Querying OPC UA information models with
SPARQL

Rainer Schiekofer!> and Michael Weyrich?

ISiemens AG

Abstract—OPC UA is one of the most important communica-
tion protocols for IIoT applications in the automation domain.
One important requirement for Industry 4.0 scenarios is stan-
dardized semantics, which is introduced into OPC UA through
Companion Specifications. Nevertheless, OPC UA still lacks a
comfortable interface for accessing these huge graphs, especially
on the edge- and cloud-layer. Of course, there is a query language
specified for OPC UA. However, to the best of our knowledge,
there is no publicly available implementation.

In this paper, we will present how SPARQL can be used to
query OPC UA graphs natively and also will present rules to
transform OPC UA queries into SPARQL queries. Furthermore,
we will highlight some issues of OPC UA Query and how they
can be bypassed by native SPARQL. Finally, we were able to
correctly execute all nine example queries of OPC UA Part 4
Annex B (complex examples) with both approaches.

Index Terms—OPC UA, Query, SPARQL, Information Model,
OPC UA Query, OWL, Semantic Web, RDF, RDF(S), Mapping

I. INTRODUCTION

In the area of factory automation, OPC Unified Architecture
(OPC UA) [1] is one of the most important standards for
device communication and promised to lift low-level signal
exchange schemes onto a semantic level, contributing to the
realization of flexible manufacturing scenarios. To finally reach
this goal the OPC Foundation was very busy in building the
foundation for future Industry 4.0 scenarios in the last few
years. Examples of recent activities are: a cloud interface based
on the publish-subscribe pattern (finished) [2]; the introduction
of domain-specific semantics which mainly are developed by
the VDMA (ongoing) [3]; real-time capabilities for OPC UA
(ongoing) [4]; the so-called Field Level Communication group
(FLC) which aims to unify the field buses (ongoing) [5]; the
support of dictionaries like eCl@ss (ongoing) [6].

If the above steering direction of the OPC Foundation
is considered, it can be assumed that sooner or later the
automation domain will be faced with huge standardized
OPC UA information models with detailed descriptions of the
underlying physical devices. This introduces big opportunities
for a lot of use cases like analytics and human-machine
interfaces (HMI), which can be programmed against standard-
ized information models, enabling the deployment on each
machine independent of the manufacturer without additional
engineering effort. However, one important part to use such
information models is still missing. Without some kind of
query functionality it will soon be impossible to find the
necessary data points on the aggregating layers like edge and
cloud and bind them to the apps (e.g., a predictive maintenance

978-1-7281-0302-0/19/$31.00 ©2019 IEEE

2University of Stuttgart

app for an engine which of course needs some field values, like
temperature/power/...). It is worth noting that OPC UA offers
a query language for searching OPC UA information models,
but up to now there is no publicly available implementation,
as far as we know. Of course, it is not a practical solution
to search the graph node by node for each application (on
cloud level ten-thousands of OPC UA Nodes have to be
searched by hundreds of apps in parallel). Another problem is
that the OPC UA-specific query language is so complex that
some industry researchers even introduced an internal domain-
specific language for constructing OPC UA Queries [7].

As motivated above, some form of query capability is
crucial for the further success of OPC UA as Industry 4.0
enabler. Rather than inventing a new query language from
scratch or directly implementing OPC UA Query, we decided
to investigate other query languages with already existing
implementations and after that map OPC UA Query to the
selected query language. Some of our selection criteria were:
Compatibility to the data model of OPC UA; available im-
plementations; usability and user base; available tutorials.
Finally, we selected SPARQL [8] out of Gremlin [9], GraphQL
[10], and Cypher [11] as the most promising query language.
Mainly due to the high compatibility of the data model based
on the OPC UA to OWL mapping of [12].

Furthermore, a few other researchers also tried to connect
OPC UA to the Semantic Web so far, which at the end would
allow expressing OPC UA in the form of RDF [13] triples.
For example, the authors of [14] describe an approach to
integrate OPC UA into a Linked Data environment. However,
the authors seem to define a new ontology for OPC UA and
also make no use of most of the built-in OPC UA concepts
like the type concept. Another interesting approach with a
focus on the reversed mapping direction from OWL [15]
to OPC UA is discussed in [16]. The problem of [16] is
that this approach does not cover all OPC UA concepts like
ReferenceTypes. Because of that, this mapping also cannot
be used to generate helpful triples for an OPC UA-specific
query application, mainly due to the fact of the missing
concept transformations, which are heavily used in most of
the Companion Specifications.

As the primary contribution of this paper, we present how
OPC UA information models can be queried with SPARQL
directly and how the OPC UA-specific query language can
be mapped to SPARQL. Furthermore, we will discuss some
major issues of OPC UA Query which can be solved through
the usage of native SPARQL queries.

208

II. BACKGROUND

The following sections introduce the necessary background
to understand the further parts of this work, starting with the
basics of OPC UA (Section II-A), followed by a detailed
explanation of OPC UA Query (Section II-B). Section II-C
gives a brief overview of the SPARQL query language, while
Section II-D addresses the underlying data model for the
SPARQL query language, which is modeled in OWL.

A. OPC UA

Open Platform Communication Unified Architecture (OPC
UA) [1] is one of the most promising industrial communication
standards for Industry 4.0 scenarios. OPC UA aims to solve
the two most important problems of typical IloT scenarios,
which are interoperability on the transport and semantic layer.

