
Accepted version, published version available at 10.1109/ETFA46521.2020.9211903

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Continual Learning of Fault Prediction for Turbofan

Engines using Deep Learning with Elastic Weight

Consolidation

Benjamin Maschler1

Institute of Industrial Automation and Software Engineering

University of Stuttgart

Stuttgart, Germany

benjamin.maschler@ias.uni-stuttgart.de

Nasser Jazdi

Institute of Industrial Automation and Software Engineering

University of Stuttgart

Stuttgart, Germany

nasser.jazdi@ias.uni-stuttgart.de

Hannes Vietz1

Institute of Industrial Automation and Software Engineering

University of Stuttgart

Stuttgart, Germany

hannes.vietz@ias.uni-stuttgart.de

Michael Weyrich

Institute of Industrial Automation and Software Engineering

University of Stuttgart

Stuttgart, Germany

michael.weyrich@ias.uni-stuttgart.de

Abstract— Fault prediction based upon deep learning

algorithms has great potential in industrial automation: By

automatically adapting to different usage contexts, it would

greatly expand the usefulness of current predictive maintenance

solutions. However, restrictions regarding the centralized

accumulation of data necessary for such automatic adaption call

for a distributed approach to training these algorithms. Therefore,

in this paper, a continual learning based algorithm for fault

prediction is presented, allowing for distributed, cooperative

learning by elastic weight consolidation. This algorithm is then

evaluated on a large NASA turbofan engine dataset and shows

promising results regarding the performant training on decentral

sub-datasets for industrial automation scenarios.

Keywords—Continual learning, Elastic weight consolidation,

Fault prognostics, Industrial Automation, Machine learning, Neural

networks, Prediction methods, Transfer learning

I. INTRODUCTION

The trend of industrial digitalization has led to an increasing
system complexity, which in turn brought about an increased
frequency and a reduced foreseeability of ever more complex
faults. However, the same developments combined with the
concepts of Industry 4.0 or the Industrial Internet of Things
resulted in a widespread availability of high quality, high-
resolution data [1]. This data is the basis for fault diagnosis and
prognostics required for predictive maintenance – a possible
solution to the aforementioned problem. Yet, many of these
approaches still require a great level of manual adaption to the
respective scenarios [2–4] – a deed oftentimes impossible to
carry out, because the specific operating conditions constituting
those scenarios might be unknown to the provider of predictive
maintenance solutions.

Deep learning based fault prediction offers automatic
adaptability to those different usage scenario, e.g. of the same
machine at different operating sites, to allow a more flexible
utilization of such approaches [2, 5, 6]. This, however, requires

the accumulation of large amounts of training data describing
the different scenarios [7–9], which the customers of deep
learning based predictive maintenance solutions, usually the
owners of the machines, might not be willing to share due to
privacy or industrial espionage concerns, technical or legal
reasons.

Problem statement: Today, deep learning based fault
prediction requires large amounts of data in a central data lake
to facilitate training. In many scenarios, this is not possible due
to legal or technical reasons which prevent such merging of
datasets. Therefore, an approach for the disjoint processing of
deep learning based fault prediction is needed.

Continual learning algorithms could solve this problem,
because they facilitate performant training on small, decentral
datasets [9–12]. One such algorithm is the so-called Elastic
Weight Consolidation (EWC), which enhances a conventional
deep learning architecture already suiting the respective
industrial use case for a centralized dataset [10].

Structure: This paper presents an industrial application case
study in section II A, discusses the state-of-the-art in deep
learning based fault prediction in section II B and gives an
overview of continual learning and EWC-based knowledge
transfer in section II C. Then, a conventional deep learning
architecture for fault prediction based upon these findings is
developed in section III A. In section III B, it is expanded to
incorporate EWC to enable effective learning on smaller,
decentral datasets without the need for centralized (cloud)
storage. Finally, both algorithms are evaluated in section IV and
a conclusion is drawn in section V.

II. RELATED WORK

This section introduces related work regarding a suitable
dataset, deep learning based turbofan engine degradation
prognostics as well as continual learning and EWC. It closes
with a brief conclusion. Regarding the degradation prognostics,
comparison of recently published approaches is presented. For

1 These authors contributed equally to this publication.

EWC, a general description as well as recent implementation
examples are given.

A. Turbofan Degradation Dataset

A well-used dataset for fault prediction using deep learning
is the Turbofan Engine Degradation Simulation Data Set
(TEDSDS) by NASA [13]. It is based on the Commercial
Modular Aero-Propulsion System Simulation developed by [14]
and includes four simulated datasets (FD1 to FD4). Each dataset
consists of several dozens of individual engines’ time series.
Each individual engine’s data starts with a varying degree of
initial wear and manufacturing variation. The engines are then
run to failure in the training data. For the test data, the time series
stop before a failure occurs, but instead the true Remaining
Useful Life (RUL) is given. Every data point consists of a unit
number, a timestamp, three operational parameters and 21
different sensor measurements of which some are constant. The
different datasets vary in complexity as the number of operating
conditions changes between one (FD1 and FD3) and six (FD2
und FD4).

