
AUTONOMOUS VEHICLES

Society today depends on autonomous
systems. Often, we do not even recog-
nize them which is the ultimate proof of
the Turing test. The potential of auto-
mated and autonomous driving systems
is enormous: for example, the use of
autonomous vehicles will eliminate up to
90 % of accidents and reduce up to 50 %
of commuting time per user per day [1].
FIGURE 1 indicates the five steps from
automation to autonomy as also known
from human learning. Those steps exem-
plify the way of a simple and “assisted
behavior” in terms of low-level sensing
and control towards “full cognitive sys-
tems” with a very high degree autonomy.

A completely autonomous car on level
5 is expected to drive with no human
intervention even in dire situations. This
implies that the cars must have intelli-
gence at par or even better than humans
to handle not just the regular traffic sce-
narios, but also the unexpected ones.
Although several players such as Google

and Uber are granted permission to oper-
ate their self-driving services, incidents
such as the death of a driver put our
faith in these cars to a test [2]. It is there-
fore quite apparent that existing valida-
tion measures aren’t enough. New test
methods are needed that can envision
fatal traffic situations that humans hav-
en’t encountered yet. In addition, testing
cannot simply be isolated to final stages,
but must be part of every stage in prod-
uct lifecycle. Hence, a sensible engineer-
ing process has to be adopted in develop-
ing autonomous cars that puts enough
emphasis on testing and validation.
Unlike an automated system which
cannot reflect the consequences of its
actions and cannot change a predefined
sequence of activities, an autonomous
system is meant to understand and decide
about how to execute based on its goals,
skills and a learning experience.

This article introduces validation
and certification as well as the general
approval (homologation) of autonomous
vehicles and their components. It pro-

Automated Driving

Validation of
Autonomous Vehicles
Automated and connected driving up to autonomous vehicles is increas-

ingly being used. But the distrust in their reliability is growing. The

underlying algorithms are difficult to understand and thus intransparent.

Traditional validations are complex, expensive and expensive. In addition,

no transparent coverage for regression strategies for upgrades and

updates is achieved. In this article Vector Consulting and the IAS of the

University of Stuttgart show that classical methods have to be supple-

mented with cognitive test methods.

AUTHORS

Christof Ebert
is Managing Director of Vector

Consulting Services in Stuttgart
(Germany).

Michael Weyrich
is Director of the University of

Stuttgart’s Institute for Automation
and Software in Stuttgart

(Germany).

COVER STORY   Automated Driving

26

Automated Driving

© Vector

vides insights into the validation of
autonomous systems, such as those
used in automation technology and
robotics and gives an overview of meth-
ods for verification and validation of
autonomous vehicles, sketches current
tools and shows the evolution towards
AI-based techniques for the influence
analysis of continuous changes.

VALIDATION OF AUTONOMOUS
VEHICLE SYSTEMS

Autonomous vehicle systems have com-
plex interactions with the real world.
This raises many questions about the val-
idation of autonomous vehicle systems:
“How to trace back decision making and
judge afterwards about it?”, “How to
supervise?”, or “How to define reliability
in the event of failure?”. FIGURE 2 pro-
vides an overview on validation technol-
ogies for autonomous systems. The trans-
parency of the validation is horizontally
distinguished. Black box means that
there is no insight to the method and

coverage, while white box provides trans-
parency. The vertical axis classifies to the
degree we can automate the validation
techniques and thus for instance facilitate
regression strategies with software up
dates and upgrades.

TABLE 1 provides a complete evaluation
on static and dynamic validation tech-

nologies for autonomous systems. It
mentions some tools, but they are to
be seen as an impulse, rather than a
complete list or even a recommendation.
Every company today implements its
own methodology and development
environment. Too often one sees ambi-
tious development teams, complex tool

1

Assisted

2

Partially
automated

3

Conditionally
automated

4

Highly
automated

5

Fully
automated

Low level
sensing and

control

Reactive
behavior

Skilled
behavior

Mission
planning,

control and
execution

Cognitive
behavior

Aspects of
cognition

Perception

Action

Reflection

Automated systems Autonomous systems

FIGURE 1 From assisted to fully automated (autonomous) systems (© Ebert|Weyrich)

27ATZ electronics worldwide  09|2019   

Method
Charac-
teristics

Tool Support,
Technologies

Cover-
age

Regression
strategy

Strength Weakness
Effective-

ness
Effici-
ency

Modeling
and simula-
tion environ-
ments with
SIL, HIL, MIL

Static and
dynamic

Model checker,
e.g. Matlab,
dSPACE, Vector
VT System,
NovaCarts, Vires,
PreScan

0 Repeat impac-
ted scenarios
(low efficiency)

> Reduces validation cost.
> Decouples hardware and
software development.

