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Glossary  

Availability: Ability to be in a state to perform as and when required, under given conditions, 

assuming that the necessary external resources are provided 

Available functions: Functions which are not affected by the fault or malfunctions in a system 

and still available to be performed 

Component: A basic, relatively independent part or item of an industrial automation system, 

characterized by specific responsibilities, here meaning sensors, actuators, and a 

microcontroller in an industrial automation system 

Component model: A conceptual model illustrates the hierarchy of the physical structure, 

collaboration and connections of components in a system 

Corrective maintenance: Maintenance carried out after fault recognition and intended to put an 

item into a state in which it can perform a required function [DIN EN 13306:2010-12] 

Decision-making: The process of selecting a reasonable option from possible and available 

choices after sufficient consideration 

Degradation: Detrimental change in physical condition, due to time, use, or external cause 

Depth-first search: Searching algorithm which supports the travel from the vertex to the deepest 

point in the vertical level before backtracking, then traveling to the other neighbor on the 

horizontal level [Even11] 

Failure: Termination of the ability of an item to perform a required function 

Failure cause: Circumstances during specification, design, manufacture, installation, use or 

maintenance that result in failure 

Fail-operational: Ability of a system to continue to work in the event of a fault 

Fault: State of an item characterized by an inability to perform a required function, excluding the 

inability during preventive maintenance or other planned actions, or due to a lack of external 

resources 

Fault Diagnosis: Identification of the defective component, as well as malfunctions of a system, 

by means of analysis of the historical data 

Fault handling: The process of responding to the fault occurring in a system and transmitting the 

system into a new state before the fault is removed, such as fault tolerance 

Fault location: The defective item of a system, e.g. an element, a component, a sensor, etc. 



 

 

ix 

Fault localization: The process of determination of the fault location in a system within a limited 

scope 

Formalization: The information or knowledge formalized in specific forms and types used for 

the reasoning 

Function: The special or required purpose or activity of a component or a system  

Function model: A model represents the hierarchy of the logical structure of a system and 

describes combination and flow sequences of the functions, actions, or processes [Bitt12] 

Industrial automation system: The combination of personnel, hardware, and software as a whole 

that can influence the secure and reliable operation of industrial processes [Siem17] 

Item: Part, component, device, subsystem, functional unit, equipment or system that can be 

individually described and considered 

Knowledge: Facts which represent the world via structured and unstructured information  

Maintenance:  Combination of all technical, administrative and managerial actions during the life 

cycle of an item intended to retain it in, or restore it to, a state in which it can perform the 

required function  

Malfunction: An intermittent irregularity in the fulfillment of a system’s desired function 

Redundancy: A component is duplicated for another as a backup and both can perform the same 

required function 

Reconfiguration: The arrangement of parts or elements in a different form, figure, or 

combination [Oxfo17] 

Required function: A function, combination of functions, or a total combination of functions of 

an item which are considered necessary to provide a given service  

Functional requirement: A description of a system, what the system should do or provide for 

users, and can be features, services, tasks, and functions supported by the solution 

Non-functional requirement: A description of the quality attributes that must be fulfilled by the 

system developed, as well as functions in the system, and could be stipulated by the standard 

or be specifically required by the customer, such as usefulness, speed, etc.  

Requirement model: A model represents the hierarchy of constraints of a system and indicates 

the relationship of the various requirements, such as reliability, safety, etc. 

Symptom: The effect of a fault, which represents the specific changes of abnormal parameters, 

such as beyond the threshold 
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System: Total plant or a particular part of a plant, including various parts of components, having 

specific inputs and outputs 

System model: An information model that describes a particular concrete system or some type of 

system description [Muth12] 

Task: An action or piece of a work a system ought to perform or achieve 
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Zusammenfassung  

Die Verfügbarkeit und die korrekte Funktion von komplexen technologischen Prozessen spielen 

in unserer modernen Gesellschaft eine wichtige Rolle. Automatisierte Systeme werden immer 

komplexer, sie enthalten zahlreiche Prozesse und Teilsysteme. Dies führt zu einer immer größer 

werdenden Anzahl komplexer Zusammenhänge und möglicher Fehlerquellen, die in ihrer 

Vielzahl für den Menschen schwer beherrschbar sind. Fehler, die zur Entwicklungszeit nicht 

berücksichtigt wurden, können zur Laufzeit nicht abgefangen werden und führen dadurch meist 

zum Ausfall des gesamten Systems, obwohl die von einem Fehler nicht betroffenen 

Teilfunktionen weiterhin verfügbar und dadurch ein Teilbetrieb möglich wäre. 

Aus diesem Grund wird in dieser Arbeit ein modellgestütztes, dynamisches Fehlerbehandlungs- 

und Rekonfigurationssystem vorgestellt. Dieses System kooperiert dabei mit im automatisierten 

System integrierten oder externen Fehlerdiagnosesystemen. In diesem dynamischen 

Fehlerbehandlungs- und Rekonfigurationssystem werden zwei Fehlertypen unterschieden, 

bekannte Fehler und neue Fehler. Im Fall eines bereits bekannten Fehlers sendet das vorhandene 

Fehlerdiagnosesystem dem dynamischen Fehlerbehandlungs- und Rekonfigurationssystem die 

von ihm ermittelten Informationen zum Fehler zu. Mithilfe einer Überprüfung der 

Fehlerwissensbasis, welche die bekannten Fehler und die entsprechenden verfügbaren Funktionen 

beinhaltet, werden die verfügbaren Funktionen ermittelt und ausgegeben. Damit kann das 

automatisierte System rekonfiguriert und zumindest teilweise wieder in Betrieb genommen 

werden. In dem Fall, dass das vorhandene Fehlerdiagnosesystem einen Fehler nicht identifizieren 

und klassifizieren kann, sammelt das dynamische Fehlerbehandlungs- und 

Rekonfigurationssystem nach der Fehlermeldung des automatisierten Systems die Zustände der 

Komponenten und Teilsysteme des automatisierten Systems (einschließlich historischer Daten). 

Daraufhin wird durch Analyse der Symptome mithilfe des Anlagenmodells eine Lokalisierung 

der Fehler durchgeführt. Anschließend wird die Identifizierung der verfügbaren Funktionen 

mithilfe des Systemmodells (einschließlich Komponenten-, Funktions- und Anforderungsmodell) 

durchgeführt. Abschließend werden die verfügbaren Funktionen in der Fehlerwissensbasis 

gespeichert und das automatisierte System mithilfe der gewonnenen Informationen rekonfiguriert. 

Somit kann ein Totalausfall des Systems verhindert und dadurch die Zuverlässigkeit des 

Gesamtsystems erhöht werden. Anhand von drei Demonstratoren werden die Realisierung und 

die Evaluierung des Systems gezeigt. Die qualitative Evaluierung zeigt, dass das dynamische 

Fehlerbehandlungs- und Rekonfigurationssystem die Fehler in den automatisierten Systemen 

korrekt behandeln kann. Die quantitative Evaluierung zeigt weiterhin anhand von empirischer 

Untersuchung, dass die Verfügbarkeit der automatisierten Systeme erhöht wird.  
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Abstract  

The availability and proper working of complex technological processes play an important role in 

modern society. At the same time, industrial automation systems are becoming more and more 

complex. They customarily contain an extensive number of processes and subsystems which are 

strongly interrelated. This has led to an ever-increasing number of possible fault locations which 

humans find difficult to control. Faults, which are not taken into account during the development 

phase, cannot be intercepted or prevented at runtime and can thus lead to an overall failure of an 

entire industrial automation system. However, partial unaffected functions could still be available, 

and therefore partial operation could be possible.  

For this reason, a model-based dynamic fault handling and reconfiguration system has been 

developed. In this thesis, faults are divided into two types: known faults and new faults. In the 

case of a known fault, the existing fault diagnosis system sends the fault information to the 

dynamic fault handling and reconfiguration system. After the investigation using the fault 

knowledge, which includes known faults and corresponding available functions, available 

functions are sent back to the industrial automation system. This allows the industrial automation 

system to be reconfigured and to resume a normal operating state. For a new fault, however, the 

existing fault diagnosis system cannot identify the fault location. The dynamic fault handling and 

reconfiguration system gathers the fault information, including fault diagnosis results and the 

historical data. To identify the fault location of the fault, the fault localization can be performed 

via analyzing symptoms with the help of the system model. Subsequently, the identification of 

available functions can be performed via the system knowledge. Finally, available functions can 

be stored in the fault knowledge and the industrial automation system can be reconfigured with 

its available functions. Hence, total failures as well as breakdown of the industrial automation 

system can be prevented and the system’s overall system availability can be thereby increased. 

By means of three demonstrators (two-tank system simulator, coffee maker simulator and high-

bay warehouse simulator), the realization and the evaluation of the conception of dynamic fault 

handling and reconfiguration are demonstrated. The qualitative evaluation shows that the dynamic 

fault handling and reconfiguration system can correctly deal with faults in industrial automation 

systems with high efficiency. The quantitative evaluation indicates that the availability can be 

improved with the help of the dynamic fault handling and reconfiguration system via 100 tests. 

With the help of the proposed dynamic fault handling and reconfiguration system, the availability 

of the proposed demonstrators could be enhanced. 
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1 Introduction 

1.1 Background and Motivation  

With the extensive use of automation products in industry and in daily life, automation systems 

have greatly improved not only the methods of production and, accordingly, productivity, but also 

our quality of life and lifestyle. Home automation, for example, enhances energy efficiency and 

smartly securing the services of homes. 

To pursue higher customer convenience, however, simple and single-function automation systems 

can no longer satisfy people’s modern demands in the daily life. Therefore, complex automation 

systems that integrate more functions into one automation system, e.g. the CNC machine, have 

inevitably become the developmental trend of science and technology. This has unavoidably led 

to an increase in the complexity of industrial automation systems. In addition, to afford higher 

global benefits, manufacturers tend to sell their developed automation products not only in a 

limited area, but also to all possible corners of the world.  

