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Abstract— Fault prediction based upon deep learning 

algorithms has great potential in industrial automation: By 

automatically adapting to different usage contexts, it would 

greatly expand the usefulness of current predictive maintenance 

solutions. However, restrictions regarding the centralized 

accumulation of data necessary for such automatic adaption call 

for a distributed approach to training these algorithms. Therefore, 

in this paper, a continual learning based algorithm for fault 

prediction is presented, allowing for distributed, cooperative 

learning by elastic weight consolidation. This algorithm is then 

evaluated on a large NASA turbofan engine dataset and shows 

promising results regarding the performant training on decentral 

sub-datasets for industrial automation scenarios. 
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I. INTRODUCTION 

The trend of industrial digitalization has led to an increasing 
system complexity, which in turn brought about an increased 
frequency and a reduced foreseeability of ever more complex 
faults. However, the same developments combined with the 
concepts of Industry 4.0 or the Industrial Internet of Things 
resulted in a widespread availability of high quality, high-
resolution data [1]. This data is the basis for fault diagnosis and 
prognostics required for predictive maintenance – a possible 
solution to the aforementioned problem. Yet, many of these 
approaches still require a great level of manual adaption to the 
respective scenarios [2–4] – a deed oftentimes impossible to 
carry out, because the specific operating conditions constituting 
those scenarios might be unknown to the provider of predictive 
maintenance solutions. 

Deep learning based fault prediction offers automatic 
adaptability to those different usage scenario, e.g. of the same 
machine at different operating sites, to allow a more flexible 
utilization of such approaches [2, 5, 6]. This, however, requires 

the accumulation of large amounts of training data describing 
the different scenarios [7–9], which the customers of deep 
learning based predictive maintenance solutions, usually the 
owners of the machines, might not be willing to share due to 
privacy or industrial espionage concerns, technical or legal 
reasons.  

Problem statement: Today, deep learning based fault 
prediction requires large amounts of data in a central data lake 
to facilitate training. In many scenarios, this is not possible due 
to legal or technical reasons which prevent such merging of 
datasets. Therefore, an approach for the disjoint processing of 
deep learning based fault prediction is needed. 

Continual learning algorithms could solve this problem, 
because they facilitate performant training on small, decentral 
datasets [9–12]. One such algorithm is the so-called Elastic 
Weight Consolidation (EWC), which enhances a conventional 
deep learning architecture already suiting the respective 
industrial use case for a centralized dataset [10].  

Structure: This paper presents an industrial application case 
study in section II A, discusses the state-of-the-art in deep 
learning based fault prediction in section II B and gives an 
overview of continual learning and EWC-based knowledge 
transfer in section II C. Then, a conventional deep learning 
architecture for fault prediction based upon these findings is 
developed in section III A. In section III B, it is expanded to 
incorporate EWC to enable effective learning on smaller, 
decentral datasets without the need for centralized (cloud) 
storage. Finally, both algorithms are evaluated in section IV and 
a conclusion is drawn in section V. 

II. RELATED WORK 

This section introduces related work regarding a suitable 
dataset, deep learning based turbofan engine degradation 
prognostics as well as continual learning and EWC. It closes 
with a brief conclusion. Regarding the degradation prognostics, 
comparison of recently published approaches is presented. For 
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EWC, a general description as well as recent implementation 
examples are given. 

A. Turbofan Degradation Dataset 

A well-used dataset for fault prediction using deep learning 
is the Turbofan Engine Degradation Simulation Data Set 
(TEDSDS) by NASA [13]. It is based on the Commercial 
Modular Aero-Propulsion System Simulation developed by [14] 
and includes four simulated datasets (FD1 to FD4). Each dataset 
consists of several dozens of individual engines’ time series. 
Each individual engine’s data starts with a varying degree of 
initial wear and manufacturing variation. The engines are then 
run to failure in the training data. For the test data, the time series 
stop before a failure occurs, but instead the true Remaining 
Useful Life (RUL) is given. Every data point consists of a unit 
number, a timestamp, three operational parameters and 21 
different sensor measurements of which some are constant. The 
different datasets vary in complexity as the number of operating 
conditions changes between one (FD1 and FD3) and six (FD2 
und FD4). 

