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Abstract  

Recurrent neural networks and exceedingly Long short-term memory (LSTM) have been investigated intensively in recent years due to their 

ability to model and predict nonlinear time-variant system dynamics. The present paper delivers a comprehensive overview of existing LSTM 

cell derivatives and network architectures for time series prediction. A categorization in LSTM with optimized cell state representations and 

LSTM with interacting cell states is proposed. The investigated approaches are evaluated against defined requirements being relevant for an 

accurate time series prediction. These include short-term and long-term memory behavior, the ability for multimodal and multi-step ahead 

predictions and the according error propagation. Sequence-to-sequence networks with partially conditioning outperform the other approaches, 

such as bidirectional or associative networks, and are best suited to fulfill the requirements.  

© 2020 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing 

Engineering. 
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1. Introduction 

Neural networks have been applied in the scope of numerous 

applications to model and predict complex system dynamics. 

There is a wide range of network types available but the 

modeling accuracy is strongly dependent on the fit of network 

architecture and considered problem. This paper presents an 

overview on neural networks, with a focus on Long short-term 

memory (LSTM) networks, that have been used for dynamic 

system modeling in diverse application areas such as image 

processing, speech recognition, manufacturing, autonomous 

systems, communication or energy consumption. The common 

aim in the scope of all investigated problems is the setup of 

prediction models based on time series data or data sequences 

to predict nonlinear time-variant system outputs. This paper 

analyzes existing approaches regarding the following 

properties:  

 Nonlinear and time-variant prediction ability 

 Short-term and long-term memory behavior 

 Multidimensional data processing 

 Multimodal prediction ability 

 Multi-step ahead prediction and error propagation 

The rest of the paper is organized as follows: chapter 2 

presents a selection of recurrent neural network (RNN) 

concepts. Chapter 3 introduces two cell architectures that are 

based on gating mechanisms. Chapter 4 presents an overview 

of different LSTM architectures. They are divided into LSTM 

with optimized cell state representations and LSTM with 

interacting cell states. A detailed description of sequence-to-

sequence (Seq2Seq) networks is conducted in chapter 5. The 

paper is concluded in chapter 6. 

2. Recurrent neural networks 

RNN are able to capture nonlinear short-term time 

dependencies. It can be distinguished between fully connected 

and partially connected RNN. The first RNN was developed by 

Williams and Zipser in the late 1980s, when an upswing in the 

development of neural network structures led to numerous 

fundamental contributions in this area [1]. Partially connected 
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RNNs are for instance the Elman net [2] and the Jordan net [3]. 

They pursue the goal of finding and modeling relations and 

extract contextual information from time series. Based on this 

foundation, numerous extensions of RNN have been developed 

in recent years to tackle a wide range of problems. In [4] a 

discrete wavelet transformation is integrated into an RNN to 

replace the regular activation functions. A comparison is drawn 

to classical activation functions, such as sigmoid as well as 

tangens hyperbolicus, and it is emphasized that an enhancement 

in modeling accuracy could be achieved due to an improved 

control of the information flow. Nevertheless, RNN have the 

disadvantage of vanishing gradients. Thus, non-stationary 

dependencies that occur over a long period of time are less well 

captured by RNN. An approach to tackle the problem 

concerning long-term dependencies that aims to establish a 

memory within regular RNNs is described by [5]. RNNs are 

extended by the usage of dilated recurrent skip connections to 

capture complex dependencies within time series data and to 

create a defined memory capacity. The skip connections allow 

to directly process information from past time steps without its 

propagation through the entire network. This is illustrated in 

figure 1.  

Fig. 1. RNN with dilated recurrent skip connections of different time spans as 

presented in [5]. 

Hence, the average length of the skip connections has a 

major influence on the fact whether short-term or long-term 

dependencies are primarily incorporated. However, [6] points 

out that RNN are primarily applicable to predict highly 

dynamic, time-variant systems subjected to stationary or non-

stationary short-term dependencies. 