Interoperability on the transport layer can be fulfilled
through the standardization of the transport layer based on
protocols like OPC TCP and HTTP(S) in combination with
different serialization formats like OPC JSON, OPC Binary,
or OPC XML. Since V1.04 OPC UA also contains a cloud-
ready interface based on the well-known publish-subscribe
pattern, using transport protocols like MQTT and AMQP.
Furthermore, the OPC Foundation started a working group to
add real-time capabilities to OPC UA based on TSN. However,
only standardizing the transport protocols and serialization
formats is not enough. The final step for interoperability on
the transport layer is the standardization of interaction patterns
with the service. In OPC UA these patterns are called Services
and used to access the graph-based data model of OPC UA.
Several Services were defined to introspect and manipulate
the graph-based information model (e.g., the Read service,
for reading data and the Write service for writing data).

Interoperability on the semantic layer is achieved by the
graph-based data model of OPC UA combined with so-called
Companion Specifications. In previous years Companion Spec-
ifications were mostly mappings from other already existing
standards to OPC UA like AutomationML, PLCOpen, ISA-95,
etc. [17]-[19]. All these standards are generic and solve the
problem of semantic interoperability on a rather abstract layer.
Eventually, these standards are the first step towards semantic
interoperability, but some pieces are still missing. For example,
only standardizing the notion of a "Thing” and a concept how
”Skills” of these "Things” must be exposed, does not solve the
issue of concrete Industry 4.0 applications like automatic skill-
matching. Such applications depend on standardized semantics
of concrete skills, like clamping or drilling. This final step

prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix ex: <http://example.org/>
SELECT ?friend
WHERE {
ex:Hervey foaf:knows ?friend

}
Fig. 1. Example SPARQL Query.

[Name [[Name
Request Response
view queryDataSets[]
nodeTypes|] nodeld
typeDefinitionNode instanceTypeDefinitionNode
includeSubtypes values|[]
dataToReturn[] continuationPoint
relativePath parsingResults[]
attributeld statusCode
indexRange dataStatusCodes[]
filter dataDiagnosticInfos[]
maxDataSetsToReturn diagnosticInfos[]
maxReferencesToReturn filterResult
TABLE I

QUERY FIRST SERVICE PARAMETERS - WITHOUT HEADERS [1].

towards semantic interoperability is exactly what is addressed
by the VDMA [20]. VDMA represents more than 3200 com-
panies within the manufacturing domain and can, therefore, be
considered the largest industry association in Europe. One goal
of the VDMA is to standardize domain-specific semantics for
a huge part of the automation domain (e.g., robotics, machine
vision, cnc machines, powertrain etc.). Their semantics will be
standardized within OPC UA Companion Specifications [21],
leading to a whole new level of semantic interoperability in
the automation domain.

B. OPC UA Query

The OPC UA Query ServiceSet is probably the only OPC
UA ServiceSet which has no publicly available implementation
up to now. Even the fact that a whole annex was introduced
in OPC UA Part 4, which added a lot of examples for this
Service, has not fulfilled its goal. We will now take a closer
look at the QueryFirst Service of OPC UA Part 4 and explain
some of the parameters in greater detail (see also Table I).

The view parameter is used to select the View. A View in
OPC UA typically contains only parts of the AddressSpace.
For example, a maintenance-view might only include Nodes
and References which are relevant for a service-engineer and
hide all the other Nodes and References. The nodeTypes
array contains elements of the NodeTypeDescription structure
(marked with indents). The typeDefinitionNode selects the
Instances for this Service. Only Instances of this Type or sub-
types (if the includeSubtypes parameter is true) are consid-
ered as valid results. The dataToReturn array (QueryDataDe-
scription, marked with indents) is used to select the data
which shall be returned and consists of three sub-parameters,
which are relativePath, attributeld and indexRange. The
relativePath is used to define a path from the filtered Instances
to a target Node or target Reference across several intermediary
Nodes. The attributeld and indexRange are applied to the
target Node of this path, if a target Node exists. The filter
parameter is probably one of the most complex parameters
within the complete OPC UA specification. A filter consists
of several so-called filterOperators (e.g., equals, greaterThan,
and, or, relatedTo, ...) and so-called filterOperands, which are
the input parameter for the filterOperators. It is also possible
to combine different filterOperators with each other to build
very expressive filters. Additionally, OPC UA also defines so-

209

Edge / Cloud
Al SPARQL Query App
App
: SPARQL
Analytics Endpoint
App
ERP m
OPC UA Query
to SPARQL
VR or< -) — T
oon |6 [orcun (—)
Endpoint

Aggregated OPC UA
AddressSpace

Fig. 2. Possible query architecture for the cloud-/edge-layer.

called conversion rules, which introduce an additional layer of
complexity, because of some unexpected implicit conversions
(e.g., implicit casts from String to Byte). The parameters max-
DataSetsToReturn and maxReferencesToReturn are used to
limit the maximum number of results.

The response structure of a QueryFirst request starts with a
queryDataSets array. Each array entry consists of a nodeld,
which is the Nodeld (a unique identifier in OPC UA) of an
Instance-Node of the requested typeDefinitionNode with all
restrictions (e.g., view and filter) applied. The instanceType-
DefinitionNode is the corresponding TypeDefinition of the
Instance. This parameter is important because also subtypes
of the TypeDefinition can be returned and it is also allowed to
define an array of nodeTypes in the request, which typically
define different typeDefinitionNodes. Finally, the values array
contains the requested results defined by dataToReturn. The
continuationPoint parameter is used if not all results can be
returned in a single response. The parsingResults parameter
contains the list of parsing results for the QueryFirst Service,
while the diagnosticInfos parameter contains diagnostic in-
formation for the requested NodeTypeDescription. Finally, the
filterResult parameter contains information about filter errors.