As a basic requirement, customers need to be supported by having a stable industrial automation 

system, which enables them to provide their services continuously. Therefore, the importance of 

system availability has increased significantly. Availability is an important characteristic that 

plays an increasingly important role in industrial automation systems. Not only must these systems 

exhibit various functionalities, they must furthermore attain these functionalities under given 

operating conditions in a specific time interval. Despite very high availability, faults in an 

industrial automation system can never be completely avoided during the entire lifecycle of a 

system. For this reason, a special approach in handling faults during the runtime of an industrial 

automation system is required. The term fault, which describes an undesirable and unwanted 

situation in which one or more (active or potential) disturbances occur, addresses the cause of an 

incident [Ebel08]. The most frequent causes for faults arising at runtime, and thus being 

responsible for the decreasing availability of the entire industrial automation system, are listed as 

follows: 

 Short development time and budget constraints: limitations of software development time and 

budget always affect the quality and functionality of the automated system [BaPr04].  

 No systematic reuse: Reuse concepts are essential for cost reduction. However, a systematic 

approach to the increasing complexity of automated systems is not always possible [Lugu03]. 

 Too few resources during the test phase: To avoid faults in the software of automated systems, 

the test must contain as many test cases as possible. However, this is often very expensive and 

even impossible because of short deadlines and restrictions on resources [KiPo02]. 
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 Lack of experience among developers: The knowledge of developers contributes significantly 

to software quality. Inexperienced developers tend to have misconceptions due to a lack of 

knowledge about the context of a system [MoWe00]. 

  Insufficient knowledge of the environment in the development phase: The environment in 

which industrial automation systems operate is never fully known in the developmental phase. 

The increasing mobility and various applications of industrial automation systems reinforce 

this effect. However, information concerning the environment is essential for the development 

of industrial automation systems. 

Considering the five reasons mentioned, one or more faults remain in industrial automation 

systems. When such a fault occurs suddenly during the service lifecycle, an industrial automation 

system cannot avoid terminating its service. In such cases, the expectation of a customer is that 

the downtime used for repairing is reduced to a minimum and that services of the industrial 

automation system will be resumed as soon as possible. Correspondingly, the availability of these 

complex automated products’ functions plays an increasing role in modern society.  

1.2 Challenges of Maintenance for Industrial Automation 

Systems 

An internal event or a change in the environment, or a wrong action by a human operator, can 

result in a failure of a component. A fault in a single component can have a significant impact on 

the availability and performance of the system, even halt an entire system. Faults of industrial 

automation systems are, in fact, impossible to be avoided in their entirety during the development 

phase. A certain number of faults will occur during customer use. Therefore, manufacturers face 

the serious choice of either solving the faults as soon as possible, or decreasing the fault effect of 

an automation system before the fault is removed. Unfortunately, several serious gaps impede 

manufacturers from performing the usual maintenance: 

 Increasing complexity of industrial automation systems: Complexity here is addressed 

from two perspectives. For one single industrial automation system, more functions are 

integrated into one industrial automation system to meet growing customer demands, for 

instance, in an all-in-one washer-dryer instead of a washing machine and a dryer [BDW14]. 

For various industrial automation systems, the producer often manufactures different goods, 

e.g. different generations of smartphones, different coffee machines, etc. This results in a 

challenge for the reasonable maintenance of various products. In addition, frequent upgrades 

of industrial automation systems are required to adapt to the quick changes of customer 

demands and market changes. Hence, the complexity of industrial automation systems hinders 

effective support [FSV13].  
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 Effective maintenance for worldwide distribution: The market is no longer confined to a 

certain region or country, but focused on the global scope, i.e. the global village. This means 

that automation products produced by manufacturers will be sold to different countries on a 

global scale [PSU13]. The traditional maintenance concept is to cover a large number of sales 

areas with fixed maintenance centers. The maintenance staff can provide customers with 

timely fault maintenance. However, whether from the cost control perspective or the timely 

service perspective, this traditional human-service based approach has been unable to adapt 

to the changes of worldwide distribution. In addition, because of the fast upgrade of industrial 

automation systems, this approach requires a long waiting time and high costs for training and 

consulting ordinary maintenance staff. For this reason, overcoming the limitation of long 

distances and the dependence on maintenance staff are another challenge of modern 

maintenance [ImSa13]. 

 Lack of reasonable measures for new faults as well as faults that will always exist and 

cannot be prevented: In an ideal situation, the industrial automation system is able to 

overcome all faults, or holds the right measures in reserve for all possible faults to prevent 

them. And although some faults can be detected or are already known in the development 

phase, there are still no corresponding measures to prevent them: for instance, redundancy of 

components is not possible because of limitations of cost [IPW10]. In addition, as mentioned 

in the last section, an industrial automation system cannot avoid the occurrence of new faults 

[PDK15]. In this case, it is very hard to perform the process fault diagnosis matching with 

known fault cases, and to take effective solutions to remove the fault, or even reduce the fault 

effect. Therefore, an effective concept is required for handling new faults or reducing the fault 

effect, which is unpreventable within the operational phase. 

 Weakness of integrated fault diagnosis systems: As a necessary maintenance solution, 

current industrial automation systems usually have their own their specific professional fault 

diagnosis systems in order to monitor system behaviors, provide basic fault diagnosis 

functions, and afford certain essential instructions for customers [Roth10]. Due to the 

limitation of hardware capacity and the development cycle, integrated fault diagnosis systems 

are unable to comprise far too modern and complex fault diagnosis algorithms and approaches. 

In addition, the upgrade of integrated fault diagnosis systems affords plenty of room for further 

development costs. If the industrial automation system is updated, the fault diagnosis system 

also has to also be updated; however, this update is not always available. The upgrading of the 

new operational system of android-based smartphones is, for instance, incompatible with the 

old smartphones due to the limitation of hardware capabilities [FrGö15]. Hence, to overcome 

the weakness of the integrated fault diagnosis system, a new approach is required. 

 Lack of skilled knowledge of domestic consumers: Users usually do not have the necessary 

electrical training or an education in electronics [FrGö15]. Hence, users lack specific technical 

knowledge and practical experience in knowing how the industrial automation system works, 
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in comprehending the fault messages provided by the fault diagnosis system, and in finding 

out the reasons for poor performance. In such a situation, the user has to rely on technical 

maintenance staff instead to remove or replace the faulty component [Jela12].  

1.3 Objective of the Research Work 

In line with the previously mentioned challenges, the aim of this research is to present a novel 

fault handling and reconfiguration approach which enables the system to work with partially 

available functions in order to prevent system breakdown of an industrial automation system 

should there be a component fault. Referring to the proposed concept, the following objectives 

will be strived for:  

 Providing higher availability for industrial automation systems: For this objective, this 

research attempts to prevent a longtime breakdown of an entire system. In the event of a fault, 

partial functions of an industrial automation system can be assured with the intention of 

providing further services to users, i.e. reducing downtime. With reduced downtime, the 

availability of an industrial automation system can be improved, compared with the original 

case. 

 Automatic support of handling faults and reconfigurations for industrial automation systems: 

Referring to this objective, the proposed concept suggests that the intervention of human 

beings, i.e. the normal user and the maintenance service provider, can be avoided if possible 

by increasing handling efficiency as well as further reducing the downtime. This objective can 

be achieved through establishing communication, confirming available functions, and 

performing the reconfiguration in industrial automation systems automatically. It is worth 

nothing that the identification of available functions requires the knowledge of the system’s 

internal structure. Hence, it behooves this research to consider the definition, establishment, 

formalization, and utilization of a system model. 

 Handling faults dynamically: Concerning this objective, the proposed concept enables 

known faults as well as new faults to be dealt with. According to the challenges in the last 

section, known faults can be easily detected by the existing fault diagnosis system (EFDS) via 

process data and known symptoms, like limit and trend checking. The concept should 

cooperate with the EFDS to identify if the fault is known or new. Additionally, the proposed 

concept supposes a method to identify the fault location, establish a reasonable system model 

and confirm the fault effect as well as available functions with the help of historical data 

instead of depending on real-time data. 
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1.4 Overview regarding the Thesis 

An industrial automation system usually possesses a specific fault diagnosis system to monitor 

the operating state. However, such a fault diagnosis system can only handle known faults which 

are determined in the development phase. For new faults, there is no solution for a consistent fault 

handling and removal of faults. This circumstance can lead to a breakdown of the entire industrial 

automation system. In fact, faults can only impact parts of the system, but do not necessarily 

impact the entire system. In another words, some functions of the industrial automation system 

can still be available. Hence, a novel approach is required to handle new faults and to guarantee 

the performance of the available functions which are not impacted by the fault. 

 

Figure 1.1: Handling new faults in industrial automation systems with new approach  

To introduce the developed approach, the thesis is divided into three major parts: fundamentals 

and existing methods for handling faults in Chapter 2 and Chapter 3, the approved conception of 

handling either known or new faults in Chapter 4 and Chapter 5, and the realization and evaluation 

of the concept in Chapter 6. 

To handle faults in industrial automation systems, fundamentals concerning industrial automation 

systems, fault handling and reconfiguration will be researched in Chapter 2 (see Figure 1.2).The 

aim of this thesis is the improvement of the availability of industrial automation systems. Thus, 

the availability will be clearly defined with MTTF and MTTR. Furthermore, the fundamentals of 

the system model will be introduced for describing the structure of industrial automation systems. 

For the purpose of handling faults, it is necessary to present the basics of the faults. Moreover, 

different fault handling strategies and principles will be considered. To activate still available 

functions and to combine the fault handling strategies, reconfiguration approaches have to be 

researched in order to adapt the approved concept. To perform reconfiguration properly, the 

reconfiguration principle will be outlined. At the end of this section, based on the objective of the 

thesis and the fundamentals, five requirements concerning the objective, the system model, fault 

handling and reconfiguration are indicated for establishing a novel fault handling conception. 
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Figure 1.2: Schema of basics concerning handling faults in industrial automation systems  

The aim of the thesis is to enhance availability of industrial automation systems by performing 

still available functions in case of a fault. To realize this aim, two major functionalities are 

required: handling faults with available functions, and analyzing new faults and their impacts 

properly. To handle faults, a survey of existing methods of handling faults is conducted, covering 

aspects like fault prevention, fault tolerance, fault removal and fault forecasting. With regard to 

new faults, the approved concept has to be able to determine the fault location and the fault impact 

in an industrial automation system. This requires a very comprehensive knowledge of the system 

structure and its behaviors. Establishing a proper system model is required to attain such system 

knowledge. Hence, four major system modeling methods are presented and compared, namely: 

process-oriented system modeling, data-oriented system modeling, state-oriented system 

modeling and object-oriented system modeling. Thus, methods concerning handling faults and 

system modeling are surveyed in Chapter 3 (see Figure 1.3). 