> Brute Force, for high
coverage.
> Too much oriented
towards components
> Tests only for known
scenarios.
> Scenario banks are
not comprehensive to
validate autonomous
systems
> Intransparent
dependencies

0 0

Function test Dynamic,
all functions

Modeling tool for
functional abs-
traction with unit
test tools (Ex:
JUnit, PHPUnit),
dedicated test
environments for
stub generation

0 Repeat functio-
nal test cases
for impacted
functions

> Tests all AI aspects: sen-
sing, decision making and
action taken.
> Validates all the functio-
nal requirements.

> Too much oriented
towards components.
> Insufficient to vali-
date complete systems

0 +

Integration
test

Dynamic Test suites, test
management,
Combinatorial
tools such as
AETG, Citrus etc.

0 Regenerate
test cases

> Tests integration
of components.

> Large number of
interfaces: easy to
miss some links.
> Fault localization
is difficult.

+ +

Fault
injection

Static for
residual
defect
estimation

Test environment
and defect
modeling e.g.
beSTORM, Secu-
rity Innovation

− Introduce
few selected
defects

> Provides estimate on resi-
dual defects and coverage.
> Exposes weak, enabling
designers to strengthen
them.

> Need concrete
understanding of
underlying system
architecture and
behaviour.

 − −

Negative
requirements
with misuse,
abuse, con-
fuse cases

Static specifi-
cally for
Safety, Secu-
rity, Usability

Directly modeled
and traced with
requirements
tools, e.g.
DOORS, Visure,
PTC, PREEvision,
Enterprise
Architect, HP
ALM

0 Reuse situatio-
nal negative
cases

> Good for scenarios to be
avoided.
> Formalizes non-functional
requirements.
> Strengthens system
security.

> Difficult to set
up systematically.
> No coverage
schemes.
> The test cases do
not necessarily cover
all possible negative
cases.

+ +

FMEA, FTA Static, speci-
fically for
safety critical
systems

FMEA works-
heets, compo-
nent abstrac-
tions, reuse
library

0 Retest for
the changed
components

> Well established for safety
and security (attack tree).
> Enables designers to fore-
see system interface
failures.

> Depends heavily
on human knowledge.
> Labour intensive.

+ +

Experiments,
empirical
test
strategies

Empirical test
generation
for load test,
performance,
thermal, etc.

Experiment spe-
cific test tools,
such as Parasoft
DTP, EggPlant,
Thermal imager
etc.

+ Repeat the test
strategies for
changed
functions

> Relatively easier to
frame the test cases.
> Covers wide range
of electrical systems.

> Depends heavily
on human knowledge.
> Labour intensive.
> Very little or no
test automation.

+ 0

Specific qua-
lity require-
ments test
e.g., pen tes-
ting, fuzzing

Dynamic,
specifically
for quality
requirements

Dedicated test
tools, e.g. auto-
matic fuzzing
extensions e.g.
CANoe, OWASP
ZAP, Vega etc.

− Retest for
impacted
components

> Well established for secu-
rity.
> Effective in ensuring that
the system meets known
quality requirements.

> Often insufficient
to validation complete
system security and
safety.

0 +

Brute force
usage in
real-world
while running
realistic
scenarios

Dynamic for
ensuring
situational
coverage

Recording and
replay with actual
scenario libraries
with data loggers
from various sen-
sor systems, e.g.
Tecnomatix, Car-
Maker, EB Assist,
CANape

0 Repetition
(low efficiency)

> Closest to real-world
and thus highly effective
> Validates all
systems at once
> Comprehensive
view and coverage
> Standardizes scenario
storage format and tagging

> High effort to cap-
ture all relevant scena-
rios with underlying
real-time data analysis
> Unclear coverage
> Most of the test
cases are redundant >
Intransparent situatio-
nal coverage

+ −

Intelligent
validation
e.g., cogni-
tive testing

Dynamic test
generation
and selec-
tion depen-
ding on situ-
ation and
environment

Machine-lear-
ningframeworks,
such asTensor-
flow, Apache
Spark, and so
onOpen data
sets, such as
nuScenes`

+ Reuse genera-
ted test cases
from depen-
dency database

> Improved transparency
> Automatically considers
dependencies to external
environment and internal
functions
> Automates major part of
test procedure
> Standardizes scenario
storage format and tag-
ging > Sharing test sce
narios across V-Model
abstraction levels

> High effort to
set up AI based
test environment.
> Needs large
computation power
> Growing discipline,
i.e. not much method
and tools available

+ +

TABLE 1 Evaluation of validation technologies for autonomous systems (© Ebert|Weyrich)

COVER STORY   Automated Driving

28

chains, but no tangible sustainable test-
ing strategy.