As performance metrics, [15] proposes the Root Mean 
Square Error (RMSE) and a Prognostic Health Management 
Error (PHME) function (1), where At is the actual RUL, Pt is the 
predicted RUL, n is the number of predicted RULs, a1 = 13 and 
a2 = 10. Because the safety-critical nature of turbofans is better 
represented by the PHME punishing overestimations of the RUL 
heavier than underestimations, it is considered the more 
important metric (see Fig. 1). 

PHME = {
∑ 𝑒

−
𝐴𝑡−𝑃𝑡

𝑎1𝑛
1 − 1 for (𝐴𝑡 − 𝑃𝑡) < 0

∑ 𝑒
𝐴𝑡−𝑃𝑡

𝑎2𝑛
1 − 1  for (𝐴𝑡 − 𝑃𝑡) ≥ 0

              () 

B. Deep Learning Architectures for Turbofan Degradation 
Prognostics 

Many variants of deep learning algorithms have been applied 
to the TEDSDS in recent years (see Table 1). Studies discussed 
here utilize Convolutional Neural Networks (CNN), Long-Short 
Term Memory networks (LSTM) or Deep Belief Networks. A 
piecewise linear RUL labeling was used, which acknowledges 
that in the early stage of a turbine’s runtime no degradation is 
discernible. This approach is used by all publications discussed 
here. 

Reference [16] applied a CNN to RUL prediction. They used 
the sensor data of the turbofans and one handcrafted feature 

along a 15-cycle wide timed window as input for their two-
dimensional convolution layers. Two-dimensional convolutions 
allow the CNN to learn correlations along the feature dimension 
as well as the time dimension. The architecture is a conventional 
CNN with average pooling and an added fully connected layer 
that predicts the RUL. Reference [16]’s approach showed 
improvements compared to Support Vector Machines, 
Relevance Vector Machines and Multilayer Perceptrons. 

Reference [17] utilized an approach similar to [16]. 
However, they added no features by hand, removed the pooling 
layers and reduced the convolution dimensions to a single one, 
which was applied only in the time dimension. Through these 
changes and a deeper CNN they were able to achieve better 
results than [16]. 

Reference [18] used an ensemble of Deep Believe Networks 
consisting of stacked Restricted Boltzmann Machines, which are 
each unsupervisedly trained with contrastive divergence. The 
Deep Believe Networks are then supervisedly trained with 
backpropagation. Ensembles are a combination of several 
(base)-models forming one better performing model. Previous 
work on ensembles showed improvements in generalization [19] 
and mitigating catastrophic forgetting [20]. Reference [18] used 
a Multiple Objective Evolutional Algorithm Based on 
Decomposition to train different Deep Believe Networks. More 
specifically, they use the evolutional algorithm to evolve the 
hyper- and training parameters of the Deep Believe Networks. 
After a certain number of generations, several evolved Deep 
Believe Networks then form the ensemble. A Multiple Objective 
Evolutional Algorithm Based on Decomposition can have 
multiple objective functions instead of just one like conventional 
evolutional algorithms. Reference [18] used this to evolve not 
only for accuracy but also for diversity of the individual Deep 
Believe Networks. Their results show impressive prediction 
qualities compared with other Deep Believe Networks and that 
they can outperform learning algorithms like Multilayer 
Perceptrons and Support Vector Machines. 

Reference [21] chose a 2-layer deep LSTM, which are 
widely used for sequential data, followed by two fully connected 
layers to predict the RUL. Their results are promising and 
consistent over the datasets, outperforming CNNs, Multilayer 
Perceptrons and Support Vector Machines.  