 

Figure 1.3: Survey methods of handling faults and system modeling 

The challenge of handling faults is to handle new faults that did not occur in the development 

phase. Thus, comprehensive system knowledge is required to conduct a reasonable procedure for 

determining the impact of a new fault. Following the general development approach of an 

industrial automation system according to a V-model, a development sequence is carried out 
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through the following steps: requirements analysis, system design, implementation with 

components and test. Chapter 4 proposes a system model to describe an industrial automation 

system, which includes a component model, a function model and a requirement model, shown in 

Figure 1.4. However, in order to propose computer-supported automatic assessment, the system 

model has to be formulated appropriately. Two functionalities, namely the fault localization and 

the identification of available functions, are supposed to characterize the impact of a fault. For the 

fault localization, specific attributes concerning faults, symptoms and system parameters extend 

the system model. Through combining the fault information with the existing fault diagnosis 

system, the fault location within the component model can be confirmed. To formulate the system 

model, this thesis utilizes metrics to indicate the relations among components, functions and 

requirements, and specific rules to indicate the condition whether functions and requirements are 

available. Thus, relations are able to provide a route for determining the fault propagation with 

the determined fault location within the component model, as well as the defective components. 

Rules are used to evaluate the availability of functions. 

 

Figure 1.4: Schema of system model and system knowledge 

Chapter 5 introduces the concept of the dynamic fault handling and reconfiguration (see Figure 

1.5). To handle faults in industrial automation systems, this concept supposes cooperating with an 

existing fault diagnosis system which can provide primary fault diagnosis results. In this thesis, 

two types of faults are distinguished: known faults, and new faults. The handling process is 

divided into major parts accordingly, namely handling known faults, and handling new faults. To 

handle known faults, three steps are supposed: analysis of fault information from the existing fault 

diagnosis system in the industrial automation system; identification of available functions for 

known faults with the help of fault knowledge; and determination of reconfiguration commands 

to conduct a system reconfiguration with available functions. For new faults, two additional 

modules are required to determine fault location and still-available functions. Moreover, fault 

handling knowledge, including fault knowledge, symptom knowledge and system knowledge, is 

required to deal with faults. Firstly, based on the symptom knowledge and the system model, the 

fault location can be determined. Secondly, a fault impact in the industrial automation system can 
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be determined by means of formulated system knowledge. Consequently, available functions can 

be identified. Based on available functions and resource information, the availability of ongoing 

tasks in the industrial automation system can be evaluated. For available functions and available 

tasks, reasonable reconfiguration commands can be integrated. 

 

Figure 1.5: Conception of dynamic fault handling and reconfiguration 

Following the introduction of the novel dynamic fault handling and reconfiguration concept, its 

realization and evaluation will be presented in Chapter 6 (see Figure 1.6). The realization is 

introduced in terms of software architecture, fault handling knowledge and communication. To 

evaluate the system, three demonstrators (the two-tank system simulator, the coffee maker 

simulator, and the high-bay warehouse simulator) were developed. The evaluation consists of two 

major perspectives: the qualitative and the quantitative evaluation perspective. The qualitative 

evaluation is supposed to evaluate if basic functionalities of the dynamic fault handling and 

reconfiguration system are able to be performed correctly. The quantitative evaluation attempts 

to evaluate how much the availability can be improved with the help of the dynamic fault handling 

and reconfiguration system. For this purpose, 100 tests for each demonstrator were performed in 

comparison with the case with no dynamic fault handling and reconfiguration system. Finally, 

according to the defined requirements in Chapter 2, a general evaluation of the conception of 

dynamic fault handling and reconfiguration is highlighted. 
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Figure 1.6: Prototype and evaluation of the conception of dynamic fault handling and 

reconfiguration 

Chapter 7 provides a summary of this thesis by underlining its important aspects. Moreover, the 

limitations of applying this concept are presented. Additionally, the possibilities that can be 

regarded in future work within this field are indicated, such as tools for the automatic 

formalization of the system knowledge. 
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2 Fundamentals of Fault Handling and 

Reconfiguration for Industrial Automation Systems 

The complexity of industrial automation systems is a major reason why faults occur: The 

developer does not have a complete understanding of the complex system. Different reusable 

components are (possibly) being utilized in different domains in order to realize the functionality 

of the complex system. In this case, there is often insufficient time for a detailed and full test. It 

is therefore essential for fault handling to abstract the structure of industrial automation systems 

in order to provide an overview of the entire system for analyzing faults. In this chapter, the basics 

of the industrial automation system are presented. Additionally, the fundamentals concerning 

availability, fault handling and reconfiguration will be introduced. 

2.1 Basics of Industrial Automation Systems 

2.1.1 Definition of Industrial Automation Systems 

An industrial automation system is a computer-based or microcontroller-based system, which is 

utilized to produce various products, to transfer energy or to handle information flow. According 

to [ZNM18] [WKS+17]], it consists usually of one or more processor units, such as 

microcontrollers, sensors, and actuators.  

The processor unit interprets input signals, evaluates the input with its preset tasks via its own 

specific algorithms, and outputs the signals with the intention of adjusting the actuator behavior. 

The sensor converts the physical quantity, for instance, temperature, pressure, and velocities, into 

electrical signals and passes them to the processor units. The actuator receives the electrical 

signals delivered by processor units via the fieldbus system and performs the required actions with 

the intention of influencing the technical process. In addition, the technical process is the sum of 

the processes in which the physical quantities are recognized and influenced with technical 

methods. In this thesis, the physical individuals in the technical process are denoted as elements, 

e.g., liquid tank, pipes, etc.  

In [ZNM18] [WKS+17], industrial automation systems concerning the different process variables 

are classified into three major types: 

 Continuous processes for industrial automation systems are processes with time-dependent 

process variables that denote the time-dependent behaviors of physical state variables in the 

technical process, e.g., the chemical and heating processes. All control processes are denoted 

through continuous processes. To complete the description of time-dependent process 

variables, a mathematic model is suggested for one continuous process via differential 

equations, transfer functions, etc.  
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 Sequential processes (also called discrete event type processes) for industrial automation 

systems are processes that own various and distinguishable process states that perform 

systematically and consecutively. Examples for sequential processes can be the manufacturing 

process, start-up and shutdown process, etc. The transmission between these states can be 

assigned with binary events that can reflect or influence the discrete process states. To describe 

the sequential process, a state or event model can be a reasonable modeling approach.  

 Discrete object type processes for industrial automation systems are processes in which single, 

identifiable objects that can be converted, transported or stored, can be assigned with their 

process variables. Examples of the discrete object type process can be the warehouse process, 

traffic process, etc. The object-oriented model can be applied in describing these processes.  

In addition, an industrial automation system will usually have not only one process, but several 

processes. The manufacturing process includes, for instance, continuous processes, sequential 

processes and discrete object type processes, but the sequential process is the dominating process. 

Therefore, to fully describe an industrial automation system, the utilization of only one modeling 

approach is insufficient, requiring instead a combination of several models. 

2.1.2 Availability 

In relation to a technical product or a technical plan, availability means the property that a specific 

reaction follows for an input. One of the most important requirements with respect to technical 

products or technical plants is the continuity of services, that is, that the automation system can 

continuously provide necessary services, e.g. the manufacturing of products. Availability is an 

important criterion to judge the quality of an industrial automation system. High availability is 

also the objective of this research as mentioned in the last chapter. For clarity in terms of high 

availability in industrial automation systems, several definitions concerning availability are given 

below. 

In [DIN10a], the term availability is defined as follows: “Ability of an item to be in a state to 

perform a required function under given conditions at a given instant of time or over a given time 

interval, assuming that the required external resources are provided”. 

The above definition highlights a system being able to realize specific functions under given 

conditions successfully. Following this definition, the objective of the research can be thus 

indicated: 

 Consideration unit: The entire system should continue to work during the appearance of a fault 

within a system component as well as resume work after an abort as soon as possible.  
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 Required functions: The functions required by the user as well as the available functions are 

able to be guaranteed by both isolating affected functions and further executing not affected 

functions.  

 Certain time period: In this thesis, the selected observation time is the period of the occurrence 

of a fault in the industrial automation system.  

 Without failure: Although a system component fails, the entire system is enabled to work by 

isolating the impact of occurred faults. 

Furthermore, [Iser06] defines availability as the probability that a system or equipment can 

provide its functions effectively at any period of time. According to this definition, the case that 

failures and malfunctions occur and carry out repairs is taken into account by availability. As a 

probability, it proposes the equation 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
 

to calculate the availability, where MTTF is the mean time to failure and MTTR is the mean time 

to repair. Obviously, to obtain a high availability, the research should attempt to increase the 

operation time MTTF and decrease the repair time MTTR, i.e. downtime. In other words, if the 

fault can be handled in the original repair time, and partial functions of the system can be 

performed immediately, then availability can be enhanced with a decreased MTTR and an 

increased MTTF. 

2.1.3 System model 

As discussed in the previous section concerning research goals, this research intends to guide 

automated products to reconfigure themselves in a certain range with the help of available 

functions when the automation system fails due to a component fault. Therefore, automated 

products are able to continue to work and to still provide available services to users.  