C. SPARQOL

The SPARQL Protocol and RDF Query Language
(SPARQL) [8] is designed to query and manipulate Re-
source Description Framework (RDF) [13] based data sources.
SPARQL, as well as, RDF are developed by the W3C. In
a nutshell, RDF allows making statements about resources
with subject-predicate-object expressions. An example of such
a triple is “Hervey knows Jones”, where “Hervey” is the
subject, “knows” is the predicate, and “Jones” is the object.
Several of these triples can be used to form an ontology to
represent knowledge. An example SPARQL query is depicted
in Figure 1. This query would return all objects which are
connected to “Hervey” with a “knows” predicate. Line 1-2
are namespaces which can be assigned to subjects, objects,
and predicates. Line 3 states that all values for the ~?friend”

variable shall be returned. Finally, line 5 assigns all objects
which are connected to "Hervey” with a “knows” predicate to
the variable ”?friend”. In our case, the result would be ”Jones”.
Of course, SPARQL offers a lot more features like aggregation,
subqueries, federated queries, and plenty of expressions to
further restrict the results. For example, the COALESCE
statement returns the first expression that evaluates without
error; The EXISTS filter operator returns true if the pattern
matches and false if not; The BOUND statement which returns
true if the variable is bound to a value and false if this is not
the case. Finally, assignments can be formulated through the
BIND statement. The full SPARQL feature set can be found
under [8].

D. OWL and OPC UA information models

The Web Ontology Language (OWL) [15] is a W3C
standard that provides ontological constructs for knowledge
representation. OWL is based on other W3C standards such
as RDF [13] and RDF(S) [22]. The semantics of OWL is
grounded in Description Logics [23], which are decidable
fragments of the first-order-logic.

The basic entities in OWL are the following: OWL individ-
uals denote objects (e.g., Hervey and Jones); OWL classes
denote classes of objects (e.g., Person, Animal, Schedule);
OWL object properties relate objects to objects (e.g., relating a
child to its parent with hasChild); OWL data properties assign
data values to objects (e.g., relating a name to a person);
and OWL annotation properties to record ontology meta-
information, such as the author and creation date. Moreover,
OWL provides constructs for building complex class expres-
sions, such as existential restrictions (a class of Persons who
have at least one child). OWL axioms, such as class subclass
axioms (Cat subClassOf Animal) are used to axiomatize the
ontology. Finally, individual axioms are used for statements
about individuals (type assertions, property assertions, same
individuals, different individuals). OWL Reasoners [24], [25]
can automatically perform reasoning tasks such as checking
consistency and inferring implicit relationships.

210

FilterOperator SPARQL Mapping
Equals COALESCE((OP0 = OP1), false)
IsNull !BOUN D(OP0)
GreaterThan COALESCE((OP0 > OP1), false)
LessThan COALESCE((OP0 < OP1), false)
GreaterThanOrEqual | COALESCE((OP0 > OP1), false)
LessThanOrEqual COALESCE((OP0 < OP1), false)
Like COALESCE(
REGEX(OPO0,0P1), false)
Not 10P0
Between COALESCE((OP0 > OP1)
&&(OPO < OP2), false)
InList COALESCE(((OP0=0OP1)
|| (OPO = OPn)), false)
And (OP0&&OPT)
Or (OPO || OP1)
Cast OP1(OPO0) (not complete)
InView See Section III-B
OfType TargetNode a OPO0.
FILTER(OPO = opc : ObjectType ||
OPO = opc : VariableType || EXISTS{
OPO rdfs : subClassO f+
opc : ObjectType} || EXISTS{OPO
rdf s : subClassOf + opc : VariableType})
RelatedTo See Section III-C
BitwiseAnd not mapped
BitwiseOr not mapped
TABLE II

FILTEROPERATOR TO SPARQL MAPPING.

Based on the high similarity between OWL and OPC UA it
should be possible to convert OPC UA information models
into OWL ontologies. The authors of [12] proposed such
a mapping, which can be used for analytics and validation
purpose as well. In a nutshell, the transformation rules of
[12] can be reduced and simplified (for this work) in the
following way: All Type-Nodes including InstanceDeclara-
tions except ReferenceTypes are mapped to OWL classes;
ReferenceType-Nodes are mapped to OWL object properties;
Attributes are mapped to OWL data properties and annotation
properties; The BrowseName-Attribute of most InstanceDec-
larations is mapped to OWL object properties; Instances
are mapped to OWL individuals; The HasTypeDefinition-
ReferenceType is mapped to OWL type assertions; The
HasSubtype-ReferenceType is mapped to subClassOf and sub-
PropertyOf axioms, depending on the source concept.

III. APPROACH

Below, we will give an architectural overview of our query
application (Section III-A). Subsequently, we explain how
OPC UA information models can be queried with SPARQL
directly (Section III-B), followed by Section III-C which
provides the transformation rules from OPC UA Query to
SPARQL.

