
AUTONOMOUS VEHICLES

Society today depends on autonomous 
systems. Often, we do not even recog-
nize them which is the ultimate proof of 
the Turing test. The potential of auto-
mated and autonomous driving systems 
is enormous: for example, the use of 
autonomous vehicles will eliminate up to 
90 % of accidents and reduce up to 50 % 
of commuting time per user per day [1]. 
FIGURE 1 indicates the five steps from 
automation to autonomy as also known 
from human learning. Those steps exem-
plify the way of a simple and “assisted 
behavior” in terms of low-level sensing 
and control towards “full cognitive sys-
tems” with a very high degree autonomy.

A completely autonomous car on level 
5 is expected to drive with no human 
intervention even in dire situations. This 
implies that the cars must have intelli-
gence at par or even better than humans 
to handle not just the regular traffic sce-
narios, but also the unexpected ones. 
Although several players such as Google 

and Uber are granted permission to oper-
ate their self-driving services, incidents 
such as the death of a driver put our 
faith in these cars to a test [2]. It is there-
fore quite apparent that existing valida-
tion measures aren’t enough. New test 
methods are needed that can envision 
fatal traffic situations that humans hav-
en’t encountered yet. In addition, testing 
cannot simply be isolated to final stages, 
but must be part of every stage in prod-
uct lifecycle. Hence, a sensible engineer-
ing process has to be adopted in develop-
ing autonomous cars that puts enough 
emphasis on testing and validation.  
Un like an automated system which  
cannot reflect the consequences of its 
actions and cannot change a predefined 
se  quence of activities, an autonomous 
system is meant to understand and decide 
about how to execute based on its goals, 
skills and a learning experience.

This article introduces validation  
and certification as well as the general 
approval (homologation) of autonomous 
vehicles and their components. It pro-
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vides insights into the validation of 
autonomous systems, such as those  
used in automation technology and 
robotics and gives an overview of meth-
ods for verification and validation of 
autonomous vehicles, sketches current 
tools and shows the evolution towards 
AI-based techniques for the influence 
analysis of continuous changes.

VALIDATION OF AUTONOMOUS 
VEHICLE SYSTEMS

Autonomous vehicle systems have com-
plex interactions with the real world. 
This raises many questions about the val-
idation of autonomous vehicle systems: 
“How to trace back decision making and 
judge afterwards about it?”, “How to 
supervise?”, or “How to define reliability 
in the event of failure?”.  FIGURE 2 pro-
vides an overview on validation technol-
ogies for autonomous systems. The trans-
parency of the validation is horizontally 
distinguished. Black box means that 
there is no insight to the method and  

coverage, while white box provides trans-
parency. The vertical axis classifies to the 
degree we can automate the validation 
techniques and thus for instance facilitate 
regression strategies with software up-
dates and upgrades.

TABLE 1 provides a complete evaluation 
on static and dynamic validation tech-

nologies for autonomous systems. It 
mentions some tools, but they are to  
be seen as an impulse, rather than a 
complete list or even a recommendation. 
Every company today implements its 
own methodology and development 
environment. Too often one sees ambi-
tious development teams, complex tool 
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Method
Charac-
teristics

Tool Support, 
Technologies

Cover-
age

Regression 
strategy

Strength Weakness
Effective-

ness
Effi  ci-
ency

Modeling 
and simula-
tion environ-
ments with 
SIL, HIL, MIL

Static and 
dynamic

Model checker, 
e.g. Matlab, 
dSPACe, Vector 
VT System, 
novaCarts, Vires, 
PreScan

0 Repeat impac-
ted scenarios 
(low efficiency)

> Reduces validation cost.
> Decouples hardware and 
software development.

> Brute Force, for high 
coverage. 
> Too much oriented 
towards components 
> Tests only for known 
scenarios. 
> Scenario banks are 
not comprehensive to 
validate autonomous 
systems 
> Intransparent 
dependencies

0 0

Function test Dynamic,  
all functions

Modeling tool for 
functional abs-
traction with unit 
test tools (ex: 
JUnit, PHPUnit), 
dedicated test 
environments for 
stub generation

0 Repeat functio-
nal test cases 
for impacted 
functions

> Tests all AI aspects: sen-
sing, decision making and 
action taken. 
> Validates all the functio-
nal requirements.

> Too much oriented 
towards components.
> Insufficient to vali-
date complete systems

0 +

Integration 
test

Dynamic Test suites, test 
management, 
Combinatorial 
tools such as 
AeTG, Citrus etc.

0 Regenerate  
test cases

> Tests integration  
of components.