The system model is the model that can describe and represent a system from different views and 

be considered as the result of system modeling. With the benefit of modeling techniques, the 

properties of an industrial automation system, the classes, architecture, behavior, and interactions, 

including either internal or external interactions with the environment, can be clearly 

demonstrated and shown. Different models developed by different modeling techniques play 

different roles: facilitating the development of algorithms, the system structure, the selection of 

hardware as well as software components, etc. Hence, the system model helps to simplify the 

analysis, design, and implementation in the development phase. Furthermore, the system model 

provides the opportunity for testing to verify the correctness of the system’s behaviors. This can 

usually be applied for fault impact reasoning, such as fault tree analysis (FTA) and process model 

based fault diagnosis [Iser06].  
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However, if an automated system follows a wrong guide, not only is the desired objectives 

unachievable, but the wrong guide can also result in further fault impact expansion and it can even 

bring the whole system to its knees, e.g. through secondary failures. Therefore, a full and clear 

evaluation of the fault impact scope in the system’s inner structure is a very important prerequisite 

for decision-making. Otherwise, the necessary constraints, like safety, ought to be considered. To 

achieve this purpose, system models are proposed which describe the system, like the structure 

and according attributes, and provide knowledge concerning the automated product in some 

definite form, e.g. text, graphics (including symbols), physical simulation and mathematical 

formulas [BIA11]. The classification of system modeling techniques can meanwhile be based on 

the various system information provided by specific models, such as context models, data flow 

models, state machine models, object models, semantic data models, etc. There is, however, a 

large subset of different types of models and associated modeling language to address various 

features of an automated system. The correct and suitable type of system modeling techniques 

should be selected for the intended purposes and scopes. 

2.2 Fault Handling for Industrial Automation Systems 

In this section, the fundamentals of fault handling regarding fault and symptom and fault handling 

for industrial automation systems will be introduced. 

2.2.1 Fault 

Functions of the industrial automation system ought to be executed successfully according to the 

requirements of users. In practice, unforeseen and undesirable situations may occur. In this case, 

the industrial automation system cannot perform its functions to achieve its target or, in an extreme 

case, is not functional at all. In the analysis of availability, faults, errors and failures play an 

important role [Gert15]. Hence, several basic terms concerning faults need to be indicated in this 

thesis.  

In [DIN10b], the term fault is defined as the: “State of an item characterized by the inability to 

perform a required function, excluding the inability during preventive maintenance or other 

planned actions or due to lack of external resources”. The term error is a “discrepancy between a 

computed, observed or measured value or condition and the true, specified or theoretically correct 

value or condition” [IEC61508] [Goll12]. In [ISO11], the term failure is a “termination of the 

ability of an element to perform a function as required”. 
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Figure 2.1: Relationship between fault, error and failure for component and system 

[Goll12] 

Based on the above definitions, it can be concluded that a fault occurs first in a system 

component’s physical layer, e.g. through the wear of actuators. As a result, the information level 

is affected as well. After a certain latency, the actual value cannot attain the desired setup value, 

i.e. error in component. The function of the component can then be lost, namely, a failure of the 

component. In a similar way, component failure can be propagated to the system level, which can 

result in a system fault. Due to the loss of the component function, the setup value of the system 

would no longer be achievable, and it would also result in a deviation, i.e. system error. In the end, 

a component fault can lead to the breakdown of the entire system, i.e. system failure [Goll12]. 

This process, as well as the relationship between fault, error and failure, is indicated in Figure 2.1. 

As discussed, because the aim of the research is to assure partial functions of an industrial 

automation system, this thesis concentrates on a system fault as well as the failure of a component. 

The defective component can be recognized as the location of the fault, i.e. the fault location that 

denotes the source of the fault in this thesis. Otherwise, the behavior or procedure of finding the 

fault location is called fault localization in this thesis. In addition, the defective function of the 

defective component is defined as malfunction. 

 Only component failure(s) are considered as fault(s) here. In terms of the number of appearances 

of a fault, faults in this research thesis are divided into known faults and new faults [WJG15a] 

[WJW15]. A known fault is a fault which has appeared at least once before and its fault diagnosis 

approaches are therefore known. In other words, when this fault reoccurs, it can be easily detected 

and diagnosed. If a fault appears for the first time, this thesis terms it a new fault. Such a fault will 

be diagnosed at first by finding its fault location.  

Concerning various application cases, the term function can be comprehended in three different 

ways: 

Mathematical function is a relation between one or a set of variables and another or another set 

of permissible variables, with the property that each variable is related to exactly another variable, 

e.g. 𝑓(𝑥) = 𝑎𝑥 + 𝑏𝑦. 

Program function is a part of code which can be performed by the computer with a specific 

running environment, e.g. int function_add(int a, int b){int a, int b; int c = a +b; return c;}. 
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Conceptual function is an action or a service in which an item or a system has to realize the 

demand of its user, e.g. producing espresso by the coffee maker.  

In this thesis, when the term function appears alone, then it means the conceptual function. 

2.2.2 Symptom 

To detect and diagnose system faults, the observed event or variables will be utilized, i.e. 

symptoms. Generally, there are two types of symptoms: the analytic symptom for the automatic 

processing of measured variables, and the heuristic symptom for evaluating observed variables 

[Iser06]. 

The analytic symptom (also known as analytic knowledge) denotes the measurable and analytical 

information from the process of industrial automation systems. To attain this information, three 

major approaches can be applied via the process variables, which can be measured and processed 

based on the generated characteristic values. They are: limit value checking, signal analysis of 

directly measurable signals, and process analysis via mathematical process models. For them, 

different characteristic values ought to be recognized and generated, e.g. the measured sensor 

value with the setup threshold value, trend, variances, model parameters, state variables, etc. 

These parameters can be defined by various specific mathematical functions or methods, such as 

limit checking of absolute values [Iser06] with the mathematical function 𝑌𝑚𝑖𝑛 < 𝑌(𝑡) < 𝑌𝑚𝑎𝑥, 

specific fault models, and process models. 

Different from the analytic symptom, which can be generated by using quantifiable information, 

the heuristic symptom requires expert knowledge and experience with difficult to measure 

information [Iser06], for instance, noises, colors, smell, etc. Hence, the heuristic symptom is 

extremely dependent on the specific knowledge and is usually represented in a fuzzy form, i.e. 

linguistic variables: small, larger, approximate number, etc.  

The analytic symptom is obviously a very reasonable choice for automatic symptom generation 

which can avoid the additional knowledge representation for human knowledge. By means of the 

symptoms, it can simplify the fault diagnosis procedure; in other words, establish reasonable 

functions or models for the symptom generation and an appropriate fault (location) -symptom-

relations, such as the symptom matrix. Utilizing the reasoning approach, it can compare the 

current symptoms generated with the symptom matrix to complete the fault diagnosis as well as 

the fault localization. 

2.2.3 Fault Handling in Maintenance 

Maintenance as the last part of the life cycle of an industrial automation system is an important 

activity to keep the normal functionality of a system via handling faults. However, each year more 

than 60 million US dollars are lost due to ineffective maintenance management and faults 
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[Mobl02]. To perform effective maintenance, methods of maintenance ought to be designed and 

followed. Generally, two types of maintenance approaches are employed: corrective (also known 

as run-to-failure maintenance), and preventive.  

Corrective maintenance is defined as “activities undertaken to detect, isolate and rectify a fault 

so that the failed equipment, machine or system can be restored to its normal operable state” 

[Alge10] [TYM10].  

 

Figure 2.2: Corrective maintenance procedure by maintenance staff [Frie15] 

As the definition highlights, corrective maintenance tries to handle faults that have occurred. The 

traditional handling approach is indicated in Figure 2.2. When a fault in an industrial automation 

system takes place, the following procedure will be carried out continuously, namely contacting 

the hotline and making an appointment, service coming over, fault localization with no 

replacement, service returning and fault removed with the replacement. The obvious advantage 

of this method is that faults can be eradicated with new replacements by means of skilled 

personnel, but the disadvantage is long downtime. 

Preventive maintenance is defined as “a series of activities undertaken to inspect system, detect, 

correct and prevent the incipient faults, before they become actual or major faults” [KhDe11] 

[Wang02] [CCO12]. As a typical method of preventive maintenance, predictive maintenance is 

able to monitor, detect and diagnose the process condition of an industrial automation system 

[CCO12]. Benefits from preventive maintenance are the system’s availability and reliability, and 

thereby the productivity of industrial automation systems can be increased [BCY03] [ÖFH15] 

[CCO12]. These two approaches aim to handle either faults that have occurred or have not 

appeared yet. As discussed in the last section, this research focuses on component failures as well 

as system faults.  

Generally, in accordance with the development time of a fault, the interval of a fault can be divided 

into fault causation, fault detection, fault explanation, and fault elimination. Fault causation 

indicates the occurrence of a fault resulting from various factors, such as wear of an actuator. The 

fault can then be detected via various characteristic values [Iser06], namely fault detection. 

Subsequently, this fault impacts functions or behaviors of the subsystem, and even the entire 

system [WJW15]. In this phase, the fault impact can be further confirmed. However, with several 

specific actions, such as exchange replacement, the fault can be eliminated [Iser06]. 
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Figure 2.3: Process of fault mastery, fault handling, and fault diagnosis [Donl07] 

Concerning the fault development phase, the techniques for processing faults can be defined as 

fault mastery, fault handling and fault diagnosis. Fault mastery aims to monitor the fault 

occurrence to the fault elimination in the entire process of faults. Fault handling covers the three 

phases, i.e. fault detection, fault explanation and fault elimination. Fault diagnosis allows for 

detection of a fault and its analysis with detected or observed characteristic values [Gert15].  

In the operating phase, errors and failures lead to the stopping of the entire system. The handling 

of faults and failures plays a very important role in increasing availability. According to [Donl07] 

[WWW08], there are basically three strategies to increase the availability of industrial automation 

systems concerning the two maintenance strategies:  

 Strategy of avoiding faults, also called perfection or intolerance strategy: This strategy 

attempts to prevent the causes of faults, errors and failures with the intention of arriving at a 

fault-free, perfect system. This includes, on the one hand, so-called fault prevention or error 

prevention [AlFu14] (prevention of the occurrence of faults), and on the other, fault or error 

disclosure (fault detection before the system is in operation, e.g. appropriate tests), such as 

fault prediction [ASF15] and fault elimination [MJKJ14]. 