As performance metrics, [15] proposes the Root Mean
Square Error (RMSE) and a Prognostic Health Management
Error (PHME) function (1), where At is the actual RUL, Pt is the
predicted RUL, n is the number of predicted RULs, a1 = 13 and
a2 = 10. Because the safety-critical nature of turbofans is better
represented by the PHME punishing overestimations of the RUL
heavier than underestimations, it is considered the more
important metric (see Fig. 1).

PHME = {
∑ 𝑒

−
𝐴𝑡−𝑃𝑡

𝑎1𝑛
1 − 1 for (𝐴𝑡 − 𝑃𝑡) < 0

∑ 𝑒
𝐴𝑡−𝑃𝑡

𝑎2𝑛
1 − 1 for (𝐴𝑡 − 𝑃𝑡) ≥ 0

 ()

B. Deep Learning Architectures for Turbofan Degradation
Prognostics

Many variants of deep learning algorithms have been applied
to the TEDSDS in recent years (see Table 1). Studies discussed
here utilize Convolutional Neural Networks (CNN), Long-Short
Term Memory networks (LSTM) or Deep Belief Networks. A
piecewise linear RUL labeling was used, which acknowledges
that in the early stage of a turbine’s runtime no degradation is
discernible. This approach is used by all publications discussed
here.

Reference [16] applied a CNN to RUL prediction. They used
the sensor data of the turbofans and one handcrafted feature

along a 15-cycle wide timed window as input for their two-
dimensional convolution layers. Two-dimensional convolutions
allow the CNN to learn correlations along the feature dimension
as well as the time dimension. The architecture is a conventional
CNN with average pooling and an added fully connected layer
that predicts the RUL. Reference [16]’s approach showed
improvements compared to Support Vector Machines,
Relevance Vector Machines and Multilayer Perceptrons.

Reference [17] utilized an approach similar to [16].
However, they added no features by hand, removed the pooling
layers and reduced the convolution dimensions to a single one,
which was applied only in the time dimension. Through these
changes and a deeper CNN they were able to achieve better
results than [16].

Reference [18] used an ensemble of Deep Believe Networks
consisting of stacked Restricted Boltzmann Machines, which are
each unsupervisedly trained with contrastive divergence. The
Deep Believe Networks are then supervisedly trained with
backpropagation. Ensembles are a combination of several
(base)-models forming one better performing model. Previous
work on ensembles showed improvements in generalization [19]
and mitigating catastrophic forgetting [20]. Reference [18] used
a Multiple Objective Evolutional Algorithm Based on
Decomposition to train different Deep Believe Networks. More
specifically, they use the evolutional algorithm to evolve the
hyper- and training parameters of the Deep Believe Networks.
After a certain number of generations, several evolved Deep
Believe Networks then form the ensemble. A Multiple Objective
Evolutional Algorithm Based on Decomposition can have
multiple objective functions instead of just one like conventional
evolutional algorithms. Reference [18] used this to evolve not
only for accuracy but also for diversity of the individual Deep
Believe Networks. Their results show impressive prediction
qualities compared with other Deep Believe Networks and that
they can outperform learning algorithms like Multilayer
Perceptrons and Support Vector Machines.

Reference [21] chose a 2-layer deep LSTM, which are
widely used for sequential data, followed by two fully connected
layers to predict the RUL. Their results are promising and
consistent over the datasets, outperforming CNNs, Multilayer
Perceptrons and Support Vector Machines.

TABLE I. RECENT DEEP LEARNING LITERATURE RESULTS: PHME

(UPPER VALUE) AND RMSE (LOWER VALUE) ON THE TEDSDS

Algorithm
Dataset

FD1 FD2 FD3 FD4

CNN

[16]

1286

18.45

13570

30.30

1596

19.82

7886

29.16

CNN
[17]

274
12.61

10412
22.36

284
12.64

12466
23.31

Ensemble Deep

Believe Network

[18]

334
15.04

5585
25.05

422
12.51

6558
28.66

LSTM

[21]

338

16.14

4450

24.49

852

16.18

5550

28.17

Restricted Boltzmann

Machine + LSTM
[22]

231

12.56

3366

22.73

251

12.10

2840

22.66

Autoencoder + LSTM

[23]

261

13.63

-

-

-

-

-

-

Fig. 1. Simple comparison of RMSE and PHME in case of underesti-

mation (left) and overestimation (right) of RUL

0

10

20

30

40

50

60

-40 -30 -20 -10 0 10 20 30 40

E
rr

o
r

Prediction Offset

RMSE

PHME

The architecture proposed by [22] is similar, but they added
another fully connected layer before the LSTMs. This layer was
unsupervisedly pretrained with a Restricted Boltzmann
Machine, like one layer of a Deep Believe Network.
Additionally, they performed a hyperparameter optimization
with a genetic algorithm. This semi-supervised combination
lead to very good results, beating all other deep learning
algorithms discussed here.

Instead of a semi-supervised training, [23] placed an
Autoencoder before the LSTM layers. Autoencoders are well-
established, unsupervisedly trained feature extraction
algorithms. Reference [23] used bidirectional LSTM layers,
whose predictions can be influenced by later time steps.
Bidirectionality is often used in natural language processing, so
later parts of a sentence can change predictions of earlier parts,
however, this does not seem useful for fault prediction. Their
published result on one turbofan engine looks promising, but it
remains unclear whether their approach translates well to the
other datasets.