TABLE I.  RECENT DEEP LEARNING LITERATURE RESULTS: PHME 

(UPPER VALUE) AND RMSE (LOWER VALUE) ON THE TEDSDS  

Algorithm 
Dataset 

FD1 FD2 FD3 FD4 

CNN 

[16] 

1286 

18.45 

13570 

30.30 

1596 

19.82 

7886 

29.16 

CNN 
[17] 

274 
12.61 

10412 
22.36 

284 
12.64 

12466 
23.31 

Ensemble Deep 

Believe Network 

[18] 

334 
15.04 

5585 
25.05 

422 
12.51 

6558 
28.66 

LSTM 

[21] 

338 

16.14 

4450 

24.49 

852 

16.18 

5550 

28.17 

Restricted Boltzmann 

Machine + LSTM 
[22] 

231 

12.56 

3366 

22.73 

251 

12.10 

2840 

22.66 

Autoencoder + LSTM 

[23] 

261 

13.63 

- 

- 

- 

- 

- 

- 

 

 

Fig. 1. Simple comparison of RMSE and PHME in case of  underesti-

mation (left) and overestimation (right) of RUL  
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The architecture proposed by [22] is similar, but they added 
another fully connected layer before the LSTMs. This layer was 
unsupervisedly pretrained with a Restricted Boltzmann 
Machine, like one layer of a Deep Believe Network. 
Additionally, they performed a hyperparameter optimization 
with a genetic algorithm. This semi-supervised combination 
lead to very good results, beating all other deep learning 
algorithms discussed here.  

Instead of a semi-supervised training, [23] placed an 
Autoencoder before the LSTM layers. Autoencoders are well-
established, unsupervisedly trained feature extraction 
algorithms. Reference [23] used bidirectional LSTM layers, 
whose predictions can be influenced by later time steps. 
Bidirectionality is often used in natural language processing, so 
later parts of a sentence can change predictions of earlier parts, 
however, this does not seem useful for fault prediction. Their 
published result on one turbofan engine looks promising, but it 
remains unclear whether their approach translates well to the 
other datasets. 

However, all the approaches discussed require large datasets 
to train on. In order to allow for the effective training on smaller, 
decentral datasets without causing catastrophic forgetting, these 
approaches need to be combined with continual learning 
methods. 

C. Continual Learning and Elastic Weight Consolidation 

The term ‘continual learning’ describes a set of approaches 
aimed at transferring knowledge from one or more source tasks 
to a target task in order to train a deep learning algorithm capable 
of solving source and target tasks. This is sometimes called 
‘multi-tasking’ or ‘incremental learning’ [24]. 

Continual learning approaches can be divided into three 
approach categories: architectural, rehearsal and regularization 
approaches [24]. For a practical application in solving the 
problem of learning on not to be merged, but somewhat similar 
datasets, one approach category is more promising than the other 
two: While rehearsal approaches bear the risk of disclosing too 
much information taken directly from the datasets themselves 
and architectural approaches strive on more loosely related 
tasks, regularization approaches using altered loss functions and 
rather abstract meta-data in order to solve more closely related 
tasks appear best suited for the problem at hand. Among the 
older, more widely discussed and applied regularization 
approaches is EWC, which is therefore chosen for the approach 
proposed in this article. 

Reference [10]  introduced EWC as a method to overcome 
the problem of a neural network’s loss of knowledge concerning 
previously learned tasks while training new tasks in multi-
tasking problems, the so-called catastrophic forgetting [25]. It is 
based on the fact that much more than one set of weights and 
biases θ characterizing a trained deep neural network will result 
in the same performance of said network [26]. This allows for a 
possible solution 𝜃𝐵

∗  of a task B to be close to a previously found 
possible solution 𝜃𝐴

∗ of a task A and therefore enables a neural 
network to incorporate both sets of weights and biases in a 
manner that solves both tasks. This “closeness” of the possible 
solutions is achieved by constraining the change of parameters 
most important to the performance in the previously learned task 

A by adding a quadratic penalty to the loss function () LB(θAB) 
is the loss for task B without that penalty, λ defines the 
importance of the old task compared to the new one, F is the 
diagonal of the Fisher information matrix and i labels each 
individual parameter. 

𝐿(𝜃𝐴𝐵) = 𝐿𝐵(𝜃𝐴𝐵) + ∑ 𝜆𝐴 ⋅ 𝐹𝐴,𝑖(𝜃𝐴𝐵,𝑖 − 𝜃𝐴,𝑖
∗ )

2
 𝑖          () 

Correspondingly, the loss function for a third task C would 
be (3). 

