
Introduction of Group-Subscriptions for RESTful
OPC UA clients in IIoT environments

Rainer Schiekofer1,2 and Michael Weyrich2
1Siemens AG 2University of Stuttgart

Abstract—In the automation domain, OPC UA can be con-
sidered one of the most important communication protocols
for IIoT applications. According to a study of McKinsey the
potential economic impact of the IoT within factories may reach
up to 3,7 Trillion Dollar by 2025. To unlock this potential
it is very important to bridge the interoperability gap. Since
V1.04 OPC UA also supports session-less clients and therefore
allows the development of RESTful clients which can be used
to address the cross-domain interoperability issue. However,
currently, RESTful clients cannot use Subscriptions, because the
corresponding Service Sets are not supported for session-less
clients. In this paper, we will present how Subscriptions can be
introduced for session-less clients. Furthermore, we outline how
Group-Subscriptions can be introduced for session-less as well as
session-based clients. Finally, our evaluation shows that Group-
Subscriptions significantly outperform standard Subscriptions if
the Subscription can be shared by several clients.

Index Terms—OPC UA, Group-Subscriptions, Subscriptions,
REST, Information Model, SessionlessInvoke, IIoT, Industry 4.0

I. INTRODUCTION

Based on some market studies the estimated impact of the
Industrial Internet of Things (IIoT) on the global GDP will
be 14,3 Trillion Dollar by 2030, according to Accenture [1].
A further study of McKinsey [2] showed that the potential
economic impact of the IoT within factories may reach from
1,2 up to 3,7 Trillion Dollar by 2025. However, McKinsey
also stated out that up to 40 percent on average (and up to
60 percent in some settings) of the potential economic value
depends on the interoperability of IoT systems. Based on that,
it can be inferred that interoperability is a key to utilize the
economic benefits of IIoT scenarios. This is exactly what
is addressed by OPC Unified Architecture (OPC UA) [3].
OPC UA is one of the most important IIoT standards in the
automation domain and promised to enable interoperability on
the transport layer as well as interoperability on the semantic
layer. To finally reach this goal the OPC Foundation worked
very hard in the last couple of years. Some very promising
activities to solve the interoperability on the semantic layer
problem are the introduction of domain-specific semantics into
OPC UA [4] and the support of dictionaries like eCl@ss
[5]. Another very interesting activity to dramatically increase
the amount of OPC UA devices is the so-called Field Level
Communication (FLC) group, which aims to unify the field
buses [6].

Nevertheless, to also lift the economic benefits of cross-
domain use cases, OPC UA must also be able to reach out
to other domains. A technology which is already present

in nearly every domain is the REST architecture [7], which
could also be used as a bridge between OPC UA and other
domains. However, till version 1.03 of OPC UA, it was
not possible to combine REST with OPC UA, because of
the missing statelessness. Finally, version 1.04 of OPC UA
introduced statelessness in OPC UA through a new Service
which is called SessionlessInvoke. After that, it was possible
to develop a RESTful interface for OPC UA [8]. Nevertheless,
not each Service of OPC UA can be addressed through
SessionlessInvoke. To be more concrete, this Service can only
be used in combination with some Services of the View
Service Set, the Attribute Service Set, the Method Service
Set, the NodeManagement Service Set, and the Query Service
Set [3]. Eventually, some important Service Sets are still not
supported, as for example, the Subscription Service Set and the
MonitoredItem Service Set. These Service Sets are necessary
to get efficiently notified about data changes and therefore also
would be very useful for RESTful applications.

The authors of [9] already proofed that for some OPC UA
Services stateless interaction can improve performance. How-
ever, Subscriptions where out-of-scope in this work. Another
interesting concept for introducing Subscriptions to RESTful
clients can be found in HyperUA [10]. Nevertheless, in this
case, the Subscriptions are exposed through a proprietary
REST interface, which makes it impossible for standard OPC
UA session-based as well as session-less clients to access
the Subscriptions. Finally, since Version 1.04 OPC UA also
supports the publish-subscribe interface [3], which also can be
considered as a form of Group-Subscriptions. Nevertheless, a
lot of stacks still do not support this new feature and there
are also some differences between OPC UA publish-subscribe
and standard OPC UA client-server Subscriptions, like the
triggering mechanism.