However, all the approaches discussed require large datasets
to train on. In order to allow for the effective training on smaller,
decentral datasets without causing catastrophic forgetting, these
approaches need to be combined with continual learning
methods.

C. Continual Learning and Elastic Weight Consolidation

The term ‘continual learning’ describes a set of approaches
aimed at transferring knowledge from one or more source tasks
to a target task in order to train a deep learning algorithm capable
of solving source and target tasks. This is sometimes called
‘multi-tasking’ or ‘incremental learning’ [24].

Continual learning approaches can be divided into three
approach categories: architectural, rehearsal and regularization
approaches [24]. For a practical application in solving the
problem of learning on not to be merged, but somewhat similar
datasets, one approach category is more promising than the other
two: While rehearsal approaches bear the risk of disclosing too
much information taken directly from the datasets themselves
and architectural approaches strive on more loosely related
tasks, regularization approaches using altered loss functions and
rather abstract meta-data in order to solve more closely related
tasks appear best suited for the problem at hand. Among the
older, more widely discussed and applied regularization
approaches is EWC, which is therefore chosen for the approach
proposed in this article.

Reference [10] introduced EWC as a method to overcome
the problem of a neural network’s loss of knowledge concerning
previously learned tasks while training new tasks in multi-
tasking problems, the so-called catastrophic forgetting [25]. It is
based on the fact that much more than one set of weights and
biases θ characterizing a trained deep neural network will result
in the same performance of said network [26]. This allows for a
possible solution 𝜃𝐵

∗ of a task B to be close to a previously found
possible solution 𝜃𝐴

∗ of a task A and therefore enables a neural
network to incorporate both sets of weights and biases in a
manner that solves both tasks. This “closeness” of the possible
solutions is achieved by constraining the change of parameters
most important to the performance in the previously learned task

A by adding a quadratic penalty to the loss function () LB(θAB)
is the loss for task B without that penalty, λ defines the
importance of the old task compared to the new one, F is the
diagonal of the Fisher information matrix and i labels each
individual parameter.

𝐿(𝜃𝐴𝐵) = 𝐿𝐵(𝜃𝐴𝐵) + ∑ 𝜆𝐴 ⋅ 𝐹𝐴,𝑖(𝜃𝐴𝐵,𝑖 − 𝜃𝐴,𝑖
∗)

2
 𝑖 ()

Correspondingly, the loss function for a third task C would
be (3).

𝐿(𝜃𝐴𝐵𝐶) = 𝐿𝐶(𝜃𝐴𝐵𝐶) + ∑ [𝜆𝐴 ⋅
𝑖

𝐹𝐴,𝑖(𝜃𝐴𝐵𝐶,𝑖 − 𝜃𝐴,𝑖
∗)

2
+𝜆𝐵 ⋅ 𝐹𝐵,𝑖(𝜃𝐴𝐵𝐶,𝑖 − 𝜃𝐴𝐵,𝑖

∗)
2

] ()

In a reply to [10], [27] argues that starting with the third task,
any intermediate parameter estimates are unnecessary as the
information contained within them is already represented by the
latest parameter estimate. However, as pointed out by [28] and
verified by experiments carried out by [29], these intermediate
parameter estimates improve the “remembrance” of older tasks
and thereby the algorithms performance.

Since its initial presentation, EWC has been put on trial in
different domains and scenarios:

In the field of medical radiology, [30] examined the
performance of an EWC-based algorithm on different image
segmentation tasks. The images were MRI scans of human
brains on which the algorithm outdid all other, non-continual
approaches except for one where all tasks were trained
simultaneously. However, [30] saw “significant space for
further research” as the performance was still significantly
worse than that of single-task ML. Reference [31], too,
examined a segmentation scenario. They found that EWC
“restricted the degree of catastrophic forgetting but also the
ability to adopt to the new domain.” Similarly, they saw a need
for “more extensive evaluation.”

In the field of machine translation, [32] examined the
performance of an EWC-based algorithm regarding machine
translation of sentences from news and patents. The data was
from different, domain-typical databases, e.g. multilingual
patent databases. EWC outperformed other, state-of-the-art
approaches in five out of six sub-tasks. Therefore, [32] saw it
fit to be “used in practical situations.”

To the authors’ knowledge, no EWC trial has been published
for the field of RUL prediction or predictive maintenance.

D. Conclusion of Related Work

The benchmark dataset used in this paper is the TEDSDS by
NASA. Its pre-defined test data ensures a comparability of
results with the many publications in which it is used as well. As
deep learning method, LSTM is chosen due to the high
prediction performance, as discovered by earlier publications,
and its superior adaptability to different data formats compared
to other approaches. To allow for the performant training on
decentral, smaller datasets, EWC that has shown promising
results in image segmentation and machine translation is
introduced. Not having been applied to the field of predictive

maintenance yet, it is the aim of this paper to investigate the
potential of EWC in fault prediction.

III. METHODOLOGY

In this section, the proposed deep learning architectures for
RUL prediction are presented. First, the architecture used
without EWC and the associated hyperparameter search are
discussed. Next, the proposed architecture used with EWC is
described.