𝐿(𝜃𝐴𝐵𝐶 ) = 𝐿𝐶(𝜃𝐴𝐵𝐶 ) + ∑ [𝜆𝐴 ⋅
𝑖

 

𝐹𝐴,𝑖(𝜃𝐴𝐵𝐶,𝑖 − 𝜃𝐴,𝑖
∗ )

2
+𝜆𝐵 ⋅ 𝐹𝐵,𝑖(𝜃𝐴𝐵𝐶,𝑖 − 𝜃𝐴𝐵,𝑖

∗ )
2

]       () 

In a reply to [10], [27] argues that starting with the third task, 
any intermediate parameter estimates are unnecessary as the 
information contained within them is already represented by the 
latest parameter estimate. However, as pointed out by [28] and 
verified by experiments carried out by [29], these intermediate 
parameter estimates improve the “remembrance” of older tasks 
and thereby the algorithms performance.  

Since its initial presentation, EWC has been put on trial in 
different domains and scenarios:  

In the field of medical radiology, [30] examined the 
performance of an EWC-based algorithm on different image 
segmentation tasks. The images were MRI scans of human 
brains on which the algorithm outdid all other, non-continual 
approaches except for one where all tasks were trained 
simultaneously. However, [30] saw “significant space for 
further research” as the performance was still significantly 
worse than that of single-task ML. Reference [31], too, 
examined a segmentation scenario. They found that EWC 
“restricted the degree of catastrophic forgetting but also the 
ability to adopt to the new domain.” Similarly, they saw a need 
for “more extensive evaluation.”  

In the field of machine translation, [32] examined the 
performance of an EWC-based algorithm regarding machine 
translation of sentences from news and patents. The data was 
from different, domain-typical databases, e.g. multilingual 
patent databases. EWC outperformed other, state-of-the-art 
approaches in five out of six sub-tasks. Therefore, [32]  saw it 
fit to be “used in practical situations.”  

To the authors’ knowledge, no EWC trial has been published 
for the field of RUL prediction or predictive maintenance. 

D. Conclusion of Related Work 

The benchmark dataset used in this paper is the TEDSDS by 
NASA. Its pre-defined test data ensures a comparability of 
results with the many publications in which it is used as well. As 
deep learning method, LSTM is chosen due to the high 
prediction performance, as discovered by earlier publications, 
and its superior adaptability to different data formats compared 
to other approaches. To allow for the performant training on 
decentral, smaller datasets, EWC that has shown promising 
results in image segmentation and machine translation is 
introduced. Not having been applied to the field of predictive 



 

 

maintenance yet, it is the aim of this paper to investigate the 
potential of EWC in fault prediction. 

III. METHODOLOGY 

In this section, the proposed deep learning architectures for 
RUL prediction are presented. First, the architecture used 
without EWC and the associated hyperparameter search are 
discussed. Next, the proposed architecture used with EWC is 
described. 

A. Proposed Setup for Deep Learning Architecture without 
Elastic Weight Consolidation 

Similar to the architectures of [23] and [22] , the proposed 
architecture consists of four parts: A dense layer, initialized with 
unsupervised pretrained weights, which is followed by several 
LSTM layers, a wide dense layer and the RUL output. The 
following subsection describes each part in detail. 

1) Architecture 

Initialization of the Dense Layer is motivated by the 
following: Labeled data is expensive to create and therefore 
more scarce than unlabeled data. To make use of unlabeled data 
we therefore follow [23] and [22] by using unsupervised 
pretraining to initialize the first part of the proposed architecture. 

Autoencoders (AE) are unsupervisedly trained feedforward 
neural networks, consisting of an encoder and decoder part as 
illustrated in Fig. 2. The network is trained to recover the input 
data at its output. While passing through the network, the data is 
compressed in the smaller Code Layer. Through the 
compression an internal lower dimensional representation of the 
data is created, which only contains the more important features 
of the data. In contrast to [23], we propose the usage of an 
additional sparsity constraint on the Code Layer in the form of a 
regularizing loss function that keeps the average activation of 
the Code Layer low to improve the feature extraction quality 
[33] of the encoder. This is called a sparse AE. Rectified Linear 
Units (ReLU) are used as activation function of the Code Layer. 
The pretraining process is done as follows: A sparse AE is 
unsupervisedly trained. Then the weights and biases of the 
encoder part are copied into the first dense layer. 

