms, the manifestation of 
which realizes the adaption of the process models as well as the 
reconfiguration management methodology. 

This contribution does not provide a holistic realization of 
an intelligent Digital Twin as described in detail in [20]. How-
ever, several components are discussed and a realization for 
these essential components of the intelligent Digital Twin is 
proposed. Thus, a contribution to a possible implementation of 
the intelligent Digital Twin is made. 

4. Conclusion and Outlook 

In this contribution, a comprehensive reconfiguration man-
agement methodology is presented. 

• The methodology depicts a decentralized, parallelizable ap-
proach to perform an autonomous self-organized reconfigu-
ration management. 

• Due to the data-driven approach, precise adaptive process 
models for each CPPMs module configuration are available. 

• The optimization of production parameters takes already 
learned module dependencies into account. 

• Consideration of anomalies leads to more realistic models 
and therefore better results. 

• The effects of identified anomalies and disturbance effects 
are projected on the three superordinate target criteria, 
namely time, cost, and energy. 

In consequence, an improved evaluation of the system con-
figurations resulting from the precise adaptive process models 
of the module configurations can be conducted. These models 
are included within the intelligent Digital Twin enabling the 
reconfiguration management to be incrementally optimized 
with each operational phase following a reconfiguration. 

As future work, a simulation-based multi-objective optimi-
zation utilizing a genetic algorithm shall be realized and com-
pared to the proposed approach. 
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