A. Architecture

In this Section, we will discuss an architecture to query OPC
UA information models. Typically, an automation device, like
a CNC machine, has more than one OPC UA device (e.g.,
a PLC and some drive controllers) which together form a
machine. Even more important is the fact, that a factory has
not only one single machine, instead most factories have a
lot of similar machines. This leads to the question of how

a potential query architecture must look like to also cover
use cases like “Find all machines which are currently low
on material A”. During our study we identified two main
requirements to offer a simple and powerful query interface:
(1) Standardized semantics, which is introduced through Com-
panion Specifications in OPC UA (see also Section II-A).
This simplifies the formulation of queries by a huge amount,
because then the user does not have to formulate different
queries for each machine of a different manufacturer. (2)
An edge-/cloud-layer which aggregates the underlying OPC
UA information models of the machines. This is necessary
because an expressive query language also needs a lot of
resources, which might not be available on all OPC UA
devices. Figure 2 shows such an architecture, which allows
connecting devices without the necessary resources for query
to a device with a query-engine. On the left side of the picture
several clients/apps are depicted, which want to query the
information model. Our prototype (the middle part of Figure
2) offers two different query languages for clients: SPARQL
and OPC UA Query. Internal we use only the SPARQL query
language and therefore have to translate OPC UA queries to
SPARQL queries. The SPARQL-Query-Engine then executes
the query against the triplestore. The triplestore contains parts
of the OPC UA information model in a triple format based
on the OPC UA to OWL mapping of [12] (see also II-D). We
categorize OPC UA information models into two parts: The
static part like the Type-Hierarchy, which is translated into
triples and after that stored in the triplestore; The dynamic part
like the Value-Attribute of a VariableNode, which is fetched
on demand directly from the aggregating OPC UA server.
The aggregated OPC UA AddressSpace is synchronized with
the underlying devices (which could also be another query
application, see also Figure 2 right side) and offers access to
the OPC UA graph, including live data for Node-Attributes.
Nevertheless, static in this context only means that the static
data is transformed into triples and synchronized with the
triplestore. If the static data changes (e.g., the OPC UA graph
structure is updated) also the triplestore must be updated. This
can be achieved by using the ModelChangeEvent concept of
OPC UA Part 3, instead of periodically browsing the whole
graph for distinctions.

B. SPARQL and OPC UA

In this Section, we will explain some of the design decisions
of our native SPARQL interface. The main key for a good
SPARQL query interface is the underlying data model. For
example, it makes a huge difference if OPC UA References are
modeled as object properties or as data properties. The same
is true for BrowseNames of OPC UA InstanceDeclarations. If
the OPC UA data model is transformed in a certain way it
is possible to reduce the complexity to formulate queries for
OPC UA data models by a huge amount. For our prototype,
we are using OWL ontologies including inferred knowledge
based on OWL-Reasoners (see also Section II-D for a sketch
of the transformation rules).

211

query:Lastname (31)
Value: Jones
query:FirstName (32)
Value: John
query:ZipCode (35)
Value: 02138

query:Lastname (37)
Value: Jones

query:FirstName (38)
Value: Sophia

query:ZipCode (41)

| query:PersonType query:HasChild query:PersonType query:HasChild query:HasChild
query:JFamily1 (30) query:HFamily1 (42)
] query:PersonType ES| query:PersonType |
’] query:JFamily2 (36) ’] query:HFamily2 (48) |

query:Lastname (43)
Value: Herve
query:FirstName (44)
Value: Paul
query:ZipCode (47)
Value: 03854

query:Lastname (49)
Value: Herve
query:FirstName (50)
Value: Paul (Jr.

Value: 02138

query:HasPet

query:ZipCode (53)
Value: 03854

query:HasPet

=4

<

query:CatType
query:Catl (70)

query:CatType
query:Cat2 (74)

query:DogType
query:Dogl (82)

query:PersonType
query:HFamily3 (54)

query:Name (75)

Value: Basil

query:Name (71)
Value: Rosemar

query:Name (83)
Value: Oliver

query:Lastname (55)
Value: Herve

query:HasSchedule —— ——————

query:HasFarmAnimal query:FirstName (56)

query:FeedingScheduleType

query:FeedingScheduleType

Value: Sara

query:HasPet

query:HasSchedule

query:Schedulel (78)

query:Schedule2 (87) \'a

#(query:ZipCode (59)
Value: 03854

query:Period (79) |
Value: Hourl

query:Period (88)

query:Pigl (91)

query:PigType Legend

Value: Dail

—«-(query:Amount (90))
Value: 100

query:Amount (81)
Value: 25

query:Name (93)
Value: Porker

TypeDefinition
seName (Nodeld)

wseName (Nodeld)
Value-Attribute

(Bro

hierarchicalReferenceType

| Brow:

opcua:HasProperty

Fig. 3. Example Instance Nodes OPC UA Part 4 Figure B.4 (not complete) [1].

Views in OPC UA are introduced to offer different per-
spectives on a machine (e.g., for maintenance or monitoring
purpose). If a certain View is selected only the Nodes which are
contained in the View will be returned. In addition, it is also
possible to restrict the visibility of References based on the
selected View. To cover all these use cases Views are modeled
with named graphs in SPARQL, which can be picked based
on the View-Nodeld.