> Large number of 
interfaces: easy to 
miss some links. 
> Fault localization  
is difficult.

+ +

Fault 
injection

Static for 
residual 
defect 
estimation

Test environment 
and defect 
modeling e.g. 
beSTORM, Secu-
rity Innovation

− Introduce  
few selected 
defects

> Provides estimate on resi-
dual defects and coverage. 
> exposes weak, enabling 
designers to strengthen 
them.

> need concrete 
understanding of 
underlying system 
architecture and 
behaviour.

 − −

negative 
requirements 
with misuse, 
abuse, con-
fuse cases

Static specifi-
cally for 
Safety, Secu-
rity, Usability

Directly modeled 
and traced with  
requirements 
tools, e.g. 
DOORS, Visure, 
PTC, PReevision, 
enterprise 
Architect, HP 
ALM

0 Reuse situatio-
nal negative 
cases

> Good for scenarios to be 
avoided. 
> Formalizes non-functional 
requirements. 
> Strengthens system 
security.

> Difficult to set  
up systematically. 
> no coverage  
schemes. 
> The test cases do 
not necessarily cover 
all possible negative 
cases.

+ +

FMeA, FTA Static, speci-
fically for 
safety critical 
systems

FMeA works-
heets, compo-
nent abstrac-
tions, reuse 
library

0 Retest for  
the changed 
components

> Well established for safety 
and security (attack tree). 
> enables designers to fore-
see system interface 
failures.

> Depends heavily  
on human knowledge. 
> Labour intensive.

+ +

experiments, 
empirical 
test 
strategies

empirical test 
generation 
for load test, 
performance, 
thermal, etc.

experiment spe-
cific test tools, 
such as Parasoft 
DTP, eggPlant, 
Thermal imager 
etc.

+ Repeat the test 
strategies for 
changed 
functions

> Relatively easier to  
frame the test cases. 
> Covers wide range  
of electrical systems.

> Depends heavily  
on human knowledge. 
> Labour intensive. 
> Very little or no  
test automation.

+ 0

Specific qua-
lity require-
ments test 
e.g., pen tes-
ting, fuzzing

Dynamic, 
specifically 
for quality 
requirements

Dedicated test 
tools, e.g. auto-
matic fuzzing 
extensions e.g. 
CAnoe, OWASP 
ZAP, Vega etc.

− Retest for 
impacted 
components

> Well established for secu-
rity. 
> effective in ensuring that 
the system meets known 
quality requirements.

> Often insufficient  
to validation complete 
system security and 
safety.

0 +

Brute force 
usage in 
real-world 
while running 
realistic 
scenarios

Dynamic for 
ensuring 
situational 
coverage

Recording and 
replay with actual 
scenario libraries 
with data loggers 
from various sen-
sor systems, e.g. 
Tecnomatix, Car-
Maker, eB Assist, 
CAnape

0 Repetition  
(low efficiency)

> Closest to real-world  
and thus highly effective 
> Validates all  
systems at once  
> Comprehensive  
view and coverage 
> Standardizes scenario 
storage format and tagging

> High effort  to cap-
ture all relevant scena-
rios with underlying 
real-time data analysis  
> Unclear coverage 
> Most of the test 
cases are redundant > 
Intransparent situatio-
nal coverage

+ −

Intelligent 
validation 
e.g., cogni-
tive testing

Dynamic test 
generation 
and selec-
tion depen-
ding on situ-
ation and 
environment

Machine-lear-
ningframeworks, 
such asTensor-
flow, Apache 
Spark, and so 
onOpen data 
sets, such as 
nuScenes`

+ Reuse genera-
ted test cases 
from depen-
dency database

> Improved transparency 
> Automatically considers 
dependencies to external 
environment and internal 
functions 
> Automates major part of 
test procedure 
> Standardizes scenario 
storage format and tag-
ging > Sharing test sce-
narios across V-Model  
abstraction levels

> High effort to  
set up AI based  
test environment. 
> needs large  
computation power 
> Growing discipline, 
i.e. not much method 
and tools available

+ +

TABLE 1 Evaluation of validation technologies for autonomous systems (© Ebert|Weyrich)
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chains, but no tangible sustainable test-
ing strategy.

Positive testing methods aim to ensure 
that all the functional requirements of 
the system are taken care. While the 
negative testing methods ensure that  
the system is tested for all the non-func-
tional requirements. Negative require-
ments (f.e. safety and cyber-security)  
are typically implied-requirements and 
are not explicitly specified in System 
Requirement Specifications (SRS). The 
following sub-sections explain how 
these methods are applied to validate 
autonomous cars.