The Code Layer is followed by LSTM Layers. Literature 
results in Table I suggest that LSTM based approaches 
outperform CNN and Deep Believe Network based approaches, 
especially on the PHME of datasets FD2 and FD4. Additionally, 
CNNs and Deep Believe Networks rely on fixed time windows, 

which lessens their applicability. Therefore, this study utilizes 
LSTM. 

An LSTM is a recurrent neural network architecture 
specialized on sequence data that can actively learn to remember 
information over a sequence. We propose the usage of the 
LSTM version by [34]. The main difference to the first described 
LSTM is its ability to also learn to actively forget information. 
Furthermore, choosing [34]’s LSTM version enables us to use a 
hardware accelerated implementation and thereby reduce the 
training time of our algorithm. 

After the LSTM Layers, the high dimensional data is reduced 
with an additional fully connected layer, the RUL Layer. Its 
activation function is optimized by the hyperparameter search. 
Output of the proposed setup without EWC is the one-
dimensional RUL value. Therefore, the last single neuron has a 
linear activation function.  

Fig. 3 shows an overview of the proposed setup. The 
transparencies in each part of the setup symbolize 
hyperparameters that are chosen separately for each dataset by a 
hyperparameter search. Every layer except the first layer uses 
dropout, which is a regularization technique, first described by 
[35], that helps to prevent deep learning models from overfitting 
by randomly disabling neurons during the training process. 

2) Hyperparameter search 

The hyperparameter search to find a well performing 
architecture is carried out for each dataset individually. 20% of 
the training data is chosen randomly as validation data. To 
conduct the search, Tree of Parzen estimators as suggested by 
[36] and their hyperopt framework are used. Table II shows all 
hyperparameters and their respective search spaces. Choice 
means that the search space is constrained to the discrete list of 
values listed. Uniform indicates a continuous interval between 
the given values. Data dim is the dimension of the input data. 
Table III shows the results of the hyperparameter search for each 
turbofan dataset. 

B. Proposed Setup for Elastic Weight Consolidation  

In order to enhance the conventional deep learning 
architecture described so far to facilitate EWC, the diagonal of 
the Fisher matrix is needed (see subsection 2.B). The Fisher 
matrix for a task A is defined as the covariance matrix of the 
score function as defined by (4): 

                          𝑠𝑨(𝜃) =
∂ 𝑙𝑜𝑔(𝐿(𝑋𝐴,𝜃))

∂𝜃
                    () 

 

Fig. 2.  Schematics of an autoencoder 

 

 

Fig. 3. Deep learning architecture used for the RUL prediction without 

elastic weight consolidation. Transparencies indicate variable layer sizes, 

which are hyperparameters. 



 

 

To be able to calculate the score, we require the prediction 
likelihood L(XA, θ) of the model that is trained on a task A given 
some parameters θ on a data point XA of that task. The setup for 
RUL prediction as described in subsection 3.A and as used in 
the studies listed in Table I outputs no such prediction 
likelihood.  

Therefore, we propose a change of the prediction problem 
from regression to classification. This is achieved by exchanging 
the last single linear activated output neuron with three output 
neurons with a softmax activation. Each output neuron stands 
for a predicted class representing the state of health (SoH) of a 
turbofan engine. These states of health are defined as RUL 
intervals given in Table IV. 

Due to these architectural changes we can calculate the score 
as follows:  

1. Draw a random data point XA from the dataset of task 

A. 

2. Calculate the prediction probabilities vector pA of the 

trained model on the drawn data point. 

3. Choose a single class as prediction by sampling from 

a multinomial distribution with probabilities 𝑝𝐴. This 

sampling process is the likelihood function in the 

definition of the score function. 