A. Proposed Setup for Deep Learning Architecture without
Elastic Weight Consolidation

Similar to the architectures of [23] and [22] , the proposed
architecture consists of four parts: A dense layer, initialized with
unsupervised pretrained weights, which is followed by several
LSTM layers, a wide dense layer and the RUL output. The
following subsection describes each part in detail.

1) Architecture

Initialization of the Dense Layer is motivated by the
following: Labeled data is expensive to create and therefore
more scarce than unlabeled data. To make use of unlabeled data
we therefore follow [23] and [22] by using unsupervised
pretraining to initialize the first part of the proposed architecture.

Autoencoders (AE) are unsupervisedly trained feedforward
neural networks, consisting of an encoder and decoder part as
illustrated in Fig. 2. The network is trained to recover the input
data at its output. While passing through the network, the data is
compressed in the smaller Code Layer. Through the
compression an internal lower dimensional representation of the
data is created, which only contains the more important features
of the data. In contrast to [23], we propose the usage of an
additional sparsity constraint on the Code Layer in the form of a
regularizing loss function that keeps the average activation of
the Code Layer low to improve the feature extraction quality
[33] of the encoder. This is called a sparse AE. Rectified Linear
Units (ReLU) are used as activation function of the Code Layer.
The pretraining process is done as follows: A sparse AE is
unsupervisedly trained. Then the weights and biases of the
encoder part are copied into the first dense layer.

The Code Layer is followed by LSTM Layers. Literature
results in Table I suggest that LSTM based approaches
outperform CNN and Deep Believe Network based approaches,
especially on the PHME of datasets FD2 and FD4. Additionally,
CNNs and Deep Believe Networks rely on fixed time windows,

which lessens their applicability. Therefore, this study utilizes
LSTM.

An LSTM is a recurrent neural network architecture
specialized on sequence data that can actively learn to remember
information over a sequence. We propose the usage of the
LSTM version by [34]. The main difference to the first described
LSTM is its ability to also learn to actively forget information.
Furthermore, choosing [34]’s LSTM version enables us to use a
hardware accelerated implementation and thereby reduce the
training time of our algorithm.

After the LSTM Layers, the high dimensional data is reduced
with an additional fully connected layer, the RUL Layer. Its
activation function is optimized by the hyperparameter search.
Output of the proposed setup without EWC is the one-
dimensional RUL value. Therefore, the last single neuron has a
linear activation function.

Fig. 3 shows an overview of the proposed setup. The
transparencies in each part of the setup symbolize
hyperparameters that are chosen separately for each dataset by a
hyperparameter search. Every layer except the first layer uses
dropout, which is a regularization technique, first described by
[35], that helps to prevent deep learning models from overfitting
by randomly disabling neurons during the training process.

2) Hyperparameter search

The hyperparameter search to find a well performing
architecture is carried out for each dataset individually. 20% of
the training data is chosen randomly as validation data. To
conduct the search, Tree of Parzen estimators as suggested by
[36] and their hyperopt framework are used. Table II shows all
hyperparameters and their respective search spaces. Choice
means that the search space is constrained to the discrete list of
values listed. Uniform indicates a continuous interval between
the given values. Data dim is the dimension of the input data.
Table III shows the results of the hyperparameter search for each
turbofan dataset.

B. Proposed Setup for Elastic Weight Consolidation

In order to enhance the conventional deep learning
architecture described so far to facilitate EWC, the diagonal of
the Fisher matrix is needed (see subsection 2.B). The Fisher
matrix for a task A is defined as the covariance matrix of the
score function as defined by (4):

 𝑠𝑨(𝜃) =
∂ 𝑙𝑜𝑔(𝐿(𝑋𝐴,𝜃))

∂𝜃
 ()

Fig. 2. Schematics of an autoencoder

Fig. 3. Deep learning architecture used for the RUL prediction without

elastic weight consolidation. Transparencies indicate variable layer sizes,

which are hyperparameters.

To be able to calculate the score, we require the prediction
likelihood L(XA, θ) of the model that is trained on a task A given
some parameters θ on a data point XA of that task. The setup for
RUL prediction as described in subsection 3.A and as used in
the studies listed in Table I outputs no such prediction
likelihood.

Therefore, we propose a change of the prediction problem
from regression to classification. This is achieved by exchanging
the last single linear activated output neuron with three output
neurons with a softmax activation. Each output neuron stands
for a predicted class representing the state of health (SoH) of a
turbofan engine. These states of health are defined as RUL
intervals given in Table IV.

Due to these architectural changes we can calculate the score
as follows:

1. Draw a random data point XA from the dataset of task

A.

2. Calculate the prediction probabilities vector pA of the

trained model on the drawn data point.

3. Choose a single class as prediction by sampling from

a multinomial distribution with probabilities 𝑝𝐴. This

sampling process is the likelihood function in the

definition of the score function.

4. Calculate the partial derivatives as defined in the score

function. The output is a mapping of how strongly the

class prediction varies with each weight.

The described steps are repeated for many data points. For
the turbofan dataset 500 data points are used. The diagonal

entries of the covariance matrix of all calculated scores give us
the FA,i values for the EWC loss function. To validate our
implementation of EWC we repeated [10]’s experiments on the
MNIST dataset [37] successfully.