Fault injection techniques make use  
of external hardware to inject faults  
into target system’s hardware. Faults  
are injected either with or without  
direct contact with physical hardware.  
By having direct contacts, faults such  
as forced current addition, forced volt-
age variations etc. can be injected to 
observe the behavior of the system. 
Faults can also be injected without  
make physical contact using methods 
such as heavy-ion radiation, exposure  
to electromagnetic fields etc. Such fault 
injections can cause bit flips, failure of 
hardware etc. which are not tolerated  
in safety critical systems.

Functionality based test methods  
categorize the intelligence of a system 
into three categories: 1. Sensing func-
tionality, 2. Decision functionality and  
3. Action functionality. The idea behind 
such methods is that the autonomous 
vehicle should be able to retrieve various 
functionalities for a given task analogous 
to human beings. For example, the vehi-
cle should be able to recognize vehicles, 
pedestrians etc. for vision-based func-
tionality. Combinations of these recog-
nized objects can then act as inputs to 
decision functionality and several deci-
sions can then lead to actions. Func-
tionality-based testing therefore breaks 
down the scenarios into various func-
tional components which can be tested 
individually.

Simulators are closed indoor cubicles, 
which act as substitute to physical sys-
tems. These simulators can simulate  
the behavior of any system either by 
using physical hardware or by using  
the software model. The behavior of 
driver can then be captured by feeding 
him simulated external environment. 
Since the simulators employ hydraulic 
actuators and electric motors, the iner-
tial effects generated feel nearly the 
same as real system. They are used  

for robots in industrial automation and 
surgery planning in medical, train sys-
tems and automotive.

Nothing can come close to the real 
world than the real world itself. This is 
perhaps the final validation phase where 
completely ready system is driven out 
into real roads with real traffic. The sen-
sors data is recorded and logged to cap-
ture the behavior in critical situations.  
It is then later analyzed to accommodate 
and fine tune the systems according to 
real word scenarios. The challenge in 
this stage however lies in the sheer 
amount of test data that is generated. 
A stereo video camera alone is found  
to generate 100 GB of data for every  
kilometer driven. In such situations,  
big data analysis becomes extremely 
important. The approval of autonomous 
vehicles therefore requires regressive 
validation, i.e., a test that, after changing 
the control algorithms, performs a new 
check and ensures the function. Thus, 
safety, reliability and reliability can be 
obtained both in development, testing 
and in use, even when the system 
adapts, i.e. is changed.

While still relevant, traditional vali-
dation methods are not enough to fully 
test the growing complexity of autono-
mous cars. Machine learning with situa-
tional adjustments as well as software 
updates and upgrades require novel 
regression strategies. Intelligent valida-
tion techniques tend to automate com-
plete testing or certain aspects of testing, 
FIGURE 3. This eliminates the potential 
errors associated with manual deriva-
tions of test cases since humans may  
fail to derive or think about certain sce-
narios. It also eliminates the enormous 
amount of time that needs to be invested 
to derive the test cases. The following 
sub-sections summarize some of the 
papers that attempt to derive such vali-
dation techniques.

Truly transparent validation methods 
and processes become of an uttermost 
relevance and will be challenged by  
the progress of technology over the  
five sketched steps towards autono-
mous behavior. Although still relevant, 
tra ditional validation methods aren’t 
enough to completely test the grow-
ing complexity of autonomous cars. 
Machine learning with situational 
adaptations and software updates  
and upgrades demand novel regres-
sion strategies. 
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 testing, AI testing

FIGURE 2 Validation technologies for autonomous systems (© Ebert|Weyrich)
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COGNITIVE TESTING

With artificial intelligence and machine 
learning, we need to satisfy algorith-
mic transparency. For instance, what  
are the rule in an obviously not any-
more algorithmically tangible neural  
network to determine who gets a credit 
or how an autonomous vehicle might 
react with several hazards at the same 
time? Classic traceability and regres-
sion testing  will certainly not work. 
Rather, future verification and valida-
tion methods and tools will include  
more intelligence based on big data 
exploits, business intelligence, and  
their own learning, to learn and 
improve about software quality in  
a dynamic way. Cognitive test proce-
dures are based on a database that trans-
parently depicts scenarios and disrup-
tions, so that a target behavior for criti-
cal situations, boundary conditions, etc. 
is defined. In the signal path, signals  
are generated from the scenarios for the 
interfaces of the autonomous system or  
its components. For example, if a child 
playing suddenly appears in front of the 
vehicle, the reaction becomes the overall 
system or the action of its components, 
e.g. his steering, tested. These signals  
can be simulations for camera and radar 
sensors, but also communication signals, 
such as Car-to-X, residual bus simulation 
and the display of disturbances.