In this paper, we will introduce a concept of how the
Subscription Service Set and the MonitoredItem Service Set
can be accessed by session-less clients and therefore this
work can be considered as extension of [8]. Furthermore, we
will extend the standard Subscription mechanism of OPC UA
to also support Group-Subscriptions. Finally, our evaluation
shows that Group-Subscriptions significantly outperform stan-
dard Subscriptions if the Subscription can be shared by several
clients in parallel.

II. BACKGROUND

In the following, we will introduce the necessary back-
ground to understand the further parts of this work, starting

978-1-7281-0302-0/19/$31.00 ©2019 IEEE 1355

RingBuffers

OPC UA
AddressSpace

OPC UA
Endpoint

Subscription
Client

Subscription
Information Model

Group-
Subscriptions

MES
Client

App A OPC UA

Audit
Client

OPC UA

HMI
Client

OPC UA

OPC UA

ERP
Client

OPC UA

Fig. 1. Group-Subscriptions architecture.

with the basics of OPC UA (Section II-A), followed by a short
explanation of OPC UA Subscriptions (Section II-B).

A. OPC UA

OPC UA [3] is one of the most important industrial com-
munication standards for IIoT scenarios. OPC UA not only
aims to solve the interoperability on the transport layer issue
but also, the interoperability of the semantic layer shall be
addressed by OPC UA.

Interoperability on the transport layer can be achieved
through the standardization of transport layer protocols like
OPC TCP and HTTP(S). In addition, it is necessary to also
standardize different serialization formats like OPC JSON,
OPC Binary, or OPC XML. In V1.04 OPC UA also introduces
a cloud-ready interface based on the publish-subscribe pattern
and transport protocols like MQTT and AMQP [11]. However,
this is typically not enough to reach interoperability on the
transport layer. The final step involves the standardization of
interaction patterns with the service. In OPC UA these patterns
are called Services and can be used to access the graph-based
data model of OPC UA. OPC UA defines several Services to
introspect (e.g., the Read Service) and manipulate (e.g., the
Write Service) the graph-based information model.

Interoperability on the semantic layer can be achieved
through standardizing the semantics of the graph-based data
model of OPC UA. This is typically done with so-called
Companion Specifications. In previous years most of the
Companion Specifications were mappings from other already
existing standards to OPC UA like AutomationML, PLCOpen,
ISA-95, etc. [12]–[14]. Eventually, all these standards are
rather abstract and therefore define mainly generic semantics.
However, in the last few years also Companion Specifications
started to emerge with detailed descriptions of the underly-
ing devices (e.g., machine vision, robotics, powertrain, CNC
machines, etc. [15]). These standards are mainly driven by
the VMDA [16]. The VDMA can be considered the largest

industry association in Europe and represents more than 3200
companies within the manufacturing domain.

B. OPC UA Subscriptions

Probably the most important Service Set in OPC UA is the
Subscription Service Set and the MonitoredItem Service Set.
In combination with several Services of these Service Sets it is
possible to subscribe to, for example, data change notifications.
This can be done by first using the CreateSubscription Service
to create a Subscription. After that, the CreateMonitoredItem
Service can be used to select what kind of Nodes should be
monitored. Finally, the Publish Service is used to acknowledge
received sequence numbers and to inform the server that new
responses can be accepted by the client. These Subscriptions
are highly optimized and therefore are much more efficient,
besides other benefits, then periodically fetching the latest
values with the Read Service. However, in OPC UA each
client has to create its own Subscription, even if all items and
configurations are equal across different clients. Eventually,
this leads to a higher resource consumption than necessary.

III. APPROACH

Below, we will give an architectural overview of Group-
Subscriptions. Subsequently, we will explain parts of the
corresponding OPC UA information model in greater detail.

Figure 1 gives an overview of the architecture. On the left
side, several clients are depicted, which want to be informed
about updates in the OPC UA server. The right part of Figure
1 depicts our application. We identified two goals for our
architecture: (1) Introduction of Group-Subscriptions in such
a way that most parts of the existing OPC UA SDKs do not
have to be altered. (2) Group-Subscriptions should be usable
with session-less clients as well as with session-based clients.
Eventually, we decided to model Group-Subscriptions within
the OPC UA information model. The OPC UA information
model itself consists of methods, which can be used to
recreate the Services of the MonitoringItem Service Set and

1356

SeverType

Server

SubscriptionGroupsType

Subscriptions

SubscriptionGroupType

<UserDefinedName>

SubscriptionType

<UserDefinedName>

CreateSubscription

DeleteSubscription

CreateGroup

DeleteGroup

Publish

Republish

CreateMonitoredItems

DeleteMonitoredItems

SetTriggeringItems

SetPublishingMode

MonitoredItemType

<UserDefinedName>

References:
hasTriggerLink
hasSource (o)