The SoH classification is easier to learn than the RUL
regression, therefore no hyperparameter search is conducted and
no dropout is used. Applying the unsupervised pre-training
when EWC is used would add unknown quantities of prior
knowledge into the network, we therefore do not use it for EWC
experiments. Thus, the first layer is a normal dense layer. Table
V shows the hyperparameter architecture used for the EWC
experiments. The last fully connected layer is of size 3, because
of the 3 SoH classes.

IV. EXPERIMENTS

In this section, the experiments carried out using the
proposed deep learning architectures on the turbofan
degradation datasets as well as their results are described. The
non-EWC architecture’s results are presented first, followed by
the ones delivered by the EWC implementation. Certain areas in
the diagrams presented are highlighted and numbered in order to
facilitate better understanding.

A. Setup of the Experimental Study

All experiments were carried out on a computer with an Intel
i7-7700K CPU and a NVIDIA GeForce GTX 1060 6GB GPU
running Ubuntu 18.04.3 LTS. The learning framework used was
Tensorflow 1.13.2.

The turbofan engine data was transformed into sub-
sequences of length 50 and normalized between 0 and 1. The
RUL values were created by a piecewise linear function with a

TABLE II. HYPERPARAMETERS AND THEIR CORRESPONDING SEARCH

SPACES. COLORS INDICATE LAYER ACCORDING TO FIG. 3.

Parameter Name Search space

Code layer size Choice (4; 7; ...; Input data dim)

of LSTM layers Choice (2, 3)

LSTM layer 1 size Choice (25; 50; 100; 200; 300; 400)

Dropout 1 Uniform (0…1)

LSTM layer 2 size Choice (25; 50; 100; 200; 300; 400)

Dropout 2 Uniform (0…1)

LSTM layer 3 size Choice (25; 50; 100; 200; 300; 400)

Dropout 3 Uniform (0…1)

Dense layer size Choice (25; 50; 100; 200; 300; 400)

Dense activation function Choice (ReLU; sigmoid)

Dropout 4 Uniform (0…1)

TABLE III. RESULTS OF THE HYPERPARAMETER SEARCH FOR EACH

TURBOFAN DATASET. COLORS INDICATE LAYER ACCORDING TO FIG. 3.

Parameter Name FD1 FD2 FD3 FD4

Code layer size 7 19 13 7

of LSTM layers 2 2 2 2

LSTM layer 1 size 100 200 50 100

Dropout 1 0.61 0.73 0.54 0.61

LSTM layer 2 size 100 200 50 100

Dropout 2 0.73 0.26 0.33 0.74

Dense layer size 100 100 25 100

Dense activation funct. ReLU sigmoid ReLU ReLU

Dropout 4 0.65 0.08 0.1 0.65

TABLE IV. DEFINITION OF THE CLASSES BY REMAINING USEFUL LIFE

(RUL) VALUES AND STATE-OF-HEALTH (SOH) INTERPRETATION

Class No. 1 2 3

RUL Definition < 60 60 … 129 ≥ 130

SoH Interpretation Critical Declining Normal

TABLE V. HYPERPARAMETERS USED FOR THE ELASTIC WEIGHT CONSOL-
IDATION EXPERIMENTS. COLORS INDICATE LAYER ACCORDING TO FIG. 3.

Parameter Name Parameters used

Dense layer size 30

LSTM layer 1 size 200

LSTM layer 2 size 200

Dense layer size 3

Dense activation function softmax

Fig. 4. Training and Testing sequence used in the experiments

start of the linear phase at cycle 130. To save training time,
sensors whose signals are constant over the whole sequence
were removed.

Each experiment is conducted as illustrated in Fig. 4: In four
sequential training sessions, the algorithm is trained on one
dataset each. After each training session, the algorithm is tested
on all datasets.

B. Results of the Deep Learning Architecture Experiments
without Elastic Weight Consolidation

Table VI shows the results achieved by the proposed semi-
supervised approach on the four TEDSDS. Our proposed
Approach is in second place behind [22] in all PHME metrics
except for FD2, where it is third behind [21].

However, while [22]’s approach outperforms Proposed
Approach on all metrics, it should be noted that their
optimization technique takes about 60 hours on every dataset.
The hyperparameter search we used takes between 2 and 4 hours
using the same GPU.

Proposed Approach outperforms [17]’s CNN on every
dataset measured by the PHME, but their RMSE is better each
time. This means that Proposed Approach has fewer predictions
that overestimate the RUL, which is important for a safety
critical appliance like turbofan engines.

C. Results of the Elastic Weight Consolidation Experiments

Before remembering through EWC can be properly
evaluated, we need to establish how pronounced catastrophic
forgetting is for the TEDSDS. Fig. 5 shows the accuracy
changes of a sequential training on the four TEDSDS without
EWC. During the training of FD1 the accuracy of FD3 rises.
FD2 and FD4 show a similar relation. The different datasets are
therefore not independent. However, a clear downward trend of
FD2’s accuracies during training of FD3 can be seen at highlight
1 in Fig. 5. At highlight 2, the end of the training, FD1 and
FD3’s performances are low and FD4 and FD2 perform well due
to their relatedness. Accordingly, forgetting of FD1 and FD3 is
occurring.