Positive testing methods aim to ensure
that all the functional requirements of
the system are taken care. While the
negative testing methods ensure that
the system is tested for all the non-func-
tional requirements. Negative require-
ments (f.e. safety and cyber-security)
are typically implied-requirements and
are not explicitly specified in System
Requirement Specifications (SRS). The
following sub-sections explain how
these methods are applied to validate
autonomous cars.

Fault injection techniques make use
of external hardware to inject faults
into target system’s hardware. Faults
are injected either with or without
direct contact with physical hardware.
By having direct contacts, faults such
as forced current addition, forced volt-
age variations etc. can be injected to
observe the behavior of the system.
Faults can also be injected without
make physical contact using methods
such as heavy-ion radiation, exposure
to electromagnetic fields etc. Such fault
injections can cause bit flips, failure of
hardware etc. which are not tolerated
in safety critical systems.

Functionality based test methods
categorize the intelligence of a system
into three categories: 1. Sensing func-
tionality, 2. Decision functionality and
3. Action functionality. The idea behind
such methods is that the autonomous
vehicle should be able to retrieve various
functionalities for a given task analogous
to human beings. For example, the vehi-
cle should be able to recognize vehicles,
pedestrians etc. for vision-based func-
tionality. Combinations of these recog-
nized objects can then act as inputs to
decision functionality and several deci-
sions can then lead to actions. Func
tionality-based testing therefore breaks
down the scenarios into various func-
tional components which can be tested
individually.

Simulators are closed indoor cubicles,
which act as substitute to physical sys-
tems. These simulators can simulate
the behavior of any system either by
using physical hardware or by using
the software model. The behavior of
driver can then be captured by feeding
him simulated external environment.
Since the simulators employ hydraulic
actuators and electric motors, the iner-
tial effects generated feel nearly the
same as real system. They are used

for robots in industrial automation and
surgery planning in medical, train sys-
tems and automotive.

Nothing can come close to the real
world than the real world itself. This is
perhaps the final validation phase where
completely ready system is driven out
into real roads with real traffic. The sen-
sors data is recorded and logged to cap-
ture the behavior in critical situations.
It is then later analyzed to accommodate
and fine tune the systems according to
real word scenarios. The challenge in
this stage however lies in the sheer
amount of test data that is generated.
A stereo video camera alone is found
to generate 100 GB of data for every
kilometer driven. In such situations,
big data analysis becomes extremely
important. The approval of autonomous
vehicles therefore requires regressive
validation, i.e., a test that, after changing
the control algorithms, performs a new
check and ensures the function. Thus,
safety, reliability and reliability can be
obtained both in development, testing
and in use, even when the system
adapts, i.e. is changed.

While still relevant, traditional vali
dation methods are not enough to fully
test the growing complexity of autono-
mous cars. Machine learning with situa-
tional adjustments as well as software
updates and upgrades require novel
regression strategies. Intelligent valida-
tion techniques tend to automate com-
plete testing or certain aspects of testing,
FIGURE 3. This eliminates the potential
errors associated with manual deriva-
tions of test cases since humans may
fail to derive or think about certain sce-
narios. It also eliminates the enormous
amount of time that needs to be invested
to derive the test cases. The following
sub-sections summarize some of the
papers that attempt to derive such vali-
dation techniques.

Truly transparent validation methods
and processes become of an uttermost
relevance and will be challenged by
the progress of technology over the
five sketched steps towards autono-
mous behavior. Although still relevant,
traditional validation methods aren’t
enough to completely test the grow-
ing complexity of autonomous cars.
Machine learning with situational
adaptations and software updates
and upgrades demand novel regres-
sion strategies.