OPC UA introduces a concept which is called: Program-
ming against the TypeDefinitionNode. In a nutshell, this
concept is used to identify Instances which are based on
an InstanceDeclaration. Normally such Instances are iden-
tified by their BrowseName. However, OPC UA also allows
to define multiple Nodes with the same BrowseName in
the context of the same Instance-Node. In this case the
TranslateBrowsePathsToNodelds-Service of OPC UA returns
the Node which is based on the InstanceDeclaration as the
first entry in the list. However, SPARQL does not offer a
similar concept. Because of that, an additional BrowseNames
object property is introduced into the ontology for most
InstanceDeclarations (see also Section II-D). This object
property not only allows to support the Programming against
the TypeDefinitionNode concept, furthermore, it replaces three
SPARQL filter statements through only one statement.

C. OPC UA Query to SPARQL

In the previous Section, we gave insights on how some
special aspects of OPC UA data models can be addressed with
SPARQL directly. However, because most OPC UA stacks
already support the sending and receiving of OPC UA Query
messages, we will now explain in greater detail how OPC UA
Query can be translated to SPARQL. Table II contains the
complete FilterOperator list of OPC UA Part 4 and the corre-
sponding SPARQL mapping. Notice that, most of the operators

2

shall return “false” if the implicit conversion fails. This is, for
example, modeled through a COALESCE statement. However,
OPC UA Query also implicitly converts, for example, a String-
value into a Byte-value. This is not true for SPARQL. Because
of that, additional algorithms (not further discussed in this
paper) are necessary to cover all implicit OPC UA Query
conversion rules. For a similar reason, the cast operator cannot
be fully supported, because the data type model of OPC UA
is extensible, while in contrast the OPC UA to OWL mapping
is limited to certain XSD-Schema types, which are supported
by OWL tools. The BitwiseAnd and BitwiseOr filter operators
also have no direct counterpart in SPARQL. The RelatedTo
filter operator contains up to six operands, which sometimes
lead to large SPARQL representations (e.g., if operand three
is 70”) and because of that are only included partly in form
of examples in Section IV-B. The mapping of the other
missing parts (e.g., AttributeOperand and RelativePath) are
only included partly in form of examples in Section IV-B also
because of space-limitations.

In conclusion, besides the few restrictions on some of the
operators explained above, we were able to cover most of
the features of OPC UA Query. Moreover, SPARQL supports
additional constructs like “IF’-statements, aggregation, sub-
queries and also federated queries, which are currently not
available in OPC UA Query.

IV. PROTOTYPE

Below, we will discuss our query prototype based on two
examples of OPC UA Part 4 Annex B [1]. In Section IV-A
we will shortly introduce the necessary parts of the example
information model, followed by two example queries to show
the differences between the OPC UA Query based approach
(Section IV-B) and the native SPARQL approach (Section

—

2

Operator RelatedTo Attribute
Element Element
[PersonType j RelatedTo [HasPet j

[AnimalType j [ScheduleTypej [HasSchedulej

Fig. 4. Example B.2.4 - Filter [1].

IV-C). Finally, we will end with a discussion regarding the
two different concepts (Section IV-D).

A. Example Information Model

OPC UA Part 4 Annex B [1] defines an example information
model. Several different Types are introduced: The Person-
Type, including Properties like Lastname, FirstName, and
ZipCode; The AnimalType, including Properties like Name
and subtypes like CatType, DogType, and PigType; The Sched-
uleType, including Properties like Period and the subtype
FeedingScheduleType. In addition, also several Reference-
Types are introduced: The HasChild-ReferenceType to connect
a parent to its child; The HasSchedule-ReferenceType to con-
nect an animal to its schedule; The HasAnimal-ReferenceType
to connect a person to its animal including the two subtype-
ReferenceTypes HasFarmAnimal and HasPet to further refine
the connection type. The parts of the Instance-hierarchy of
the information model, which are necessary to understand the
subsequent queries are shown in Figure 3, including five In-
stances of the PersonType, four Instances of the AnimalType,
and two Instances of the ScheduleType.

B. OPC UA Query

Now we will focus on Example B.2.4 from OPC UA Part
4 utilizing the transformation rules of Section III-C.

The Content-Filter of Example B.2.4 can be formulated in
the following way: Find all Instances of PersonType, where
the Instances are connected to an Instance of AnimalType
with a HasPet ReferenceType. In addition, the AnimalType
Instance must be connected to a ScheduleType Instance with
a HasSchedule ReferenceType (see also Figure 4).

The QueryDataDescription (dataToReturn) of Example
B.2.4 can be formulated in the following way: Return the
Lastname Property of the PersonType Instance and the Name
Property of the corresponding AnimalType Instance and the
Period Property of the ScheduleType Instance (Table III).

TABLE III
EXAMPLE B.2.4 - NODETYPEDESCRIPTION (NODETYPES[]) [1].

Type- Include QueryDataDescription

DefinitionNode | Subtypes | Relative Path Att.

PersonType FALSE ”.12:Lastname” value
7<12:HasPet>12:AnimalType value
.12:Name”
7 <12:HasPet>12:AnimalType value
<12:HasSchedule>12:Schedule-
Type.12:Period”

prefix query: <http://opcfoundation.org/UA/Examples/QueryPartd/>
opcua: <http://opcfoundation.org/UA/>

prefix ia: <http://opcfoundation.org/UA/Meta/IA/>

prefix rdfs: <http://www.w3.org/2000/01/rdf -schema#>

prefix ta: <http://opcfoundation.org/UA/Meta/TA/>

prefix xsd: <http://ww.w3.org/2001/XMLSchemalt>

prefix

SELECT DISTINCT 2nodeld ?typeDef ?element® 2elementl Pelement2
WHERE {

?sn a query:PersonType. ?sn opcua:hasTypeDefinition query:PersonType.
BIND(?sn as ?snl).
OPTIONAL{?sn2 a query:AnimalType. ?tn2 a query:ScheduleType.