3. Cell architectures  

Multiple time dependencies with different characteristics as 

well as long-term dependencies are not sufficiently captured by 

RNN due to the vanishing gradient effect. Thus, gating 

mechanisms are developed to replace the classical activation 

functions. LSTM cells possess three gates, an input, a forget 

and an output gate, that allow to make changes on a cell state 

vector that is propagated iteratively to capture long-term 

dependencies. This controlled information flow within the cell 

enables the network to memorize multiple time dependencies 

with different characteristics. LSTM was introduced by [7] and 

is mainly used for the modeling of long-term dependencies. 

Before further LSTM network architectures are presented in 

this section, the Gated Recurrent Unit (GRU) is introduced as a 

modification of the LSTM cell. GRU was developed by [8] to 

model time series with the aim of creating a mechanism that 

complements the ability to predict long-term dependencies with 

an improved integration of short-term information. The aim is 

to enable an adaptive modeling of dependencies over different 

time horizons. Compared to LSTM, GRU has a simplified cell 

structure that also operates based on a gating system, but only 

has an update and reset gate. The main difference to LSTM is 

the circumstance that the cell state can be completely revised at 

each iteration and updated with short-term information via the 

reset gate. LSTM, on the other hand, provides a mechanism that 

limits the change gradient that can be realized at each iteration. 

Hence, LSTM does not allow past information to be completely 

discarded whereas GRU does. Empirical investigations on the 

cell architectures have been conducted in [9] where cells with 

gating mechanism achieve significantly better prediction results 

than the classical RNN approaches. Furthermore, the 

superiority of LSTM over GRU is determined by [10] in the 

scope of a large-scale study on variations of different network 

architectures. Despite a lower number of parameters in GRU 

cells, no significant advantages with regard to computing time 

could be substantiated. Furthermore, it could be found that the 

LSTM gating system contributes to the filtering of irrelevant 

input information and achieves a higher precision in the 

modeling of time-variant behavior. For this reason, the present 

work will further focus on network architectures based on 

LSTM cells. 

4. LSTM network architectures 

The following section discusses the state of the art with 

regard to network architectures that incorporate the LSTM 

gating mechanism. The architectures are divided into LSTM 

with optimized cell state representations (4.1 – 4.4), for instance 

based on attention mechanisms, and LSTM with interacting cell 

states (4.5 – 4.6), e.g. in the scope of cross-modal predictions.  

4.1. Bidirectional LSTM  

Bidirectional LSTM networks propagate the state vector 

introduced in chapter 3 not only in forward but also in reverse 

direction. This has the advantage that dependencies in both time 

directions are taken into account. Thus, expected future 

correlations can be included in current outputs of the network 

due to the reverse state propagation. Hence, bidirectional 

LSTM are able to detect and extract more time dependencies 

than unidirectional LSTM networks and resolve them more 

precisely. This is tested and evaluated by [11] where 

bidirectional LSTM networks encapsulate spatially and 

temporally distributed information and can handle incomplete 

data by a flexible connection mechanism for the propagation of 

the cell state vector. For each data sequence, this filter 

mechanism redefines the connections between cells on the basis 

of detected data gaps. The architecture is shown in figure 2. The 

suitability of the bidirectional architecture for the solution of 

multidimensional problems is shown in [12]. Within this work, 

features extracted from different dimensions are processed in a 

parallel architecture and merged using a bidirectional network. 
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Bidirectional LSTM could also be suitable for the 

representation of spatially and temporally distributed physics in 

manufacturing processes due to their properties. However, 

there is no preliminary work in this area yet. 

Fig. 2. Bidirectional LSTM (left) and filter mechanism for processing 

incomplete data sets (right) according to [11]. 

4.2. Hierarchical and attention-based LSTM  

Hierarchical LSTM networks solve multidimensional 

problems by dividing the overall problem into sub-problems 

and organizing them in a hierarchical structure. This has the 

advantage that the focus can be placed on one specific or 

multiple connected sub-problems. This is done by shifting 

weights within the network which thereby acquires the ability 

to generate a certain amount of attention. Thus, hierarchical 

LSTM networks can be viewed as attention-based networks 

according to the description in [13]. In this work, an attention-

based network is introduced that hierarchically structures 

images and aims to conduct a parallel prediction of the 

trajectories of different objects. Further approaches that deal 

with the topic of attention are presented, for instance, in [14] 

where separate attention layers are introduced and incorporated 

into the network. These layers can be enriched by a priori 

knowledge to effectively control the focus of data processing 

and prediction. Thus, attention can be created concerning 

output prediction but also with regard to the efficient processing 

of input sequences. In [15] hierarchical LSTM networks are 

used to predict long-term dependencies under the consideration 

of a weighting-based attention mechanism that processes and 

filters input sequences.  