 Strategy of avoiding the impact of faults, errors, and failures: When a fault cannot be 

completely avoided, this strategy enables a prevention or compensation of the fault effect, for 

instance, via the redundancy technique [Gert15]. Therefore, this strategy can be also referred 

as a fault tolerance strategy [ZhLy10]. 

 Strategy of reducing the fault, error, and failure effect: In this strategy, the individual 

participates in the treatment of faults, errors and failures in industrial automation systems in 

order to delimit their effects. Concerning occurred faults, errors as well as failures, it is 

sufficient that either the user, using the instructions of the industrial automation system (e.g. 

the user manual) tries to modify the technical system, or maintenance staff repairs the system 

to correct the error [CZJW16, WMSP17]. In addition, some technologies can support this 

strategy, such as fail-soft or fail-safe [Cool03] with the intention of guaranteeing partial 

operability of functions as well as reducing the fault effect [Bush14]. This strategy allows an 

industrial automation system to continue to work with maximum functionality during the 

existence of faults.  
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2.2.4 Principle Procedure of the Fault Handling 

The previous section introduced three strategies of fault handling, and these three strategies follow 

the same principle procedure in Figure 2.4, namely feature generation, fault detection, fault 

diagnosis, fault evaluation and decision making [Iser06]. Feature generation can be attained by 

special signal processing, observed data from the process, state estimation, etc. With the generated 

data, it can be further processed towards fault detection in order to generate symptoms. Fault 

diagnosis tries to confirm the fault type, the fault reason and the fault location to employ the 

knowledge of analytic and heuristic symptoms. Both the classification and reasoning methods, in 

line with the relationship faults with symptoms, can be carried out for fault diagnosis; for instance, 

a fault-symptom-tree. Fault evaluation can be applied generally for the safety evaluation, such as 

evaluating the hazard level of the current fault to the industrial automation system. Depending on 

the fault diagnosis and fault evaluation results, decisions ought to be confirmed by the system 

itself or by the intervention of skilled personals [Iser06].  

 

Figure 2.4: Principle procedure of fault handling and actions 

On the basis of the series of fault diagnosis activities, five types of appropriate actions will be 

performed: regular maintenance while instantaneously maintaining or exchanging possible worn 

parts; repairing by removing a fault such as exchanging with a replacement; reconfiguring with 

other or redundant components to insure the normal operation of a process; changing operations 

with new operating ways to prevent further fault expansion; and stopping the operation by shutting 

down entire systems. Concerning the research’s aim to reduce the MTTF, the first four actions 

can lessen the MTTF, specifically reworking in the original downtime. However, first action 

regular maintenance requires either financial input, including man-power and cost, or a very 

robust fault diagnosis system to predict and diagnose the occurrence of faults. The second action, 

repair, requires the intervention of maintenance staff. The MTTF can be reduced only through an 

optimized maintenance process. In this thesis, the action reconfiguration with redundancy and 
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change operation can be utilized for reducing the MTTF. To simplify the action types, these two 

approaches will be called reconfiguration, and either redundancy or change operation can be 

identified as two specific reconfiguration methods. 

2.3 Reconfiguration of Industrial Automation Systems 

In the case of the appearance of a fault in an industrial automation system, reconfiguration is an 

appropriate choice for suiting the change which is led by the fault [BPK06]. This subsection gives 

the basics of reconfiguration and the principle reconfiguration procedure for an industrial 

automation system. In addition, a survey of reconfiguration approaches concerning measures of 

fault handling will also be introduced. 

2.3.1 Reconfiguration 

In [Mate10], Matevska defined reconfiguration as follows: Reconfiguration represents the 

technical view of the process in which an already developed and operationally deployed system 

is changed to adapt new requirements, extend functionality, eliminate faults (effect) or improve 

quality features. Concerning the mentioned reconfiguration in the last subsection, this thesis 

focuses on reconfiguration when a fault has occurred. In line with the proposed definition, 

reconfiguration here means that developed and deployed industrial automation can change its 

system state to another operational state to eliminate the fault effect.  

In order to perform a reconfiguration in an industrial automation system, the system requires the 

following major characteristics [MUK00]. Characteristic 1: Modularity, which means the system 

is made up of functional components, i.e. software and hardware components [GuGe04]. 

Characteristic 2: Inerrability, which means the system and its components are able to conduct 

either internal changes or to integrate future and further new technologies. Characteristic 3: 

Convertibility, which allows a quick changeover between existing and future products. 

Characteristic 4: Diagnosability, which means the industrial automation system has the specific 

module or functionality to identify the occurrence of a fault and the corresponding sources, i.e. 

fault location. Characteristic 5: Customization, which allows the deployed industrial automation 

system to match the application (product family) [KoCa00]. 
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Figure 2.5: Survey - reconfiguration concerning measures of fault handling [Wang17] 

As Figure 2.5 indicated, a survey of four major measures for fault handling and two main 

reconfiguration types is cited. Concerning measures of fault handling, possible approaches can be 

the elimination of the interference or error via adjusting mathematic algorithms [BKLS03] or 

adjusting parameters [NoJo09], a redundancy strategy via static redundancy or dynamic 

redundancy, graceful degradation with operational functions or tasks, and person-related services 

to support the reconfiguration such as consultation, technical support by experts and assisting 

instructions for users [Wagn14, Frit05, Böhl10]. In line with [WJW17], the first two approaches 

usually require a restart for adapting the configuration, such as activating the specific code for a 

specific algorithm or redundancy. Run-time reconfiguration (RTR) offers the capability of 

reconfiguring the system in run-time [BMS07, MHR03]. Typically, in the application of 

reconfigurable manufacturing systems, specific hardware is required for performing the 

reconfiguration, for instance, the deployment of FPGA [SiFe06]. 

2.3.2 Relationship between Reconfiguration and Fault handling for 

Industrial Automation system 

For the purpose of utilizing reconfiguration as measures for fault handling, a fault detection and 

gnosis module and a reconfiguration module are deployed to rectify the fault effect in industrial 

automation systems, such as a value error due to an interference.  
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Figure 2.6: Control reconfiguration for industrial automation systems [CAA14] [Iser06] 

In the present Figure 2.6, an interference or abrupt change can lead to failures in various 

components; the process data, e.g. state variables, can be detected by the fault detection and 

diagnosis module [CAA11]. By means of specific fault models, as well as process models, the 

faulty behaviors which occurred in the system should be tested or detected. In the fault case, the 

industrial automation system cannot afford the correct behavior. The corresponding diagnosis 

results, e.g. fault location and fault effect, are used as feedback for the reconfiguration module. 

On the basis of the results and its own knowledge, the reconfiguration module evaluates the fault 

effect and confirms possible measures to compensate for the error as well as the fault. Finally, the 

new configuration plan can be outputted to the industrial automation system to restructure the 

system architecture [PMD+17] or the control structure [VHBL15] to prevent a system level failure. 

2.4 Requirement analysis of the Dynamic Fault Handling and 

Reconfiguration 

As introduced in Chapter 1, the aim of this research is to enhance the availability of an industrial 

automation system as much as possible. In the case of the appearance of a fault, the objective can 

be explained as providing the still-available functions in the industrial automation system. To 

attain the ability of maintaining functionality when portions of a system break down, five proper 

requirements for fault handling, which are derived from the challenges in Chapter1, are necessary. 

The challenges were empirically determined with the following research: [BDW14] [ImSa13] 

[PSU13] [IPW10] [PDK15] [Roth10] [FrGö15] [FrGö15]. Additionally, more positive input came 

from the discussion with academic experts in different conferences and workshops, e.g. ICICM 

2015. Similarly, visits to exhibitions, such as the Embedded World Exhibition, also provided 

suggestions about the challenges of industrial automation systems. Based on this input, five 

requirements for establishing the concept were derived. These requirements are further indicated 

as follows: 
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 R1: Ability of enhancing the availability of the entire industrial automation system: It 

requires endowing the automated systems with the continuously operating ability and 

lengthening the service time of the industrial automation system, i.e. increasing the mean time 

to failure (MTTF) and shortening the mean time to repair (MTTR). To achieve this, an 

industrial automation system ought to provide, and work with, partial functions when a 

component is out of order. It needs to be noted that this requirement concentrates on the overall 

system availability, but not partial function availability. In other words, some partial functions 

of an overall system are allowed to be sacrificed.  

 R2: Ability of automatic, reasonable and dynamic fault analysis: The proposed concept 

ought to respond to faults that have occurred, send back information, and carry out a proper 

measure as soon as possible. At the same time, in terms of handling faults, the proposed 

concept should avoid the circumstance of fault duplication handling, for which it needs an 

information-share platform and mechanisms to process the known and new faults separately. 

This means that the proposed concept can pinpoint the fault location – defective components 

or subsystems – according to the fault information, and obtain the available system functions 

in line with the reasonable internal relationships of the automated system structure. Most 

obviously, the structure of an automated system should be broken down into different suitable 

views after considering the reasonable aspects, e.g. the physical aspects of components and 

the logical aspects of functions and dependencies of functions, such as safety, performance, 

security, etc.  

 R3: Ability of reconfiguration to maintain available functions remotely: The proposed 

concept ought to provide an appropriate method to perform the reconfiguration, namely 

available functions and a guide for the reconfiguration in the industrial automation systems. 

For the former case, because of a wide distribution of systems, the activating of the new 

configuration is a serious problem to solve. Moreover, depending on different reconfiguration 

strategies (static and dynamic reconfiguration) and specific demands, the proposing concept 

will be able to provide enough reasonable measures for activating available functions and 

isolating unavailable functions. In some special cases, for instance, switch off some key valves 

by the user for activating redundancy, the guidance for the user is very important in completing 

corresponding actions.  