?sn2 query:hasSchedule ?tn2. BIND(BOUND(?sn2) as ?resultl).}
BIND(IF(?resultl, ?sn2, "") as ?tnl).

OPTIONAL{?sn1 a query:PersonType. 2snl query:hasPet ?tnl.

BIND(BOUND(?sn1) as ?result@).}

FILTER(?resulte).

?sn ta:inodefxists Pexists. Filter(lexists).

?sn ia:nodeld ?nodeld. ?sn opcua:hasTypeDefinition PtypeDef.

{JUNION{?sn opcua:aggregates ?tn3. ?tn3 ia:browseName | ta:browseName ?tn4.
FILTER (?tn4 = "http://opcfoundation.org/UA/Examples/QueryPartd/Lastname”* xsd:anyURI).
?tn3 ia:value | ta:value ?element®. #PersonType-LastName-Property

JUNION{?sn query:hasPet ?tn5. 2tn5 a query:AnimalType.
2tn5 opcua:aggregates ?tn6. tn6 ia:browseName | ta:browseName ?tn7.
FILTER (?tn7 = "http://opcfoundation.org/UA/Examples/QueryPartd/Name" xsd: anyURT) .
?tn6 ia:value | ta:value ?elementl. #AnimalType-Name-Property

JUNION{?sn query:hasPet ?tn8. ?tn8 a query:AnimalType. *tn8 query:hasSchedule ?tn9.
?tn9 a query:ScheduleType. ?tn9 opcua:aggregates ?tnl@.
?tn1@ ia:browseName | ta:browseMame ?tnll.
FILTER (?tnll = "http://opcfoundation.org/UA/Examples/QueryPartd/Period" A xsd:anyURT).
?tn1@ ia:value | ta:value Pelement2.#ScheduleType-Period-Property

¥

JLIMIT 25

Fig. 5. Example B.2.4 - OPC UA Query to SPARQL mapping.

Annex B of OPC UA Part 4 also specifies the results
which should be returned for the query executed against the
information model of Figure 3. We will now take a closer
look at the SPARQL representation of Example B.2.4 (see also
Figure 5). Notice that, the COALESCE statements of Table II
are omitted for readability purpose because no implicit casts
are necessary. For our prototype, we used Apache Fuseki [26]
from the Jena Semantic Web framework. Line 1 and 2 of Fig-
ure 5 defines OPC UA Namespaces, where Namespace 12"

Showing 1 to 10 of 10 entries

iy

nodeld § typeDef§ element0§ element! § element2

"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:30"**xsd:anyURI

query:Per
sonType

"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:42"**xsd:anyURI

query:Per
sonType

"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:30"**xsd:anyURI

query:Per

" "
sonType ones

"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:42"*"xsd:anyURI

query:Per

" "
sonType ervey

"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:30"*"xsd:anyURI

query:Per

sonType Rosemary’

"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:30"""xsd:anyURI

query:Per

"Basil"
sonType as!

"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:42"""xsd:anyURI

query:Per

sonType Oliver

"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:30"**xsd:anyURI

query:Per
sonType

"Hourly'

"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:30"**xsd:anyURI

query:Per -

Dail
sonType &ty
"http://opcfoundation.org/UA/Exampl
es/QueryPart4/i=1:42""*xsd:anyURI

query:Per

sonType Daily

Fig. 6. Example B.2.4 - Results (Apache Fuseki).

213

Operator Attribute
Element [Element J And
Literal And
Element And
Equals GreaterThan

FScheduleT.Amount
SFST”

FScheduleT
»FST

FScheduleT.Period
[HasSchedule J [ESTH J »

Fig. 7. Example B.2.6 - Filter [1].

of Annex B is mapped to “query”. Lines 3-6 define prefixes
which are used in the OPC UA to OWL mapping. Lines 10-17
depicts how the filter is translated. Line 8 and the lines 19-32
are formulating the QueryDataDescription (dataToReturn).
Note that, the entries of the QueryDataDescription (e.g.,
“element0”, “elementl”, and “element2”) are encapsulated
in UNION statements according to our transformation rules.
Finally, the results exactly match the results which shall be
returned for the given query according to OPC UA Part 4
Annex B (see also Figure 6).

C. Native SPARQL Query

For the native SPARQL Query, we chose Example B.2.6
of OPC UA Part 4 Annex B. This example has the most im-
pressive filter of all examples (see also Figure 7). The textual
form of the filter can be formulated in the following way: Find
all Instances of PersonType, where a PersonType is connected
to an AnimalType with a HasPet Reference and additionally
the AnimalType must be connected to a FeedingSchedule-
Type through a HasSchedule Reference. Furthermore, the
PersonType Instance shall have a ZipCode-Property with the
value 702138”. Finally, the FeedingScheduleType shall have
a Period-Property with the value ”Daily” or "Hourly” and an
Amount-Property with a value greater than 710" (Figure 7).

The corresponding NodeTypeDescription of example B.2.6
is nearly equal to the NodeTypeDescription of example B.2.4,
which was explained in greater detail in Section IV-B.