Fig. 6 shows the same sequential training as Fig. 5 but with
EWC. Comparing both figures at highlights 2 and 4 suggests:
After the training, FD1 and FD4 are remembered significantly
better than without EWC while the accuracies of FD2 and FD4
have slightly decreased through EWC. FD2’s accuracy loss at
highlight 1 is prevented by EWC at highlight 3. The much more
pronounced downswing of FD3’s accuracy during the second
training phase might be caused by EWC, but is not problematic,
because the model has not yet trained on FD3. While EWC

improves the training somewhat, in total the performance of
EWC is not satisfactory, because FD1 and FD3’s end accuracies
are much lower than after their individual training. Experiments
with higher λ parameters were conducted to force remembering,
but the training did not converge due to a sharp rise of loss values
during the training of FD3.

This difference between EWC’s performance on the
randomly permutated MNIST datasets and the TEDSDS could
be explained by two major differences between the datasets
themselves:

1. All MNIST datasets are completely independent from

each other. Therefore, learning one task does not

increase accuracy on the others. This is clearly not the

case for the TEDSDS, as can be seen in Fig. 5.

2. The sub-tasks are not of equal difficulty. While the

MNIST sub-tasks are all equally hard to learn for a

neural network (Kirkpatrick et al. 2017), the different

TEDSDS vary in complexity. This can be seen in

Table I and Table VI. Every model performs better on

FD1 and FD3 than on FD2 and FD4. Fig. 5 shows that

FD1 and FD3 are also learned faster, i.e. after fewer

epochs, than FD2 and FD4.
To investigate if the differences in difficulty causes the

reduced performance of EWC on the TEDSDS, another set of

Fig. 5. Accuracy changes during sequential training of TEDSDS without
EWC demonstrating catastrophic forgetting. Vertical lines mark the start

of a new dataset. Training order: FD1, FD2, FD3, FD4.

Fig. 6. Accuracy changes during sequential training of TEDSDS with
EWC showing improved performance. Vertical lines mark the start of a

new dataset. Training order: FD1, FD2, FD3, FD4.

TABLE VI. RESULTS OF THE PROPOSED APPROACH COMPARED TO

LITERATURE RESULTS ON THE TEDSDS: PHME (UPPER VALUE) AND

RMSE (LOWER VALUE)

Algorithm
Dataset

FD1 FD2 FD3 FD4

CNN
[17]

274
12.61

10412
22.36

284
12.64

12466
23.31

Proposed 259 4617 253 4367

Approach 13.03 24.28 13.60 26.04

Restricted Boltzmann
Machine + LSTM

[22]

 231

12.56

3366

22.73

251

12.10

2840

22.66

experiments was conducted. The two less complex datasets FD1
and FD3 are each split into two sub-datasets: FD1-A/-B and
FD3-A/-B. First, a training without EWC is run, whose results
can be seen in Fig. 7: A decline of the performance (forgetting)
of FD1-A during the trainings of FD3-A and FD3-B occurs at
highlight 5. During the training of FD1-B, the performance of
FD1-A increases again, because both sub-datasets originate
from FD1. However, at the end of the experiment, accuracies of
FD1-A and FD1-B are significantly lower than during their
training. FD3-A and FD3-B are from the same dataset, therefore
FD3-A was not forgotten and both show a good performance.

The same training is run with EWC as shown in Fig. 8.
Accuracy of FD1-A first declines at the beginning of the training
on FD3-A, but then recovers in highlight 6. At the end of the
training with EWC, the accuracies for all sub-datasets are close
to their maximum value. We were also able to increase the EWC
parameter λ from 13 to 45 without a diverging training.

These results suggest that EWC works when different tasks
are related, but its performance declines when the tasks are of
vastly different complexity.

V. CONCLUSION

In this paper, the prediction of the remaining useful life of
industrial machinery using deep learning architectures was
examined with a focus on transferring knowledge across

decentral sub-datasets. The publicly available Turbofan Engine
Degradation Simulation Data Set by NASA was used for
evaluation.

Key result: The decentralized learning architecture
developed in this paper is capable of effective learning on
smaller, decentral datasets without the need for centralized
(cloud) storage. It could therefore solve the problem that arises
from conventional deep learning based fault prediction’
dependency on a centralized accumulation of training data,
which currently hinders its deployment.

As the chosen method of continual learning, i.e. elastic
weight consolidation, requires a conventional deep learning
architecture as a foundation, we undertook a survey of those
first. This literature study revealed a great heterogeneity of
previous approaches with a strong tendency towards the
combination of several different methods. Based on this data, we
chose an autoencoder and an LSTM for our proposed deep
learning architecture.

Our evaluation of this conventional deep learning
architecture revealed a performance close to, but not as good as
the best-performing published approach. However, using a very
similar hardware, we could reduce the optimization time by
factor 15 to 30 compared to the aforementioned publication.

We then expanded our deep learning architecture in order to
facilitate continual learning by elastic weight consolidation. A
thorough evaluation of this approach revealed, that

1. continual learning profits from (sub-)datasets being

not independent from one another, and

2. continual learning suffers from (sub-)datasets being of

different complexity.
These results concerning the elastic weight consolidation

methodology call for further research regarding their specific
impact and extend.