Manual

White box Black box

Automatic

Validation
handling

Validation strategy

▸ Simulation environments
 with MIL, HIL, SIL

▸ Function test

▸ Fault injection

▸ Negative requirements with
 misuse, abuse, confuse cases

▸ FMEA, FTA for safety

▸ Simulation environments with
 MIL, HIL, SIL

▸ Experiments, empirical
 test strategies

▸ Simulation environments with
 model/system in the loop

▸ Brute force usage in real-world
 while running realistic scenarios

▸ Specific quality requirements,
 e.g. pen testing, usability

▸ Simulation environments with
 model/system in the loop

▸ Brute force usage in real-world
 while running realistic scenarios

▸ Intelligent validation. e.g. cognitive
 testing, AI testing

FIGURE 2 Validation technologies for autonomous systems (© Ebert|Weyrich)

ATZ electronics worldwide  09|2019    29

COGNITIVE TESTING

With artificial intelligence and machine
learning, we need to satisfy algorith-
mic transparency. For instance, what
are the rule in an obviously not any-
more algorithmically tangible neural
network to determine who gets a credit
or how an autonomous vehicle might
react with several hazards at the same
time? Classic traceability and regres-
sion testing will certainly not work.
Rather, future verification and valida-
tion methods and tools will include
more intelligence based on big data
exploits, business intelligence, and
their own learning, to learn and
improve about software quality in
a dynamic way. Cognitive test proce-
dures are based on a database that trans-
parently depicts scenarios and disrup-
tions, so that a target behavior for criti-
cal situations, boundary conditions, etc.
is defined. In the signal path, signals
are generated from the scenarios for the
interfaces of the autonomous system or
its components. For example, if a child
playing suddenly appears in front of the
vehicle, the reaction becomes the overall
system or the action of its components,
e.g. his steering, tested. These signals
can be simulations for camera and radar
sensors, but also communication signals,
such as Car-to-X, residual bus simulation
and the display of disturbances.

By parameterization special cases,
such as different lighting conditions,

can be displayed. From the behavior of
the system under test actual rules are
extracted, which are compared with the
expected target behavior. The automati-
cally extracted actual rules are com-
pared with known and accepted target
rules as to how the system under test
should behave in the scenario. The target
rules are derived from laws, experiences,
human expertise, guidelines from ethics
committees but also from simulations.
They should be transparent and there-
fore accessible to human testing. Rules
are extracted from the behavior of the
autonomous system under test in order
to make transparent the learned intrans-
parent behavior stored in implicit rules
or neuron links. These now transparent
but quite fuzzy rules are compared with
the set rules in behavior. The validation
and certification is based on the control
deviations [5,7,8,9].

FIGURE 4 gives an overview of the cog-
nitive testing we are currently using for
networked components of autonomous
vehicle systems. Unlike Brute Force, the
dependencies between the white box and
the black box are considered, bringing
efficiency and effectiveness into line.
Automotive functions consist of the in
teraction of many components, such as
controllers, sensors and actuators, which
are distributed in the system. In a dis-
tributed overall system, undesirable
behavior and basic malfunctions can
arise because there has been a software
change at one point that breaks through

to other components. This raises numer-
ous questions: How can the function
of a system be ensured if changes take
place in the subcomponents? How can
the safety and reliable behavior be guar-
anteed if software changes are made to
individual components during operation?

A key question is in which way an
artificially intelligence can support the
process of validation. Obviously, there
is many AI approaches ranging from
rule-based systems, fuzzy logic, Bayes-
ian nets to the multiple neural network
approaches of deep learning. However,
the process of validation of an autono-
mous system is multilayered and rich in
detail. Various levels of validation tests
can be distinguished, such as the sys-
tems level, the components or modules.

The potential for an intelligent testing
is manifold: On a system level there are
questions on which test cases must be
executed, and to what extent? This
means an intelligent validation is re
quested to help in terms of selection or
even creation of test cases for validation.
In a first step an assistance functionality
which helps to identify priorities in an
existing set of cases. As a result, the vali-
dation expert can test quicker and with
a better coverage of situational relevant
scenarios. On the level of a component or
module testing it is also required to iden-
tify relevant cases. This can range from
a simple support on how to feed the sys-
tem with adequate inputs and check on
the outputs to complex algorithms which

AI-based testing

Intelligent testing

Model database

Dependency model

Lidar

Radar

Vision

Position

Andere Fahrzeuge

Andere Fahrzeuge

Autonomous system

Sensoren

Functional
change

S
O

A
 n

et
w

or
ki

ng

component
spec

component
spec

component
spec

component
spec

component
spec

component
spec

1. Develop component model
 and dependency model

2. Develop dynamic
 test strategy

3. Identify changes

4. Compose relevant sub-
 models for regression

5. Automatically analyze
 change impacts

6. Automatically select test
 cases for minimum effort
 and necessary coverage

FIGURE 3 Cognitive testing for autonomous vehicles (© Ebert|Weyrich)

COVER STORY   Automated Driving

30

automatically create test cases based on
the code or user interface.