PropertyType

GroupId

Organizes

PropertyType

GroupLocales

PropertyType

LastSeqNr

PropertyType

QueueSize

Organizes

ModifyMonitoredItem

SetMonitoringMode

PropertyType

LastSeqNr

PropertyType

MaxNotificationsPerPublish

PropertyType

Priority

PropertyType

PublishingEnabled

PropertyType

PublishingInterval

PropertyType

QueueSize

PropertyType

SubscriptionId

Organizes

PropertyType

ClientHandle

PropertyType

DiscardOldest

PropertyType

ItemToMonitor

PropertyType

MonitoredItemId

PropertyType

MonitoringMode

PropertyType

QueueSize

PropertyType

SamplingInterval

PropertyType

TimestampsToReturn

MonitoringFilterType

Filter

Organizes

PropertyType

SubscriptionVersion

Fig. 2. Group-Subscriptions information model.

the Subscription Service Set, and further Nodes, which contain
more information about the Group-Subscription configuration.
Based on this information model an internal client can be
controlled, which creates session-based Subscriptions through
standard SDK calls. Nevertheless, normally Subscriptions and
some of the corresponding Services are designed for a single
client only. For example, the Publish-Service allows a client
to acknowledge received sequence numbers. If a sequence
number is acknowledged the server is allowed to delete the
message from the internal buffers. Of course, if more than
one client is using the same Subscription such behavior can
lead to data-loss for some of the clients. Because of that, we
introduced ring buffers. The size of the ring buffers can be
chosen during the creation of the Group-Subscription.

Figure 2 shows parts of the developed information model.
A lot of the elements should be familiar to OPC UA experts.
However, some of them are altered or newly introduced. For
example, our Publish-Method contains two input parameters:
publishSeqNr and keepAliveTime. The first parameter is used
to request a certain sequence number. This sequence number
is automatically generated by the subscription client (see
Figure 1) and incremented for each Publish response with new
values. The keepAliveTime is used for long polling and defines
the maximum time the call should be blocked. The second
parameter is only important if the client requests a sequence
number which is larger than the latest available sequence
number. In this case, the method call will be blocked for the
given time amount. If during this time the requested sequence
number becomes available the call will immediately return
with the new results, otherwise, the client will be informed

that no results are available at the moment. A client can use
this architecture to also request more than one future sequence
number, which is equivalent to calling the standard Publish-
Service several times. Of course, not all sequence numbers
can be requested because of limited memory resources. The
number of available sequence numbers can be configured
through the queue size. However, clients which are joining
late typically have no information about the actual sequence
number. Because of that, we also introduced a Property with
information about the latest sequence number (LastSeqNr in
Figure 2). The initial values can be fetched with the standard
Read-Service of OPC UA. The SubscriptionVersion Property
of Figure 2 indicates if the Subscription-Group is changed.
The actual value of the SubscriptionVersion Property is also
returned in the Publish and Republish methods and can be used
by the client to check if the Group-Subscription was altered.

Finally, we implemented the concept above with the C++
SDK from Unified Automation (version 1.5.6) [17] to show
the validity and the benefits of this architecture.

IV. EVALUATION

In this Section, we compare the memory consumption and
CPU usage of Group-Subscriptions to the respective charac-
teristics of standard OPC UA Subscriptions. In all cases, our
prototype runs on a machine with 4 logical cores, 2.6 GHz,
and 8 GB RAM. Additionally, the sampling interval for each
MonitoredItem is set to 500 ms, the publishing interval is set to
1000 ms and all queue sizes are set to twenty. Each experiment
runs for two minutes and data points represent the average of
three runs. If Group-Subscriptions are used, each client makes
use of the same Subscription, which can be accessed through

1357

(a) CPU usage (b) Memory usage

Fig. 3. Constant number of 100 clients

(a) CPU usage (b) Memory usage

Fig. 4. Constant number of 300 MonitoredItems

the information model of the OPC UA server. In the case of
standard OPC UA Subscriptions, each client creates its own
Subscription and the corresponding MonitoredItems.

A. Number of MonitoredItems

In our first experiment, we evaluate the average CPU load
and memory consumption for different numbers of Moni-
toredItems per Subscription. In each experiment 100 clients
connect to the OPC UA server and establish the corresponding
Subscription. Figure 3 represents the results for the CPU
load and memory consumption, respectively. As expected, the
benefits of Group-Subscriptions continue to grow with the
number of MonitoredItems. This is true for the CPU load as
well as for memory usage.