4. Calculate the partial derivatives as defined in the score 

function. The output is a mapping of how strongly the 

class prediction varies with each weight. 

The described steps are repeated for many data points. For 
the turbofan dataset 500 data points are used. The diagonal 

entries of the covariance matrix of all calculated scores give us 
the FA,i values for the EWC loss function. To validate our 
implementation of EWC we repeated [10]’s experiments on the 
MNIST dataset [37] successfully.  

The SoH classification is easier to learn than the RUL 
regression, therefore no hyperparameter search is conducted and 
no dropout is used. Applying the unsupervised pre-training 
when EWC is used would add unknown quantities of prior 
knowledge into the network, we therefore do not use it for EWC 
experiments. Thus, the first layer is a normal dense layer. Table 
V shows the hyperparameter architecture used for the EWC 
experiments. The last fully connected layer is of size 3, because 
of the 3 SoH classes. 

IV. EXPERIMENTS 

In this section, the experiments carried out using the 
proposed deep learning architectures on the turbofan 
degradation datasets as well as their results are described. The 
non-EWC architecture’s results are presented first, followed by 
the ones delivered by the EWC implementation. Certain areas in 
the diagrams presented are highlighted and numbered in order to 
facilitate better understanding.  

A. Setup of the Experimental Study 

All experiments were carried out on a computer with an Intel 
i7-7700K CPU and a NVIDIA GeForce GTX 1060 6GB GPU 
running Ubuntu 18.04.3 LTS. The learning framework used was 
Tensorflow 1.13.2. 

The turbofan engine data was transformed into sub-
sequences of length 50 and normalized between 0 and 1. The 
RUL values were created by a piecewise linear function with a 

TABLE II. HYPERPARAMETERS AND THEIR CORRESPONDING SEARCH 

SPACES. COLORS INDICATE LAYER ACCORDING TO FIG. 3. 

Parameter Name Search space 

Code layer size  Choice (4; 7; ...; Input data dim) 

# of LSTM layers Choice (2, 3) 

LSTM layer 1 size Choice (25; 50; 100; 200; 300; 400) 

Dropout 1 Uniform (0…1) 

LSTM layer 2 size Choice (25; 50; 100; 200; 300; 400) 

Dropout 2 Uniform (0…1) 

LSTM layer 3 size Choice (25; 50; 100; 200; 300; 400) 

Dropout 3 Uniform (0…1) 

Dense layer size Choice (25; 50; 100; 200; 300; 400) 

Dense activation function Choice (ReLU; sigmoid) 

Dropout 4 Uniform (0…1) 

TABLE III. RESULTS OF THE HYPERPARAMETER SEARCH FOR EACH 

TURBOFAN DATASET. COLORS INDICATE LAYER ACCORDING TO FIG. 3. 

Parameter Name FD1 FD2 FD3 FD4 

Code layer size 7 19 13 7 

# of LSTM layers 2 2 2 2 

LSTM layer 1 size 100 200 50 100 

Dropout 1 0.61 0.73 0.54 0.61 

LSTM layer 2 size 100 200 50 100 

Dropout 2 0.73 0.26 0.33 0.74 

Dense layer size 100 100 25 100 

Dense activation funct. ReLU sigmoid ReLU ReLU 

Dropout 4 0.65 0.08 0.1 0.65 
    

 

TABLE IV.  DEFINITION OF THE CLASSES BY REMAINING USEFUL LIFE 

(RUL) VALUES AND STATE-OF-HEALTH (SOH) INTERPRETATION 

Class No. 1 2 3 

RUL Definition < 60 60 … 129 ≥ 130 

SoH Interpretation Critical Declining Normal 
 

TABLE V.  HYPERPARAMETERS USED FOR THE ELASTIC WEIGHT CONSOL-
IDATION EXPERIMENTS. COLORS INDICATE LAYER ACCORDING TO FIG. 3. 

Parameter Name Parameters used 

Dense layer size 30 

LSTM layer 1 size 200 

LSTM layer 2 size 200 

Dense layer size 3 

Dense activation function softmax 

 

 
Fig. 4. Training and Testing sequence used in the experiments 



 

 

start of the linear phase at cycle 130. To save training time, 
sensors whose signals are constant over the whole sequence 
were removed. 