PERSPECTIVES

With the growing importance, and hence
the concerns of users and policymakers
regarding the impact of autonomous sys-
tems on our lives and society, software
engineers must ensure that autonomous
functions and systems function reason-
ably well and properly. To build trust,
the quality of the technical system is
expected to be at least an order of mag-
nitude higher than that of human-pow-
ered systems. Building trust is closely
linked to issues of validation. However,
such validations depend on many fac-
tors. Autonomous vehicle systems pro-
vide efficiency and safety by relieving
the operator of tedious and error-prone
manual tasks. The question “Can we
trust autonomous vehicles?” Will con-
tinue to grow in the coming years.
Public trust in autonomous vehicle sys-
tems depends heavily on algorithmic
transparency and continuous validation.

An accident caused by software errors
is discussed more intensively today than
the many accidents caused by alcohol.
On the other hand, current software
errors with deaths in aviation also show
a certain “habituation”. The number of
passengers does not decrease because
of crashes, as everyone knows that the
aircraft are altogether safely developed.
This learning curve of acceptance can be

seen in all autonomous systems, histori-
cally for example in smartphones, bots
with automatic speech processing and
in social networks. An increasingly in
formed society accepts that while soft-
ware is never error-free, so there is a
residual risk, there are still many advan-
tages over the past.

With a growing concern of users
but also policy-makers on the impact
of autonomous systems on our lives
and society, software engineers must
ensure that autonomy acts better than
humans. Clearly, we do not talk here
about few percentage points. To build
trust we rather need at least one order
of magnitude better quality compared
to human operated systems. It is above
all a question of validation to achieve
trust. Alan Turing who was one of the
first to consider AI in real life remarked
wisely: “We can only see a short dis-
tance ahead, but we can see plenty
there that needs to be done”. This
remains true for a rather long transi-
tion period, and intelligent validation
will play a pivotal role.

REFERENCES
[1]	 Gao, P., H.-W. Kaas, D. Mohr, and D. Wee: Auto-
motive revolution: Perspective towards 2030.
McKinsey, 2016.
[2]	Heerwagen, M.: Rechtlich Ausgebremst. ATZ
Elektronik, Dez. 2018, S.8-13
[3]	Ebert, C.: Requirements Engineering. dPunkt,
6th edition, 2019.
[4]	 ISO: Road vehicles—Safety of the indented
functionality, International Organization for Stan-
dardization. ISO 21448, 2019.

[5]	Santori M. and D. A. Hall. (2016). Tackling the
test challenge of next generation ADAS vehicle
architecture. National Instruments.
http://download.ni.com/evaluation/automotive/Next_
Generation_ADAS_Vehicle_Architectures.pdf
[6]	Rodriguez, M., M. Piattini, and C. Ebert, “Soft-
ware verification and validation technologies and
tools,”. IEEE Softw., vol. 36, no. 2, pp. 13–24,
Mar. 2019.
[7]	Ebert, C.: “Rule-based fuzzy classification for
software quality control,” Fuzzy Sets Syst., vol. 63,
no. 3, pp. 349–358, May 1994. doi:
10.1016/0165-0114(94)90221-6.
[8]	Zeller, A. and M. Weyrich, “Composition of mod-
ular models for verification of distributed automation
systems,” in Proc. 28th Int. Conf. Flexible Automa-
tion and Intelligent Manufacturing (FAIM2018),
Columbus, USA, 2018, pp. 870–877.
[9]	Shalev-Shwartz, S. et. At.: On a Formal Model of
Safety and Scalable Self-Driving Cars. Intel, www.
mobileye.com/responsibility-sensitive-safety, contin-
uously enhanced.

AI method:

Formal verification/model
checking

Certificate

Technical system

A2

Control

Bu

s

S
er

vi
ce

-o
ri

en
te

d
bu

s

Component 1

Component 2

Component i…

AI with model database and checking tool

A1

S1

S2

S3

A3

Si Aj

Spec.

Ni: Model component

Фi: Spec

A Ni : Components of the
 techn. systems

A Фi : Spec. of the
 component

Фcorrect = U Фcorrect i

NKomp = U NKomp i

NKomp ⊨ Фcorrect

Exploration of the
model NKomp with respect to

for the correctness
conditions Фcorrect

FIGURE 4 Dependency-oriented test case selection
for cognitive regression test (© Ebert|Weyrich)

ATZ electronics worldwide  09|2019    31