However, even prior to such investigation, the applicability
of elastic weight consolidation towards industrial use cases like
fault prediction appears to be high, because

1. the accuracy of the approach proposed in this paper is

high despite the dataset, i.e. the scenario, being far

from optimal regarding the different tasks’

complexity,

2. different real-life scenarios concerning the same

component usually display a great relatedness

regarding the data recorded (i.e. the datasets are not

independent, see above), and

3. different real-life scenarios concerning the same

component are usually of similar complexity

regarding the data recorded (see above).
The authors therefore propose to examine the potential of

elastic weight consolidation on a broader scale in other industrial
automation scenarios suffering from small datasets.

REFERENCES

[1] H. Kagermann, “Change Through Digitization—Value Creation in the
Age of Industry 4.0,” in Management of permanent change, H. Albach,
H. Meffert, A. Pinkwart, and R. Reichwald, Eds., Wiesbaden: Springer
Fachmedien, 2015, pp. 23–45.

[2] X. Yao, J. Zhou, J. Zhang, and C. R. Boer, “From Intelligent
Manufacturing to Smart Manufacturing for Industry 4.0 Driven by Next

Fig. 7. Training without EWC on split datasets demonstrating catastrophic

forgetting. Training order: FD1-A, FD3-A, FD1-B and FD3-B.

Fig. 8. Training with EWC on split datasets showing improved

performance. Training order: FD1-A, FD3-A, FD1-B and FD3-B.

Generation Artificial Intelligence and Further On,” in Industrial
digitalization by enterprise systems: 2017 5th International Conference
on Enterprise Systems (Proceedings), Beijing, 2017, pp. 311–318, DOI:
10.1109/ES.2017.58.

[3] B. Lindemann, C. Karadogan, N. Jazdi, M. Liewald, and M. Weyrich,
“Cloud-based Control Approach in Discrete Manufacturing Using a Self-
Learning Architecture,” IFAC-PapersOnLine, vol. 51, no. 10, pp. 163–
168, 2018, DOI: 10.1016/j.ifacol.2018.06.255.

[4] E. Lughofer and M. Sayed-Mouchaweh, “Prologue: Predictive
Maintenance in Dynamic Systems,” in Predictive Maintenance in
Dynamic Systems: Advanced Methods, Decision Support Tools and Real-
World Applications, E. Lughofer and M. Sayed-Mouchaweh, Eds.,
Cham: Springer International Publishing, 2019, pp. 1–23.

[5] S. Heo and J. H. Lee, “Fault detection and classification using artificial
neural networks,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 470–475,
2018, DOI: 10.1016/j.ifacol.2018.09.380.

[6] R. Yang, M. Huang, Q. Lu, and M. Zhong, “Rotating Machinery Fault
Diagnosis Using Long-short-term Memory Recurrent Neural Network,”
IFAC-PapersOnLine, vol. 51, no. 24, pp. 228–232, 2018, DOI:
10.1016/j.ifacol.2018.09.582.

[7] H. Tercan, A. Guajardo, and T. Meisen, “Industrial Transfer Learning:
Boosting Machine Learning in Production,” in 2019 IEEE 17th
International Conference on Industrial Informatics (INDIN):
Proceedings, Helsinki, Finland, 2019, pp. 274–279, DOI:
10.1109/INDIN41052.2019.8972099.

[8] G. Xu et al., “Data-Driven Fault Diagnostics and Prognostics for
Predictive Maintenance: A Brief Overview,” 2019 IEEE 15th
International Conference on Automation Science and Engineering
(CASE), pp. 103–108, 2019, DOI: 10.1109/COASE.2019.8843068.

[9] B. Maschler, S. Kamm, N. Jazdi, and M. Weyrich, “Distributed
Cooperative Deep Transfer Learning for Industrial Image Recognition,”
Preprint, 2020, DOI: 10.13140/RG.2.2.14189.41440/1.

[10] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 114, no. 13, pp. 3521–3526, 2017, DOI:
10.1073/pnas.1611835114.

[11] P. Durdevic, D. Ortiz-Arroyo, S. Li, and Z. Yang, “Vision Aided
Navigation of a Quad-Rotor for Autonomous Wind-Farm Inspection,”
IFAC-PapersOnLine, vol. 52, no. 8, pp. 61–66, 2019, DOI:
10.1016/j.ifacol.2019.08.049.

[12] B. Maschler and M. Weyrich, “Deep Transfer Learning at Runtime for
Image Recognition in Industrial Automation Systems,” 2020 16th
Technical Congress EKA - Design of Complex Automation Systems,
University of Magdeburg, 2020.

[13] A. Saxena and K. Goebel, “Turbofan engine degradation simulation data
set,” NASA Ames Prognostics Data Repository, 2008.

[14] D. K. Frederick, J. A. DeCastro, and J. S. Litt, “User's guide for the
commercial modular aero-propulsion system simulation (C-MAPSS),”
2007.

[15] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation
modeling for aircraft engine run-to-failure simulation,” in International
Conference on Prognostics and Health Management, 2008, Denver,
USA, 2008, pp. 1–9, DOI: 10.1109/PHM.2008.4711414.