Each experiment is conducted as illustrated in Fig. 4: In four 
sequential training sessions, the algorithm is trained on one 
dataset each. After each training session, the algorithm is tested 
on all datasets. 

B. Results of the Deep Learning Architecture Experiments 
without Elastic Weight Consolidation 

Table VI shows the results achieved by the proposed semi-
supervised approach on the four TEDSDS. Our proposed 
Approach is in second place behind [22] in all PHME metrics 
except for FD2, where it is third behind [21].  

However, while [22]’s approach outperforms Proposed 
Approach on all metrics, it should be noted that their 
optimization technique takes about 60 hours on every dataset. 
The hyperparameter search we used takes between 2 and 4 hours 
using the same GPU.  

Proposed Approach outperforms [17]’s CNN on every 
dataset measured by the PHME, but their RMSE is better each 
time. This means that Proposed Approach has fewer predictions 
that overestimate the RUL, which is important for a safety 
critical appliance like turbofan engines. 

C. Results of the Elastic Weight Consolidation Experiments 

Before remembering through EWC can be properly 
evaluated, we need to establish how pronounced catastrophic 
forgetting is for the TEDSDS. Fig.  5 shows the accuracy 
changes of a sequential training on the four TEDSDS without 
EWC. During the training of FD1 the accuracy of FD3 rises. 
FD2 and FD4 show a similar relation. The different datasets are 
therefore not independent. However, a clear downward trend of 
FD2’s accuracies during training of FD3 can be seen at highlight 
1 in Fig.  5. At highlight 2, the end of the training, FD1 and 
FD3’s performances are low and FD4 and FD2 perform well due 
to their relatedness. Accordingly, forgetting of FD1 and FD3 is 
occurring. 

Fig.  6 shows the same sequential training as Fig.  5 but with 
EWC. Comparing both figures at highlights 2 and 4 suggests: 
After the training, FD1 and FD4 are remembered significantly 
better than without EWC while the accuracies of FD2 and FD4 
have slightly decreased through EWC. FD2’s accuracy loss at 
highlight 1 is prevented by EWC at highlight 3. The much more 
pronounced downswing of FD3’s accuracy during the second 
training phase might be caused by EWC, but is not problematic, 
because the model has not yet trained on FD3. While EWC 

improves the training somewhat, in total the performance of 
EWC is not satisfactory, because FD1 and FD3’s end accuracies 
are much lower than after their individual training. Experiments 
with higher λ parameters were conducted to force remembering, 
but the training did not converge due to a sharp rise of loss values 
during the training of FD3. 

This difference between EWC’s performance on the 
randomly permutated MNIST datasets and the TEDSDS could 
be explained by two major differences between the datasets 
themselves: 

1. All MNIST datasets are completely independent from 

each other. Therefore, learning one task does not 

increase accuracy on the others. This is clearly not the 

case for the TEDSDS, as can be seen in Fig. 5.  

2. The sub-tasks are not of equal difficulty. While the 

MNIST sub-tasks are all equally hard to learn for a 

neural network (Kirkpatrick et al. 2017), the different 

TEDSDS vary in complexity. This can be seen in 

Table I and Table VI. Every model performs better on 

FD1 and FD3 than on FD2 and FD4. Fig. 5 shows that 

FD1 and FD3 are also learned faster, i.e. after fewer 

epochs, than FD2 and FD4. 
To investigate if the differences in difficulty causes the 

reduced performance of EWC on the TEDSDS, another set of 

 
Fig. 5. Accuracy changes during sequential training of TEDSDS without 
EWC demonstrating catastrophic forgetting. Vertical lines mark the start 

of a new dataset. Training order: FD1, FD2, FD3, FD4. 

 
Fig. 6. Accuracy changes during sequential training of TEDSDS with 
EWC showing improved performance. Vertical lines mark the start of a 

new dataset. Training order: FD1, FD2, FD3, FD4. 