 R4: Ability of reducing the cost for implementation and in operation: It is an important 

criterion to evaluate the proposed fault handling system. The development, establishment and 

running of the proposed concept should cost as little as possible. In addition, the proposed 

concept should attempt to avoid increasing the burden on the existing automated products, 

such as a large system change and large real-time data acquisition. The perspective of long 

distance and wide distribution of industrial automation systems can also influence the cost, 

i.e. providing an effective maintenance support by manufacturers remotely is a possible 

problem-solving approach. 
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 R5: Ability of porting the conception for heterogeneous industrial automation systems: 

The proposed concept ought to be ported for different types of industrial automation systems 

including continuous processes, sequential processes, and discrete object type processes. For 

the purpose of decreasing the porting cost, the communication approach and the required 

knowledge should be defined clearly and uniformly. Furthermore, the proposed concept 

should possess the ability of handling faults for all industrial automation systems of the same 

type at the same time. 

 

This chapter has described the basics concerning the research on industrial automation systems, 

fault handling and reconfiguration. The composition of a system and three system types, i.e. 

continuous processes, sequential processes and discrete object type processes, were presented. 

Moreover, the definitions of availability and system model were introduced. On this basis, the 

research objective proposes to decrease the MTTR as well as increase the MTTF with the intention 

of increasing availability. Subsequently, the basics of fault handling, in line with fault, symptom, 

fault handling in the maintenance, and the principle procedure of the fault handling, were outlined. 

Three possible maintenance strategies concerning corrective maintenance and preventive 

maintenance were introduced. Based on these, the research aim was further limited in case of a 

system fault (component failure). After that, reconfiguration was defined and a survey regarding 

reconfiguration and fault handling measures was presented. Drawing from traditional fault 

tolerance control, the relation or cooperation method between reconfiguration and fault detection 

was introduced. Finally, five requirements for establishing a conception of dynamic fault handling 

and reconfiguration were outlined based on the challenges in Chapter 1. Hence, for a new fault, 

the fault location and fault impact, including available and unavailable functions, are required for 

analysis and confirmation. 
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3 Survey of Methods concerning Handling Faults 

and System Modeling 

In the last section, the aim of the research was defined as improving or ensuring high availability 

of industrial automation systems by reducing MTTR as well as increasing MTTF. To achieve this 

aim, a proper approach for handling faults, as well as identification of fault impacts, is required. 

For this purpose, this section presents a review focusing on methods for handling faults and 

conceptions of system modeling. Four fault handling methods will be introduced. To identify and 

confirm the fault impact in an industrial automation system, it will be necessary to establish a 

system model; therefore, reasonable modeling concepts will be considered, too.  

3.1 Survey of the Methods for Handling Faults 

As [ZhLy15] [Dubr13] mentioned, there are typically four approaches or means for handling 

faults in industrial automation systems:  

 Fault prevention of handling faults supports the prevention of the appearance or instruction of 

system faults.  

 Fault tolerance of handling faults supports the assurance of the service of the system correctly 

in case of the presence of system faults. 

 Fault removal of handling faults attempts to achieve the reduction of the occurrence of faults, 

including number and severity. 

 Fault forecasting of handling faults is intended to appraise the presence, propagation, and 

possible consequences of system faults. 

The meaning and research for each approach will be presented in the next four sections. An 

assessment of methods for handling faults will be outlined in Sub-section 3.1.5. 

3.1.1 Fault Prevention of Handling Faults 

Fault prevention is a significant issue for manufacturers to enhance the reliability and availability 

of a production line or an industrial automation system. Fault prevention generally works in 

tandem with fault diagnosis methods. Before a component fault develops into a system fault, it 

can be detected by various characteristic values, for example, temperature values, so that different 

corresponding measures can be applied to prevent the occurrence of the system fault [PaHa07]. 

System fault prevention helps to avoid the breakdown of the entire system and guarantee lower 

production costs and less waste [BoGö13].  
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Bordasch proposes a functional model and a hybrid abnormity identification concept to prevent 

the appearance of known faults [BoGö13] [Bord16]. For a new fault, the model provides a fault 

identification concept to identify characteristic values regarding limit and trend checking via a 

real-time monitoring, termed as abnormity. Fault and abnormity diagnosis are based on a 

reasonable process model. Based on these abnormities, Bordasch proposes to identify the 

development of known component faults before they develop into a system fault. If a component 

fault endangers the whole system’s functionality, it can be reported to maintenance experts, who 

can intervene and correct the fault in time [BBG15] [WaWe16].  

In [RFHG16], Rakyta proposed a maintenance support system for reconfigurable manufacturing 

systems to execute a quick response to a system abnormity, such as executing prevention repair. 

To overcome the limitation of long distances and to acquire run-time data for experts, Mori 

introduced a smartphone as a communication media between the local user and machine 

manufacturers [MoFu13]. Using it enables remote manufacturers to monitor the industrial 

automation system and provide reasonable maintenances [MRZ+13].  

3.1.2 Fault Tolerance of Handling Faults 

Fault tolerance is an approach that intends to contain the consequences or impact of faults and 

failures so that the system can still deliver correct functions to avert a system failure. To reach 

this goal, the most commonly utilized way is the redundancy of components, subsystems or even 

the whole system [KoKr07]. To realize fault tolerance, there are two methods: static redundancy 

and dynamic redundancy [Iser06].  

 

Figure 3.1: Schemes for fault tolerance [Iser06] 

Figure 3.1 shows the schemes for fault tolerance in line with static redundancy and dynamic 

redundancy. For static redundancy (Figure 3.1a), a voter is established to compare three signals 

from three modules which receive the same input, and to choose the correct result as the output. 
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For dynamic redundancy, there are two additional modules for detection and reconfiguration: hot 

standby and cold standby. In hot standby (Figure 3.1b), fault detection is in charge of assessing 

the results from two modules. If one fails, reconfiguration instructs the switch to accept the correct 

result from the normal module. If one fails in cold standby, the reconfiguration module activates 

the switch of the redundancy module to get the correct signals and control the simultaneous switch 

in output point.  

Some research in, and applications of, fault tolerance in industrial automation systems will now 

be reviewed. In [ESA07], Emmert suggested some fault-tolerant methods and a runtime 

reconfiguration for FPGA (field programmable gate arrays) logic blocks to realize online test, 

diagnosis, and reconfiguration for handling faults in defective blocks. He attempted to reuse 

defective logic blocks to increase the number of effective spares and extend the task life. More 

research concerning fault tolerance and the reconfiguration for FPGA can be outlined as follows: 

Lima proposed a method for transient fault detection and evaluation in SRAM-based (static 

random-access memory) FPGAs [LCR03, LNH+04]. 

Avizienis insisted that fault handling is an individual method in fault tolerance and belongs to 

corrective maintenance. Fault handling prevents known faults from being reactivated. Four steps 

are required to implement a fault handling: fault diagnosis, to identify the fault type and fault 

location; fault isolation, to isolate the defective component either from a physical or logical 

perspective; system reconfiguration, to control the switch logic, either by hard standby or cold 

standby; and system re-initialization, to check and update the new configuration [ALR01]. 

To prevent a system failure or safety consequence, graceful degradation is applied as the solving 

solution via maintaining limited functionality of a system. Different applications of graceful 

degradation are fault safe, to assure the safety functionality, and fail soft, to guarantee operational 

functionality [Iser06]. 

3.1.3 Fault Removal of Handling Faults 

Fault removal can be performed either in the development phase or in the entire operational life 

of an industrial automation system. This aims to reduce the number of faults which remain in the 

system via a set of methods [Dubr13]. In the development phase, three steps are required: 

verification, diagnosis, and correction. During the operational phase, corrective maintenance, to 

remove reported component faults, and preventive maintenance, to uncover and remove 

component faults, are used to prevent a system error or system failure [ALR01].  

[RaGo11] proposed a concept for the safety analysis of a railroad crossing’s critical system based 

on the combination of FMEA (Failure mode and effects analysis) and fault tree analysis to 

implement the fault removal. Additionally, in order to overcome the wear and tear of the hardware 

component, industry generally proposes a regular check and maintenance, with a time schedule 

in which the possible or soon-to-be-defective components can be exchanged with new 
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replacements [RaHo14]. Additionally, along with the popularization of smartphones, a large 

number of research conceptions have been developed for fault removal [WaTs06] [VSG+12] 

[FrGö15] [MRZ+13]. [FrGö15] proposed a user-friendly diagnosis system based on a mobile 

device which contains an extended diagnosis app. By means of this system, the normal user is 

able to diagnose the fault and follow specific guidelines to remove faults. 

Moreover, faults actually can be removed in the development phase via various tests, however, 

more faults will arise in the operation phase. Using the fault information to improve the continuous 

test of an industrial automation system is another opportunity to improve the systems availability. 

Abele [AbWe16] proposed a shared decision support system that provides benefit for both, the 

development department and the local maintenance team. This system can generate a value-add 

by using synergies by combining the support functions for fault diagnosis and the test management 

[AbWe17]. 

Afterwards, regardless of preventive or corrective maintenance, remote maintenance via the 

internet, e.g. e-maintenance [LLWY09], is a typical maintenance strategy, [HAA+10]. In this 

approach, the maintenance service center builds a real-time monitoring system and a simulation 

system to monitor the running industrial automation system. If a fault appears, the maintenance 

staff can detect the fault in time and carry out corresponding measures with the help of additional 

staff, such as an exchange replacement.  

3.1.4 Fault Forecasting of Handling Faults 

Fault prevention attempts to estimate the number of the remaining faults in an industrial 

automation system, the time of the next fault appearance and the consequence of a fault [Dubr13]. 

Fault forecasting can be deployed using both qualitative and quantitative approaches. The former 

approach intends to evaluate the system behavior through the failure mode and event. The latter 

refers to determining the probabilities concerning system quality attributes, either reliability or 

availability. 

A considerable amount of research has been done regarding fault forecasting during the last 

decade [ZXL07] [Wang04]. [ZXL07] presented a methodology for forecasting device downtime 

by means of an auto-regressive moving average (ARMA) model. In this approach, the historical 

data is used to predict the future behavior of the system. This method can reflect the condition of 

an industrial automation system and cooperate with the fault removal approach to carry out proper 

maintenance measures for manufacturers. 