By parameterization special cases, 
such as different lighting conditions,  

can be displayed. From the behavior of 
the system under test actual rules are  
ex  tracted, which are compared with the 
expected target behavior. The automati-
cally extracted actual rules are com-
pared with known and accepted target 
rules as to how the system under test 
should behave in the scenario. The target 
rules are derived from laws, experiences, 
human expertise, guidelines from ethics 
committees but also from simulations. 
They should be transparent and there-
fore accessible to human testing. Rules 
are extracted from the behavior of the 
autonomous system under test in order 
to make transparent the learned intrans-
parent behavior stored in implicit rules 
or neuron links. These now transparent 
but quite fuzzy rules are compared with 
the set rules in behavior. The validation 
and certification is based on the control 
deviations [5,7,8,9].

FIGURE 4 gives an overview of the cog-
nitive testing we are currently using for 
networked components of autonomous 
vehicle systems. Unlike Brute Force, the 
dependencies between the white box and 
the black box are considered, bringing 
efficiency and effectiveness into line. 
Automotive functions consist of the in -
teraction of many components, such as 
controllers, sensors and actuators, which 
are distributed in the system. In a dis-
tributed overall system, undesirable 
behavior and basic malfunctions can 
arise because there has been a software 
change at one point that breaks through 

to other components. This raises numer-
ous questions: How can the function  
of a system be ensured if changes take 
place in the subcomponents? How can 
the safety and reliable behavior be guar-
anteed if software changes are made to 
individual components during operation?

A key question is in which way an 
artificially intelligence can support the 
process of validation. Obviously, there  
is many AI approaches ranging from 
rule-based systems, fuzzy logic, Bayes-
ian nets to the multiple neural network 
approaches of deep learning. However, 
the process of validation of an autono-
mous system is multilayered and rich in 
detail. Various levels of validation tests 
can be distinguished, such as the sys-
tems level, the components or modules. 

The potential for an intelligent testing 
is manifold: On a system level there are 
questions on which test cases must be 
executed, and to what extent? This 
means an intelligent validation is re -
quested to help in terms of selection or 
even creation of test cases for validation. 
In a first step an assistance functionality 
which helps to identify priorities in an 
existing set of cases. As a result, the vali-
dation expert can test quicker and with  
a better coverage of situational relevant 
scenarios. On the level of a component or 
module testing it is also required to iden-
tify relevant cases. This can range from  
a simple support on how to feed the sys-
tem with adequate inputs and check on 
the outputs to complex algorithms which 
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automatically create test cases based on 
the code or user interface.

PERSPECTIVES

With the growing importance, and hence 
the concerns of users and policymakers 
regarding the impact of autonomous sys-
tems on our lives and society, software 
engineers must ensure that autonomous 
functions and systems function reason-
ably well and properly. To build trust, 
the quality of the technical system is 
expected to be at least an order of mag-
nitude higher than that of human-pow-
ered systems. Building trust is closely 
linked to issues of validation. However, 
such validations depend on many fac-
tors. Autonomous vehicle systems pro-
vide efficiency and safety by relieving 
the operator of tedious and error-prone 
manual tasks. The question “Can we 
trust autonomous vehicles?” Will con-
tinue to grow in the coming years.  
Public trust in autonomous vehicle sys-
tems depends heavily on algorithmic 
transparency and continuous validation.

An accident caused by software errors 
is discussed more intensively today than 
the many accidents caused by alcohol. 
On the other hand, current software 
errors with deaths in aviation also show 
a certain “habituation”. The number of 
passengers does not decrease because  
of crashes, as everyone knows that the 
aircraft are altogether safely developed. 
This learning curve of acceptance can be 

seen in all autonomous systems, histori-
cally for example in smartphones, bots 
with automatic speech processing and  
in social networks. An increasingly in-
formed society accepts that while soft-
ware is never error-free, so there is a 
residual risk, there are still many advan-
tages over the past.

With a growing concern of users  
but also policy-makers on the impact  
of autonomous systems on our lives  
and society, software engineers must 
ensure that autonomy acts better than 
humans. Clearly, we do not talk here 
about few percentage points. To build 
trust we rather need at least one order  
of magnitude better quality compared  
to human operated systems. It is above 
all a question of validation to achieve 
trust. Alan Turing who was one of the 
first to consider AI in real life remarked 
wisely: “We can only see a short dis-
tance ahead, but we can see plenty  
there that needs to be done”. This 
remains true for a rather long transi-
tion period, and in  telligent validation 
will play a pivotal role.
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