B. Number of clients

In our second experiment, we evaluate the average CPU load
and memory consumption for different numbers of Clients per
Subscription with a constant number of 300 MonitoredItems.
Also, for these experiments, 100 clients connect to the OPC
UA server in each test run to minimize the measurement
distortion through a different number of client Sessions. How-
ever, in this experiment, only 10 to 60 clients actively used
Subscriptions, while the other clients were just on idle during
the experiments. Figure 4 represents the results for the CPU
load and memory consumption, respectively. For the average
CPU usage as well as for the average memory consumption
we can see that the benefits of Group-Subscriptions increase
with the number of clients. However, as also depicted in Figure
4b for very few clients the standard Subscription mechanism

offers less memory consumption than the Group-Subscription
prototype. This is mainly due to the fact, that in our exper-
iments for the standard Subscription mechanism the clients
never were late and acknowledged instantly all sequence
numbers leading to at most one publish item in the buffers.
In contrast, in the Group-Subscription case, the buffer cannot
be emptied, because the number of clients is unknown and
therefore, constantly twenty publish requests are kept in the
queue. This also leads to the fact that for Group-Subscriptions
the memory-consumption is nearly constant regardless of the
number of clients (see Figure 4b). Nevertheless, the CPU usage
still increases with the number of clients. The explanation for
this effect is based on the Call Service Set, which generates
a higher CPU load if more calls are made and therefore is
responsible for the slight increase in CPU usage.

V. SUMMARY AND OUTLOOK

In this paper, we presented a concept of how Group-
Subscriptions can be introduced into OPC UA through the in-
formation model. This architecture allows session-less clients
as well as session-based clients to share the same Subscription,
which leads to a significant reduction of the resource usage
(CPU load and memory consumption) if the Subscription can
be shared by several clients in parallel.

Nevertheless, further research is necessary to also compare
this architecture with the new publish-subscribe feature of
OPC UA in terms of resource consumption, latency and lines
of code as well as functionality (e.g., triggering model).

REFERENCES

[1] “Industrial iot and the (data) sharing economy,” http://iiot-world.
com/connected-industry/industrial-iot-and-the-data-sharing-economy/,
2019.

[2] “Unlocking the potential of the internet of things,” https:
//www.mckinsey.com/business-functions/digital-mckinsey/our-insights/
the-internet-of-things-the-value-of-digitizing-the-physical-world, 2019.

[3] “Iec 62541: Opc unified architecture,” Standard, 2015.
[4] “Vdma - opc ua working groups,” https://opcua.vdma.org/en/, 2018.
[5] “Opc ua - roadmap,” https://opcfoundation.org/about/opc-technologies/

opc-ua/opcua-roadmap/, 2018.
[6] “Opc ua - field level communiation,” https://opcfoundation.org/

wp-content/uploads/2018/11/OPCF-FLC-v2.pdf, 2018.
[7] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, 2000.
[8] R. Schiekofer, A. Scholz, and M. Weyrich, “Rest based opc ua for the

iiot,” in IEEE Emerging Technologies and Factory Automation, 2018.
[9] S. Gruener, J. Pfrommer, and F. Palm, “Restful industrial communication

with opc ua,” IEEE Transactions on Industrial Informatics, vol. 12, no. 5,
2016.

[10] “Projexsys: Hyperua,” http://projexsys.com/hyperua/, 2018.
[11] “Opc ua - pubsub,” https://opcfoundation.org/news/

press-releases/opc-foundation-announces-opc-ua-pubsub-release-im
portant-extension-opc-ua-communication-platform/, 2018.

[12] “Automationml opc ua information model - companion specification
release 1.00,” Standard, 2016.

[13] “Plcopen opc ua information model - iec 61131-3 - companion specifi-
cation release 1.00,” Standard, 2010.

[14] “Isa-95 common object model - companion specification release 1.00,”
Standard, 2013.

[15] “Opc ua companion specifications,” https://opcfoundation.org/
markets-collaboration/, 2018.

[16] “Vdma - members,” http://www.vdma.org/en/mitglieder, 2018.
[17] “Unified automation - c++ based opc ua client and server

sdk (bundle),” https://www.unified-automation.com/products/server-sdk/
c-ua-server-sdk.html, 2019.

1358

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