3.1.5 Model-based Approaches 

Besides the introduced four general approaches, there are different model-based approaches for 

handling faults in industrial automation systems to reduce or compensate the fault effect. A large 
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number of publications and research exist in the area of dealing with fault handling [WiPa16] 

[VRF+16] [AET11] [APA+16] [WaVo08] [SWLV13]. These researches are capable of 

maintaining the entire system availability in case of a component failure by means of self-healing, 

reconfiguration, restructuring, robust optimization, etc. [MSPB12]. They are named as fault 

tolerant control. As classified in [JiYu12] [AET11], fault tolerant control are generally divided 

into two categories: passive fault tolerant control systems and active fault tolerant control systems. 

The difference between them is, that the active fault tolerant control requires a fault diagnosis in 

order to perform reasonable actions, but the passive fault tolerant control compensates the fault 

automatically via fixed robust controllers [JiYu12]. Furthermore, the active control can be 

categorized into adaptive robust controllers, direct redundancy, analytical redundancy, and 

flexible scheduling.  

 

Figure 3.2: Schema of a robust controller for quadrotors [LZZZ17] 

In order to deal with several parameters like uncertainty, noise and disturbances, the robust 

controller are designed to be robust automatically based on the robust control theory [Mack13]. 

Concerning the passive robust controller, Benosman [BeLu10] proposed a Lyapunov-based 

feedback controller to assure local uniform asymptotic stability of the system. This research tries 

to compensate the additive unknown bounded signals on actuators. In this case the faults are 

already predefined, and as a result, if an occurred fault is not considered in this scope, the stability 

and satisfactory performance of the industrial automation system cannot be guaranteed. 

Furthermore, to compensate the uncertainty and disturbance faults in actuators, a lot of active 

robust controller approaches have been proposed, for example, sliding mode control based designs 

[LGSZ14], learning based approaches [LWZ17], robust adaptive fault-tolerant compensation 

controllers [LiYa12], etc. These approaches suggested either to select a precomputed control law 

or redesign the robust controller online. With help of the robust controllers, the closed-loop 

systems are bounded and, as a result, the states converge asymptotically to zero. [LiYa12] 

proposes an adjustment of the controller parameters to estimate unknown lower or upper bounds, 

using adaptive laws driven by system response errors and to compensate then the errors 

automatically and adaptively. Against the time-varying sensor faults in wind energy conversion 

systems, Kamal proposes a fuzzy proportional-integral-observer to estimate the fault and an 

observer based dynamic fuzzy fault tolerant controller to compensate the fault effect via 

stabilizing the closed-loop system [KAGB12]. In order to function against the parametric 
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perturbations, nonlinear and coupled dynamics, external disturbances, state delays and input 

delays in quadrotors, Li proposes a robust cascade controller which includes an attitude controller, 

a position controller, based on a hierarchical control scheme and a robust compensating technique 

[LZZZ17]. The schema of the proposed concept is depicted in Figure 3.2. Without determining 

the fault location, the robust controller is a reasonable approach to compensate the occurred fault 

effect and turn the system to a stable state again automatically. However, this approach needs a 

very detailed mathematical process or system model. Realizing such an approach requires a lot of 

effort and computation time. The robust controllers are usually regarded as an attribute or ability 

of the industrial automation systems, and are integrated in the industrial automation control system. 

The knowledge about the system and faults is also integrated in the system. This makes the 

management of the knowledge very difficult. Due to its specific algorithms, it is hard to port it to 

another industrial automation system directly. This approach requires always a closed loop to 

compensate faults. However, if a component is defective, e.g. a faulty sensor, there is no more 

closed-loop control available for the controller, hence the robust controller cannot maintain the 

stability of the industrial automation system as well as its functionalities. 

To overcome the weakness of the robust controller in case of failed components, redundancy 

becomes a very useful measure. Redundancy can be furthermore divided into direct redundancy 

and analytical redundancy [AET11]. The direct redundancy requires real physical redundancy of 

components such as sensors and henceforth the switching from a defective component to the 

redundant component has to be realized. Obviously, such physical one to one redundancy is very 

expensive and not economical for industry. Under the assumption that already many components, 

which perform similar tasks, exist in the industrial automation system and the data transmission 

is logically reconfigurable. Marcos proposes a fault tolerant component management platform 

over data distribution services to compensate the fault effect for industrial automation systems 

[AEM12]. He suggests a data distribution service as an efficient middleware to resign the 

communication way. In the assumed application scenario, the communication among different 

components can be established with different nodes. So if one of the nodes is shutdown, the 

industrial automation system is able to restart the affected components with other available nodes. 

Figure 3.3 shows the communication reconfiguration schema for two nodes. With concern to 

qualitative requirements, in [AME12] dynamic service reconfiguration and fault effect 

compensation are performed automatically based on backup data, nodes and component 

redundancy. But this approach is limited for the industrial automation system who owns plenty of 

components with similar functionalities, such as sensors [APEM14], communication nodes, etc. 

This limits its application range excludes systems which don’t have backup components. 

Furthermore, there is no consideration about a central knowledge for known faults. This can result 

in multiple analysis for the same faults. Because the concept is designed for a specific scenario, it 

is also very hard to transfer the concept to other industrial automation systems. Moreover, this 

approach is usually based on known fault locations, in which case the fault analysis can be 

executed. But if a new fault occurs, it is not mentioned how to identify the fault location.  



 

 

30 

 

Figure 3.3: Example for direct redundancy of communication nodes [AEM12] 

In order to overcome the high costs of direct redundancy, analytical redundancy which owns no 

real additional physical components but uses virtual components is proposed by different 

researches to rebuild a full control loop [PIGM17] [RNPB12] [PTA10]. Instead of using model 

matching approaches, as discussed with the robust controller, Rotondo designed a virtual actuator 

or a virtual sensor to replace the defective actuator or sensor in the closed-loop control against the 

noise in the control loop as well as sensor or actuator faults [BRPN14] [RNPB12] [RHWL11]. It 

assumes that the sensor or actuator is stuck or the gain of the faults by comparing the current 

sensor data and previous measurements in Figure 3.4. If there is a direct redundancy for the 

defective component, it can be directly activated. Conversely, it activates predesigned virtual 

components with its corresponding fault estimation module. Then it reconfigures the controller 

within the virtual component, and adjusts the fault estimation module in the virtual component on 

the basis of the feedback sensor data, until the system is in a stable state to compensate the fault 

of the defective components [OdSt12]. 
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Figure 3.4: Analytical redundancy with virtual components concerning the robust 

controller [BRPN14] 

However, if the sensor or actuator completely failed, there is no feedback data. The theoretical 

stability of the industrial automation system is not safe and the correctness of the performed 

actions cannot be assured. In order to avoid this situation, Wannagat proposed a multi-agent based 

approach, which is able to perform a runtime reconfiguration of the industrial automation system 

in order to fully compensate the component faults, such as failed sensors and actuators. To avoid 

an expensive downtime of plants, a failed physical sensor is replaced by a virtual sensor, which is 

seen as a redundancy for this physical sensor and is created dynamically via calculation of a 

measuring points, based on analytical dependencies to neighboring sensors [WaVo08a] 

[WaVo08b] [SWLV13]. This concept is used in a PLC-based industrial automation system. In its 

scenario, there are several sensors in one continuous process. They perform the measurement 

functions for one parameter, e.g. distance. Then, when one sensor is defective, an agent is 

activated as a virtual sensor to represent this defective sensor. The dependencies of sensors are 

illustrated in the Figure 3.5. Depending on the runtime constraints like material flow dependencies 

and accuracy, which are formulated in a redundancy matrix, the best neighboring sensors are 

chosen for the creation of a virtual sensor. The virtual sensor uses calculated values as the 

measurement values to rebuild the control loop. So that the industrial automation system is able 

to perform the function of the defective sensors as a normal sensor [Wann10] [VLL15] [Voge17a] 

[WSV13]. 

 

Figure 3.5: Analytical dependencies of sensors and actuators [WaVo08a] 

Furthermore, to establish such a multi-agent PLC-based industrial automation system, Daniel 

proposed a model based development tool to realize such a virtual sensor as well as the required 

agents [ScVo13].  
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Figure 3.6: Basic architecture of the multi-agent based self-management system 

[MuGö11a] 

Similarly, Mubarak proposed an agent-oriented approach for self-management of industrial 

automation systems to compensate the occurred faults during operation time [MuGö10a]. In this 

concept, an assistant system is proposed with six different agent types in three working levels, 

they are automation system connection level, self-management functionality and control 

supervision in Figure 3.6. The concept is shown on a lift control example with a defective position 

sensor, one of four position sensors. The negotiation agent coordinates with the remaining three 

correct sensor agents to determine the current position of the lift. This result can be transferred to 

industrial automation systems. Hence, the industrial automation system can use only three position 

sensors to control the lift stop in the corresponding floor [MuGö10b], so that the industrial 

automation system can still perform the functions smoothly though one sensor is defective. 

However, this approach in principle utilizes an information redundancy, which can be created by 

establishing mathematical calculation instead of direct physical redundancy. This assumption is 

very specific. If there is only one physical sensor for a parameter in one work station, this concept 

cannot be realized. Moreover, this concept is performed by agents. The knowledge ontology 

formulization is very complex [Bazg12]. Another disadvantage concerning communication and 

implementation of the multi-agent-system is its costs. With the increasing number of agents, there 

are plenty of messages to process and this result in a very high protocol complexity [Glav06]. 

Meanwhile, a large number of agents leads to reduced execution speed [Bazg12]. In [Wann10], 

the proposed concept is integrated into an industrial automation system to compensate fault effects. 