4.3. Convolutional LSTM  

Input data that has been collected over a longer time horizon 

can be filtered and reduced based on convolution operations 

that are incorporated into LSTM networks or directly into the 

LSTM cell structure. These approaches aim to improve the 

prediction accuracy of long-term dependencies based on a more 

efficient processing of input sequences by projecting the data 

into a lower-dimensional feature space. In [16] the regular 

LSTM cell is extended by convolution operations that are 

directly integrated in the cell. Current input sequences, 

recurrent output sequences as well as weight matrices are 

convolved and correlations are extracted. The gates receive the 

generated features as new inputs. They are a reduced 

representation solely capturing the most relevant information so 

that the efficiency of the cell state update mechanism is 

enhanced. The method is depicted in figure 3.  

Approaches for the incorporation of convolution operations 

into LSTM network are presented by [17] or [18]. In the former 

case, the network is suitable for modeling locally distributed 

relations and for extracting corresponding representative 

features. LSTM cells, on the other hand, are used to learn 

temporal feature dependencies so that a composition of both 

network types in form of a stacked architecture shows decent 

prediction results. An advantage of convolutional LSTM is the 

fact that features can capture a long time horizon so that a larger 

amount of past information can be incorporated in the 

predictions. 

Fig. 3. Convolution operations within LSTM cells according to the approach 

of [16]. 

Furthermore, convolutional LSTM networks are also 

suitable for modeling multiple quantities e.g. spatially and 

temporally distributed relations due to their characteristic 

properties as demonstrated in the second work. However, 

multiple quantities can solely be predicted collectively in terms 

of a reduced feature representation. To predict multiple output 

quantities not as features but based on their original units, 

decoding or deconvolving layers are necessary. 

4.4. LSTM autoencoder 

The decoding and encoding of information is often realized 

in an autoencoder structure. In [19] a stacked LSTM 

autoencoder solves the problem of high dimensional input 

sequences and the prediction of high dimensional parameter 

spaces by a reducing and an expanding network. The 

autoencoder structure is trained separately with the aim of an 

exact reconstruction of input data as described by [20]. During 

test and operation, solely the encoder is applied for the 

extraction of low-dimensional features that are fed into the 

LSTM. An approach to directly integrate an autoencoder in the 

LSTM cell structure is introduced by [21]. The approach is 

developed to extend LSTM for multimodal prediction. Encoder 

and decoder are directly integrated in the LSTM cell structure 

to compress input data as well as cell states. This combined 

reduction optimizes the information flow in the cell and leads 

to an improved update mechanism of the cell state with respect 

to both short-term and long-term dependencies. Nevertheless, 

the encoding and decoding procedure is always connected to a 

finite loss of information. The extraction of features, on the 

other hand, significantly increases the density of prediction-

relevant information so that the information loss effect can 

mostly be outreached with regard to the prediction accuracy. 
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However, a direct but cooperative prediction of multiple 

quantities can have a high potential for certain applications. 

4.5. Grid LSTM 

In addition to the afore-mentioned LSTM networks, 

numerous other network architectures have been developed in 

recent years. In [22] an LSTM cell on the basis of a matrix 

structure is proposed (Grid LSTM). In addition to regular 

connections between the layers, the Grid LSTM possesses 

connections regarding e.g. spatial or temporal dimensions of the 

input sequences. Hence, connections in multiple dimensions 

within the cells extend the regular information flow. The Grid 

LSTM is therefore suitable for a parallel prediction of multiple 

output quantities that can be either independent or linearly or 

nonlinearly dependent. In contrast to afore-mentioned 

approaches, a direct prediction of considered quantities without 

a projection onto abstract features is feasible. Each quantity is 

modeled within a separate dimension whereas the dependencies 

between the quantities are modeled by the newly created 

connections. The design of network and dimensions depend on 

the input data structure and the prediction goal [23]. Figure 4 

illustrates a Grid LSTM with two dimensions is comparison to 

a simple stacked LSTM network. 