 

TABLE VI.  RESULTS OF THE PROPOSED APPROACH COMPARED TO 

LITERATURE RESULTS ON THE TEDSDS: PHME (UPPER VALUE) AND 

RMSE (LOWER VALUE) 

Algorithm 
Dataset 

FD1 FD2 FD3 FD4 

CNN 
[17] 

274 
12.61 

10412 
22.36 

284 
12.64 

12466 
23.31 

Proposed 259 4617 253 4367 

Approach 13.03 24.28 13.60 26.04 

Restricted Boltzmann 
Machine + LSTM 

[22] 

 231 

12.56 

3366 

22.73 

251 

12.10 

2840 

22.66 

 

 



 

 

experiments was conducted. The two less complex datasets FD1 
and FD3 are each split into two sub-datasets: FD1-A/-B and 
FD3-A/-B. First, a training without EWC is run, whose results 
can be seen in Fig.  7: A decline of the performance (forgetting) 
of FD1-A during the trainings of FD3-A and FD3-B occurs at 
highlight 5. During the training of FD1-B, the performance of 
FD1-A increases again, because both sub-datasets originate 
from FD1. However, at the end of the experiment, accuracies of 
FD1-A and FD1-B are significantly lower than during their 
training. FD3-A and FD3-B are from the same dataset, therefore 
FD3-A was not forgotten and both show a good performance. 

The same training is run with EWC as shown in Fig.  8. 
Accuracy of FD1-A first declines at the beginning of the training 
on FD3-A, but then recovers in highlight 6. At the end of the 
training with EWC, the accuracies for all sub-datasets are close 
to their maximum value. We were also able to increase the EWC 
parameter λ from 13 to 45 without a diverging training.  

These results suggest that EWC works when different tasks 
are related, but its performance declines when the tasks are of 
vastly different complexity. 

V. CONCLUSION 

In this paper, the prediction of the remaining useful life of 
industrial machinery using deep learning architectures was 
examined with a focus on transferring knowledge across 

decentral sub-datasets. The publicly available Turbofan Engine 
Degradation Simulation Data Set by NASA was used for 
evaluation. 

Key result: The decentralized learning architecture 
developed in this paper is capable of effective learning on 
smaller, decentral datasets without the need for centralized 
(cloud) storage. It could therefore solve the problem that arises 
from conventional deep learning based fault prediction’ 
dependency on a centralized accumulation of training data, 
which currently hinders its deployment. 

As the chosen method of continual learning, i.e. elastic 
weight consolidation, requires a conventional deep learning 
architecture as a foundation, we undertook a survey of those 
first. This literature study revealed a great heterogeneity of 
previous approaches with a strong tendency towards the 
combination of several different methods. Based on this data, we 
chose an autoencoder and an LSTM for our proposed deep 
learning architecture.  

Our evaluation of this conventional deep learning 
architecture revealed a performance close to, but not as good as 
the best-performing published approach. However, using a very 
similar hardware, we could reduce the optimization time by 
factor 15 to 30 compared to the aforementioned publication. 

We then expanded our deep learning architecture in order to 
facilitate continual learning by elastic weight consolidation. A 
thorough evaluation of this approach revealed, that 

1. continual learning profits from (sub-)datasets being 

not independent from one another, and 

2. continual learning suffers from (sub-)datasets being of 

different complexity. 
These results concerning the elastic weight consolidation 

methodology call for further research regarding their specific 
impact and extend.  

However, even prior to such investigation, the applicability 
of elastic weight consolidation towards industrial use cases like 
fault prediction appears to be high, because 

1. the accuracy of the approach proposed in this paper is 

high despite the dataset, i.e. the scenario, being far 

from optimal regarding the different tasks’ 

complexity, 

2. different real-life scenarios concerning the same 

component usually display a great relatedness 

regarding the data recorded (i.e. the datasets are not 

independent, see above), and 

3. different real-life scenarios concerning the same 

component are usually of similar complexity 

regarding the data recorded (see above). 
The authors therefore propose to examine the potential of 

elastic weight consolidation on a broader scale in other industrial 
automation scenarios suffering from small datasets. 
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