Figure 8 shows how this query is formulated in SPARQL
natively. Line 1-3 define the used Namespaces similar to
Section IV-B. The filter statement is described with the lines
7-12. The QueryDataDescription (dataToReturn) is depicted
with the line 5 and lines 14-15. Notice that, in SPARQL it
is possible to reuse filter statements in the result statement
(e.g., the periodValue of Figure 8). The results (see the lower
part of Figure 8) are exactly as specified by the OPC UA
specification. Nevertheless, this SPARQL query is not totally
equal to the corresponding OPC UA Query. For example, if
the Lastname-Property for JFamily1 is not defined the whole

prefix query: <http://opcfoundation.org/UA/Examples/QueryPartd/>
prefix opcua: <http://opcfoundation.org/UA/>
prefix ia: <http://opcfoundation.org/UA/Meta/IA/>

SELECT DISTINCT ?nodeld ?typeNodeld ?lastnameValue PnameValue ?periodValue
WHERE {
?animal a query:AnimalType. ?schedule a query:FeedingScheduleType.
?animal guery:hasSchedule ?schedule. ?person a query:PersonType.
?person query:hasPet Panimal. ?person query:zipCode/ia:value ?zipCodeValue.
Filter(?zipCodeValue = "02138"). ?schedule query:period/ia:value PperiodValue.
Filter((?periodvalue = "Hourly") || (?periocdvalue = "Daily")).
?schedule query:amount/ia:value ?amountValue. Filter(?amountValue > 10).

?person ia:nodeld Pnodeld. ?person opcua:hasTypeDefinition ?typeNodeld.

?person query:lastname/ia:value ?lastnameValue. ?animal query:name/ia:value ?nameValue.
3
LIMIT 25

QUERY RESULTS
"
vy Table

Raw Response 2

Showing 1 to 2 of 2 entries

.a.ueé nameVaIuee periodValue

a

nodeld @ typ

"http://apcfoundation org/UA/Exa
1 mples/QueryPart4/i=1-30""xsd
anyURI

query:PersonType "Jones" "Rosemary” "Hourly"

"http://opcfoundation.org/UA/Exa
2 mples/QueryPart4/i=1:30"""xsd
anyURI

Fig. 8. Example B.2.6 - Native SPARQL Query with results (Apache Fuseki).

query:PersonType "Jones" "Basil" "Daily"

query would fail, while in contrast, OPC UA Query would only
return a null-value for the particular QueryDataDescription.
The same behavior can easily be modeled through adding an
OPTIONAL statement in SPARQL (e.g., OPTIONAL/{ ?person
query:lastname/ia:value ?lastnameValue.}). However, there are
still some other major differences between the OPC UA Query
of Example B.2.6 and the native SPARQL query of Figure 8,
which will be further discussed in the next Section.

D. Discussion

In conclusion, we showed that with our mapping it is
possible to translate OPC UA Queries (with some restrictions)
automatically to SPARQL queries. This concept can be used
for rapid product development of the OPC UA Query Service.
Nevertheless, we also highlighted how a native SPARQL query
executed against an OPC UA information model can look like.
We will now highlight some crucial differences between the
formulation of OPC UA Queries and native SPARQL queries,
starting with the query of Section I'V-B.

In Example B2.4 of OPC UA Part 4 Annex B the filter
ensured that only TypeDefinitionNodes are considered where
a person has a pet and this pet has a schedule. As a result, two
pets were returned for Jones (Rosemary and Basil). Of course,
both pets also have a schedule, which is hourly for Rosemary
and daily for Basil. However, because OPC UA Query does
not allow to define any dependency between two different
dataToReturn statements, different result arrays must be
considered independent (including the order of the results
within the array). This means, that it is not possible to match
the schedule period to the corresponding pet name, because
it should also be allowed to reverse the order of the second
result array without violating the OPC UA specification. This
also becomes clearer if the fact is considered, that the Browse-
Service of OPC UA is allowed to return the References of a
Node in a different order for each call as long as not a special
ReferenceType named “HasOrderedComponent” is used. If the

214

assumption is made that the Query Service does not analyze
the dataToReturn statement for equal intermediary Nodes the
BrowsePaths are evaluated separately and because of that, the
result order might change.

Example B2.6 of OPC UA Part 4 Annex B (see also
Section IV-C) has a very complex filter statement. However, in
OPC UA the filter statement and the dataToReturn statement
is only connected through the Instance of the TypeDefi-
nitionNode. An example of the range of this architectural
decision can be given by only changing the filter of Example
B2.6 (see Figure 7) from FScheduleT.Amount > 10 to
FScheduleT.Amount > 50. Surprisingly, the result would
not change for OPC UA Query. The reason for this strange
behavior is a consequence of the chosen OPC UA Query
architecture. In the above case the filter is no longer true
for Rosemary, because the amount is below 50. However, the
Instance-Node Jones is still a valid Instance because Basil
fulfils all filter statements and therefore Jones is included in
the result list. After the filtered Instances are determined the
dataToReturn statement is applied against these Instances. In
this case also Rosemary is a valid target again, because the
BrowsePath from Jones to Rosemary is still valid. Neverthe-
less, most people probably would have assumed that only Basil
would be returned as result. In contrast, the native SPARQL
query of Figure 8 would only return Basil, because in SPARQL
it is possible to interconnect the dataToReturn statement
with the filter statement. Furthermore, in Figure 8 also the
period value can be mapped to the animal name, because
it is also possible to define dependencies between different
dataToReturn statements in SPARQL.