Fig.4. LSTM cells evolved by one dimension within a 2d Grid LSTM (right) 

comparied to regular LSTM cells within a stacked LSTM network (left) [22]. 

The green information flow within the cells shows that the 

grid uses LSTM outputs of one dimension as additional inputs 

to other dimensions. By linking the dimensions, the prediction 

accuracy of multidimensional problems can be improved in 

contrast to one-dimensional stacked architectures. The latter are 

characterized by a stacking of several functional network layers 

as described in [19]. 

4.6. Cross-modal and associative LSTM 

A novel approach is provided by [24] to cooperatively 

predict multiple quantities. It combines multiple regular LSTM 

that are used to separately model the individual quantities. 

These LSTM streams interact via recurrent connections to 

account for the dependencies of the quantities. Outputs of 

defined layers are utilized as additional inputs of previous and 

subsequent layers in other streams. Thus, a multimodal 

prediction can be realized (cross-modal LSTM). The concept is 

visualized in figure 5. Additionally, there exist further 

approaches that aim to conduct a multimodal prediction of 

multiple output variables. A dual holographic LSTM was 

developed by [25] that can detect correlations in data streams. 

It consists of two or more LSTM networks that process the data 

streams. The generated representations are examined with 

regard to dependencies by the usage of a circular cross-

correlation. The method has the advantage that the extracted 

correlation vectors have identical dimensions as the input 

vectors. Thus, there is neither an increase concerning the 

parameter space and nor of computing time. An LSTM concept 

with external memory is presented by [26] that augments the 

network without an increase in parameters. The approach is also 

based on holographic reduced representations to realize a key-

value based memory and storage of data representations. The 

key and the associated content are stored in a distributed 

manner and without predefined location. 

Fig. 5. Cross modal LSTM with recurrent connections to exchange 

information between different prediction streams [24]. 

In contrast to the afore-mentioned attention mechanism, the 

associative LSTM delivers a novel addressing mechanism of 

the distributed memory system. It is possible to realize multi-

step ahead predictions based on the introduced LSTM networks 

by iterating the corresponding number of time steps over the 

network. Predicted outputs are fed back to predict additional 

outputs. A problem with this procedure for predicting an output 

sequence is the propagation of errors. The prediction on the 

basis of outputs that have already been predicted and are 

subjected to prediction errors further increases the propagated 

error. To be able to predict multiple time steps ahead at any 

point in time, sequence-to-sequence (Seq2Seq) networks are 

necessary. 

5. Sequence-to-Sequence networks 

5.1. Regular and multivariate Seq2Seq 

The Seq2Seq architecture was introduced in [27] for the 

prediction of output sequences based on input sequences. Thus, 

a multi-step ahead prediction at every point in time is feasible. 

RNN and regular LSTM are solely able to predict output 

sequences by a simultaneous error propagation [8]. The above-

mentioned approaches do not propose any concept to convert 

sequences of different lengths due to the fact that for each 

prediction a new input is required. Seq2Seq solves these 

problems by means of an encoder-decoder structure that 

incorporates a copying mechanism between the two network 

parts. 
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The input sequence is transformed and projected onto a 

vector of fixed dimensions. This abstract representation of the 

input is copied as initial cell state into the decoder and 

transformed into an output sequence of variable length. A 

comparison of Seq2Seq LSTM and regular LSTM is given by 

[28] based on different benchmark data sets. Seq2Seq was able 

to predict both short-term dependencies over a horizon of 

seconds to minutes as well as long-term dependencies over days 

whereas regular LSTM showed higher inaccuracies when 

modeling short-term dependencies.  

Fig. 6. Seq2Seq network with LSTM cells for the prediction of output 

sequences of variable time horizons according to [28]. 

 The network architecture used is shown in figure 6. The blue 

arrows visualize the error feedback during training by the 

backpropagation through time (BPTT) algorithm. Seq2Seq 

networks can be realized in terms of different architecture 

variants depending on the number of inputs and outputs. 