[16] G. S. Babu, P. Zhao, and X.-L. Li, “Deep Convolutional Neural Network
Based Regression Approach for Estimation of Remaining Useful Life,”
in 21st International Conference on Database Systems for Advanced
Applications DASFAA, Dallas, USA, 2016, pp. 214–228, DOI:
10.1007/978-3-319-32025-0_14.

[17] X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life estimation in
prognostics using deep convolution neural networks,” Reliability
Engineering & System Safety, vol. 172, pp. 1–11, 2018, DOI:
10.1016/j.ress.2017.11.021.

[18] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective Deep Belief
Networks Ensemble for Remaining Useful Life Estimation in
Prognostics,” IEEE transactions on neural networks and learning
systems, vol. 28, no. 10, pp. 2306–2318, 2017, DOI:
10.1109/TNNLS.2016.2582798.

[19] J. Yang, X. Zeng, S. Zhong, and S. Wu, “Effective neural network
ensemble approach for improving generalization performance,” IEEE

transactions on neural networks and learning systems, vol. 24, no. 6, pp.
878–887, 2013, DOI: 10.1109/TNNLS.2013.2246578.

[20] R. Coop, A. Mishtal, and I. Arel, “Ensemble learning in fixed expansion
layer networks for mitigating catastrophic forgetting,” IEEE transactions
on neural networks and learning systems, vol. 24, no. 10, pp. 1623–1634,
2013, DOI: 10.1109/TNNLS.2013.2264952.

[21] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long Short-Term
Memory Network for Remaining Useful Life estimation,” in 2017 IEEE
International Conference on Prognostics and Health Management
(ICPHM), Dallas, TX, USA, 2017, pp. 88–95, DOI:
10.1109/ICPHM.2017.7998311.

[22] A. L. Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, and H. Zhang,
“Remaining useful life predictions for turbofan engine degradation using
semi-supervised deep architecture,” Reliability Engineering & System
Safety, vol. 183, pp. 240–251, 2019, DOI: 10.1016/j.ress.2018.11.027.

[23] Y. Song, G. Shi, L. Chen, X. Huang, and T. Xia, “Remaining Useful Life
Prediction of Turbofan Engine Using Hybrid Model Based on
Autoencoder and Bidirectional Long Short-Term Memory,” J. Shanghai
Jiaotong Univ. (Sci.), vol. 23, no. S1, pp. 85–94, 2018, DOI:
10.1007/s12204-018-2027-5.

[24] D. Maltoni and V. Lomonaco, “Continuous learning in single-
incremental-task scenarios,” Neural networks : the official journal of the
International Neural Network Society, vol. 116, pp. 56–73, 2019, DOI:
10.1016/j.neunet.2019.03.010.

[25] R. French, “Catastrophic forgetting in connectionist networks,” Trends in
Cognitive Sciences, vol. 3, no. 4, pp. 128–135, 1999, DOI:
10.1016/S1364-6613(99)01294-2.

[26] H. J. Sussmann, “Uniqueness of the weights for minimal feedforward nets
with a given input-output map,” Neural Networks, vol. 5, no. 4, pp. 589–
593, 1992, DOI: 10.1016/S0893-6080(05)80037-1.

[27] F. Huszár, “Note on the quadratic penalties in elastic weight
consolidation,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 115, no. 11, E2496-E2497, 2018, DOI:
10.1073/pnas.1717042115.

[28] J. Kirkpatrick et al., “Reply to Huszár: The elastic weight consolidation
penalty is empirically valid,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 115, no. 11, E2498, 2018,
DOI: 10.1073/pnas.1800157115.

[29] C. V. Nguyen, Y. Li, D. B. Thang, and R. E. Turner, “Variational
continual learning,” in 6th International Conference on Learning
Representations (ICLR), Vancouver, Canada, 2018, DOI:
10.17863/CAM.35471.

[30] C. Baweja, B. Glocker, and K. Kamnitsas, “Towards continual learning
in medical imaging,” in Medical Imaging meets NeurIPS (Workshop), on
the 32nd Conference on Neural Information Processing Systems
(NeurIPS), Montreal, 2018.

[31] K. van Garderen, S. van der Voort, F. Incekara, M. Smits, and S. Klein,
“Towards continuous learning for glioma segmentation with elastic
weight consolidation,” 2019.

[32] B. Thompson, J. Gwinnup, H. Khayrallah, K. Duh, and P. Koehn,
“Overcoming Catastrophic Forgetting During Domain Adaptation of
Neural Machine Translation,” in Proceedings of the 2019 Conference of
the North, Minneapolis, Minnesota, pp. 2062–2068, DOI:
10.18653/v1/N19-1209.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge,
Massachusetts, London, England: MIT Press, 2016.

[34] F. A. Gers, “Learning to forget: continual prediction with LSTM,” in
ICANN99: Ninth International Conference on Artificial Neural
Networks, Edinburgh, UK, 1999, pp. 850–855, DOI:
10.1049/cp:19991218.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[36] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” 2013.

[37] Y. LeCun, C. Cortes, and C. J.C. Burges, The MNIST database of
handwritten digits. Dataset. Accessed on: Mar. 27 2020.