In conclusion, we showed that formulating native OPC UA
Queries is not as easy as it looks like. Several queries of
OPC UA Part 4 Annex B probably have to be refined to
ensure the expected behavior in each case. If the assumption
is made that this annex was written by the only available
experts for OPC UA Query, it can be inferred that new
query users, which are not familiar with OPC UA at all,
probably will have a hard time with OPC UA Query. In
addition, we identified more than ten bugs within OPC UA
Part 4 Annex B like the filter of example B.2.10, where a
RelatedTo operator assigns a Boolean-value to operand[0],
which is forbidden according to the RelatedTo definition. In
contrast, we showed how OPC UA information models can
be queried with SPARQL natively. Based on this approach the
size of the queries can be reduced (Example B.2.4 formulated
in OPC UA Query based on the OPC UA C++ SDK of Unified
Automation needs about 100 lines of code (see also [7])), as
well as, the complexity of formulating queries because, for
example, the filter statement can be directly interconnected
with the result statement. Finally, we were able to execute all
nine example queries of OPC UA Part 4 Annex B (complex
examples) with the correct results for both approaches.

V. SUMMARY AND OUTLOOK

In this paper, we showed how SPARQL can be used to
directly query OPC UA data models. Moreover, we also intro-

duced a mapping how the OPC UA-specific query language
can be mapped to SPARQL. Subsequently, we showed the
validity of both approaches through the successful execution
of all example queries in OPC UA Part 4 Annex B (complex
examples). Finally, we closed with a discussion about some
OPC UA Query specific issues and how they can be bypassed
by the native SPARQL query approach.

Currently, we are investigating concepts to efficiently con-
nect dynamic data from the underlying OPC UA devices
to the triplestore. A first demonstrator shows that this is
possible, but compared to static data there is a performance
decrease. However, the first results are very promising but
further performance evaluation is necessary. Another open
topic is the classification of OPC UA Attributes in static (e.g.,
NodeClass) and dynamic (e.g., Value) including an efficient
notification concept for changes in the static Aftributes similar
to the ModelChangeEvent of OPC UA Part 3.

REFERENCES

[1] “Iec 62541: Opc unified architecture,” Standard, 2015.

[2] “Opc ua - pubsub,” https://opcfoundation.org/news/
press-releases/opc-foundation-announces-opc-ua-pubsub-release-im
portant-extension-opc-ua-communication-platform/, 2018.

[3] “Vdma - opc ua working groups,” https://opcua.vdma.org/en/, 2018.

[4] “Opc ua - tsn,” https://smartindustryforum.org/opc-ua-tsn-a-small-step-f
or-mankind- but-a- giant-leap-for-industry/, 2018.

[5] “Opc ua - field level communiation,” https://opcfoundation.org/
wp-content/uploads/2018/11/OPCF-FLC-v2.pdf, 2018.

[6] “Opc ua - roadmap,” https://opcfoundation.org/about/opc-technologies/
opc-ua/opcua-roadmap/, 2018.

[7]1 T. Goldschmidt and W. Mahnke, “An internal domain-specific language
for constructing opc ua queries and event filters,” in European Confer-
ence on Modelling Foundations and Applications, 2012.

[8] “Sparql query language,” https://www.w3.org/TR/sparqll1-overview/,

2018.
[9] “Gremlin query language,” http://tinkerpop.apache.org/gremlin.html,
2018.

[10] “Graphql query language,” https://graphql.org/, 2018.

[11] “Cypher query language,” https://neodj.com/developer/
cypher-query-language/, 2018.

[12] R. Schiekofer, S. Grimm, M. M. Brandt, and M. Weyrich, “A formal
mapping between opc ua and the semantic web,” in IEEE Industrial
Informatics (in press), 2019.

[13] “Rdf)” https://www.w3.org/TR/rdf11-new/, 2018.

[14] M. Graube, L. Urbas, and J. Hladik, “Integrating industrial middleware
in linked data collaboration networks,” in /IEEE Emerging Technologies
and Factory Automation, 2016.

[15] “Owl 2,” https://www.w3.org/TR/ow]2-primer/, 2018.

[16] A. Bunte, O. Niggemann, and B. Stein, “Integrating owl ontologies
for smart services into automationml and opc uva,” in IEEE Emerging
Technologies and Factory Automation, 2018.

[17] “Automationml opc ua information model - companion specification
release 1.00,” Standard, 2016.

[18] “Plcopen opc ua information model - iec 61131-3 - companion specifi-
cation release 1.00,” Standard, 2010.

[19] “Isa-95 common object model - companion specification release 1.00,”
Standard, 2013.

[20] “Vdma - members,” http://www.vdma.org/en/mitglieder, 2018.

[21] “Opc ua companion specifications,” https://opcfoundation.org/
markets-collaboration/, 2018.

[22] “Rdf schema,” https://www.w3.org/TR/rdf-schema/, 2018.

[23] E. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, The Description Logic Handbook: Theory, Implementation
and Applications, 2003.

[24] “Hermit owl reasoner,” http://www.hermit-reasoner.com/, 2018.

[25] “Fact++ reasoner,” http://owl.cs.manchester.ac.uk/tools/fact/, 2018.

[26] “Apache jena fuseki sparql server,” https://jena.apache.org/docum

entation/fuseki2/, 2018.

215

http://www.tcpdf.org