Examples that have been applied in a hybrid approach presented 

in [29] or [30] are many-to-one, one-to-many or many-to-many 

architectures. The prediction of multiple quantities as discussed 

in previous sections is projected onto Seq2Seq LSTM in the 

scope of the work introduced in [31]. The presented model is 

able to perform a multivariate multi-step ahead prediction. A 

sliding window techniques is applied to construct the input 

vectors that encapsulates representations of all quantities of the 

multivariate time series.  

5.2. Partially conditioned Seq2Seq 

A disadvantage of regular Seq2Seq networks is the copy 

mechanism between encoder and decoder that considers a 

vector of defined length. A novel mechanism to realize a more 

flexible copying process is introduced by [32]. For this purpose, 

distribution functions that depend on the current context are 

applied to compress and copy the input representations to 

defined locations in the decoder. This means that not every 

value of the input sequence has to be included equally in the 

summation of the copy vector. This method is extended in [33] 

by introducing a transducer that slides over the encoder and 

generates a probabilistic output based on the first value of the 

input sequence. The probabilistic output is refined with each 

further input value. Thus, an expected output can be determined 

at any point in time during the processing of input sequences. 

This approach is visualized in figure 7. 

Fig. 7. Seq2Seq network based on partially conditioning [33]. 

An approach for the integration of attention to optimize the 

copying procedure is presented by [34]. The attention 

mechanism is utilized to focus and extract relevant correlations 

within multivariate input sequences. The approach also applies 

a probabilistic processing of inputs that provides a weighted 

mapping of input sequences to each individual output. The 

weightings are determined based on the extracted correlations. 

Table 1 shows the evaluation of the LSTM architectures with 

regard to the investigated properties. In contrast to the 

architectures described in the previous sections, a prediction of 

multiple quantities can be realized by Seq2Seq not only in terms 

of a multi-step ahead prediction with error propagation but also 

as a sequence at once over an arbitrarily variable prediction 

horizon. In general, Seq2Seq LSTM approaches are predestined 

for multi-step ahead prediction with minimized error 

propagation. Grid and associative LSTM networks can 

cooperatively predict multiple quantities with high precision. 

Hierarchical as well as autoencoder-based LSTM concepts 

deliver improved update mechanisms of the cell state to process 

multidimensional data. All approaches are able to accurately 

predict nonlinear time-variant behavior but partially 

conditioned Seq2Seq LSTM show the best suitability to model 

both short-term and long-term dependencies. 

Prediction properties 
Bidirectional 

LSTM 

Hier. & atte. 

LSTM 

Convolut. 

LSTM 

LSTM 

Autoencoder 

Grid 

LSTM 

Cro. & asso. 

LSTM 

Reg. & mult. 

Seq2Seq 

Part. cond. 

Seq2Seq 

Nonlinear and time-variant 

prediction ability 
+ + + + ++ ++ ++ ++ 

Short-term and long-term 

memory behavior 
0 + 0 + + ++ + ++ 

Multidimensional data 

processing 
+ ++ + ++ + + + + 

Multimodal prediction 

ability 
- 0 + + ++ ++ + + 

Multi-step ahead prediction 

and error propagation 
- - -- - 0 - ++ ++ 

Table 1. Investigated properties concerning all LSTM architectures. 
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6. Conclusion 

The paper presents an overview of LSTM architectures that 

are developed to predict nonlinear time series behavior. There 

is a wide range of architectures available that have been used in 

different application areas such as image processing, 

manufacturing or autonomous systems. In the scope of this 

paper, the approaches are categorized and evaluated with regard 

to defined properties. The key findings are summarized as 

follows: 

 LSTM with optimized cell state representations, such 

as hierarchical and attention-based LSTM, show an 

improved ability to process multidimensional data 

 LSTM with interacting cell states, such as Grid and 

cross-modal LSTM, are able to cooperatively predict 

multiple quantities with high precision 

 Seq2Seq LSTM can predict multiple quantities in 

terms of a multi-step ahead prediction with minimized 

error propagation 

 Moreover, partially conditioned Seq2Seq LSTM show 

the best suitability to model both short-term and long-

term dependencies 
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