It requires an exact and correct system model and also redundancy information in the development 

phase. This makes it hard to adjust the system model and predefined evaluation requirements to 
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changes of the system. For example, in the development phase, two serial robots are accessing 

different screw types. After the calculation of accessing distance, one robot is able to take over 

the work for the defective one. But after the installation, the working range of this robot is too 

large which poses a threat to human safety. If the fault effect compensation mechanism is 

integrated in the industrial automation system, the system has to be redeveloped to adapt to the 

change in the industrial automation system. Another approach [MuGö10a] owns an additional 

self-management system utilizing a multi-agent-system. The disadvantages of utilizing agents has 

been discussed in the preceding part of the text. Furthermore, this self-management concept is in 

principle an integrated fault handling system, which has to be developed in the development phase 

in order to realize the communication between the self-management system and the industrial 

automation system. However, the upgradation of industrial automation system has to adapt 

extremely fast to the quickly changing demands of the customer. This requires a very limited 

development time budget. Parallel development of the industrial automation system and the self-

management system, even completing the functional test of both, is also a hard work. Additionally, 

due to worldwide distribution, such an integrated fault effect compensation mechanism is very 

costly to maintain. Moreover, due to a lack of a central fault knowledge base, one same fault in 

the system as well as different systems has to be analyzed repeatedly. Due to no individual system 

knowledge, the development of these concepts is very specific. So that porting to different 

industrial automation systems requires a redesign of the fault effect compensation mechanism. 

Besides redundancy, flexible scheduling on the ongoing orders in industrial automation system is 

another way to compensate or reduce fault effects [Pine16] [CTT+17] [TPB13+] [WWBF14]. 

Flexible scheduling is the ability of adapting to the increased demands for manufacturing facilities, 

typically, in the context of Industry 4.0 [LeVo17] [JBM+17]. That means, according to the 

changes of the customer demand, the industrial automation system is able to automatically adjust 

the receiving orders into different work stations as well as various different automation systems. 

It is necessary to note, that a production line may own different working machines from different 

suppliers and the internal system knowledge of an individual machine is unknown to the whole 

industrial automation system [JBM+17]. Concerning the fault effect compensation, the defective 

working station or component can be regarded as the change of a customer demand. The defective 

industrial automation system reschedules its work load to the rest of the working stations 

[PIGM17]. Priego supposes a customizable and extensible architecture to assure the fulfillment 

of the quality of service an industrial automation system should offer, which is depicted in Figure 

3.7[PIGM17]. Based on a set of quality of service (QoS) requirements and distributed agents, the 

concept is able to reconfigure the microcontrollers with deactivation and activation of non-critical 

microcontroller states and reconfigure the orders for still available controllers. This concept can 

realize a system recovery with some quality of service and thereby realize partial orders in 

industrial automation systems. Furthermore, in [PAO+14] [Prie17], Priego suggests a model-

based approach to assure the availability of control systems in spite of PLC-failures in an 

automation system. In this approach, a supervisor and its specific design methodology is able to 
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restore the functionality of a failed PLC into an already running PLC. Then the industrial 

automation system can still provide functionality of the whole industrial automation system to 

meet the requirements of the customers. In order to establish such a specific design, which 

includes reconfiguration mechanisms, Priego proposes a model-based tool to support the 

generation of the elements that compose the reconfiguration control system using model driven 

engineering (MDE) techniques and technologies [PAEM15]. 

 

Figure 3.7: The structure of the multi-agent based middleware for managing different 

service [PIGM17] 

Concerning operation states, similarly, Bareiß proposes a model-based failure recovery approach 

for automated production systems, combing sysML and industrial standards like IEC 61131-3 

[BSP16+]. To describe the states of a process, this concept supposes to establish pre- and post-

conditions for each operation state. On the basis of these states, the automated production system 

is able to realize the fault diagnosis as well as the fault localization. However, there are no further 

recovery measures mentioned than only to inform the maintenance to exchange the defective 

module. Moreover, Legat suggests configurable partial-order planning approach on the basis of a 

combination of an adapted goal-based planning formulation and its reformulation by means of 

linear programming techniques [LeVo17]. In order to increase the efficiency of flexible 

scheduling in the context of Industry 4.0 and cyber-physical systems [Voge17b] [ASS+17], a state 

space planning and a domain-specific layering is used for adjusting the ongoing orders in each 

work station, a small industrial automation system which completes some specific tasks with some 

specific functions and a fixed throughput (average output of a production process per unit time) 

for each order. Then the orders can be re-planned after determining the efficiency for each order 

and each work station. This leads to a maximal flexible situation, so that the possible free work 

station can work on the next partial work of the next order, avoiding down time for all work 

stations (similar works [GNYL15]). Obviously, a flexible industrial automation system is able to 

compensate a component fault via reassigning the works to other work stations or reassigning the 
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available order plans to compensate the fault effect of a defective work stations as well as a PLC 

station. However, these approaches are concentrated on the self-autonomy of an industrial 

automation systems via a specific designed methodology [BSP16+] or development technology 

[PAO+14] [Prie17]. But actually, in the actual factory, like a smartphone assembling factory, the 

entire industrial automation system is composed of many different small industrial automation 

systems from different companies to complete different specific works. A specific designed 

methodology is not fit for such a situation, as all machine supplier would have to use the same 

methodology, unless all work stations are designed by one company. The communication between 

them is through specific commands, which are defined by the work station supplier. In this 

situation, if one work station is broken due to a defective location sensor in the vertical direction 

of a robot, then the only rescheduling possibility is to isolate the broken work station and to 

reassign the orders without this work station. But it is possible that the broken work station can 

still provide some available functions in the horizontal direction. In addition, concerning the fault 

knowledge, the proposed concept considers only fault handling rather than a dynamic fault 

handling. That means, they have to analyze a reoccurring fault repeatedly. This leads to a waste 

of the fault knowledge. Due to no common fault knowledge base, the fault knowledge cannot be 

shared between similar industrial automation systems located in different factories. 

The mentioned approaches to handle faults dynamically in industrial automation systems as well 

as the worldwide distributed work stations are concluded in the following Table 3.1 with regard 

to the in chapter 2 defined requirements. 

Based on Table 3.1, each model-based approaches is discussed as followed. The model-based 

approach of robust controller is able to automatically compensate a parameter change fault which 

is brought by noise, disturbances, etc. However, the fluctuation shall be not over the bounds. 

Moreover, if any component, like a sensor, is completely out of order, the closed-loop control 

cannot be guaranteed anymore and the industrial automation system has to be stopped to avoid 

serious consequences. Due to a lack of a fault identification function, every fault has to be 

analyzed repeatedly as a new fault. Furthermore, because the reconfiguration of robust controllers 

requires a runtime feedback, a remote reconfiguration is hard to be realized due to the physical 

internet delay. A robust controller is based on very complex mathematical algorithms which 

requires very much effort, especially for a nonlinear industrial automation system. In addition, 

even if there are different tools to support the creation of robust controllers, a designed robust 

controller is very difficult to port to another industrial automation systems, even to the same 

system installed in a different environment, because a changed parameter or an added component 

can affect the whole mathematical robust controller. 

The model-based approach of direct redundancy can compensate the fault effect when the 

defective component owns a backup redundancy. For these faults, the availability of industrial 

automation systems can be assured. The redundancies and their fault identification approaches are 

designed for the components in the development phase, but if a new fault occurs, the fault cannot 
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be reasonably analyzed and no measures exist for it. In addition, due to a lack of a central 

knowledge base, faults have to be handled repeatedly. Moreover, the reconfiguration mechanisms 

are integrated in the industrial automation systems and the activation of redundancy are generally 

activated locally. A remote reconfiguration is possible but most applications activate the 

redundancies via the industrial automation system or its fault diagnosis system. Direct physical 

redundancy requires not only extra effort as well as cost in the development phase, but also extra 

cost for maintaining the backup redundancy. A physical redundancy is always specific for an 

industrial automation system type. Along with the change of the application field, mechanical 

structure and layout, the same redundancy cannot be easily ported to different industrial 

automation systems. 

Table 3.1: Comparison of the four presented model-based fault handling approaches with 

regard to the requirements 

 Robust 

Controller 

Direct 

Redundancy 

Analytical 

Redundancy 

Flexible 

Scheduling 

R1: 

Enhancement of 

the availability 

● ● ● ● 

R2: Automatic 

and dynamic 

fault analysis 
◐ ◐ ◐ ◐ 

R3: Remote 

Reconfiguration  ○ ◐ ◐ ◐ 

R4: Small costs 

◐ 
○ ◐ 

○ 

R5: Portability 

to 

heterogeneous 

industrial 

automation 

systems 

○ ○ ○ ○ 

Where, ● means fulfilled, ◐ means partial fulfilled, and ○ not fulfilled. 

Same as the direct redundancy, the model-based approach of analytical redundancy is able to 

compensate the fault effect when a virtual redundant component is automatically created for the 

defective component. However, though the concepts using analytical redundancy require no direct 

backup redundancy, they are based on an assumption that there exists information redundancy, 

that is, there are more similar components which can provide the same information or similar 

information. This assumption limits the application possibilities of the concept. With predefined 
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information sharing or calculating mechanisms, an automatic fault analysis can be performed. 

However, due to a lack of a central fault knowledge base, the faults have to be analyzed repeatedly. 

Moreover, these concepts are usually established on a specific technology, like multi-agents. The 

implementation of them depends on specific platforms and the communication costs for a lot of 

software agents are also very high in operation, because of a high message exchange. 

The model-based approach of flexible scheduling compensates the fault effect via providing 

available functions as well as available orders in case of a faulty machine. This approach is usually 

not focused on one specific machine but on a higher level, like the entire production line, the 

entire factory or even the cooperation among different companies in the context of the Industry 

4.0. But most concepts are based on an assumption that the whole manufacturing systems are 

implemented with their specific concepts as well as their specific technologies. They are difficult 

to be ported to different systems. The cost of implementing such a concept is very high, because 

the customer has to change the whole machines and they are not designed and implemented with 

a common conception and technology. However, the reality is, that the entire factory is made up 

of several different small individual industrial automation systems from different suppliers. They 

communicate with each other with specific commands, without knowing the detailed structure or 

behaviors of others. Besides, most researches of this approach are concentrated on the 

improvement of the whole industrial automation system itself. They just isolate the defective small 

industrial automation system directly, even if they can still provide some available functions. 

3.1.6 Assessment of the Surveyed Methods 

Using the defined requirements in the last chapter, four methods will be assessed as follows: 

Firstly, fault prevention is helpful in enhancing system availability by preventing a breakdown of 

the system [Bord16]. With the help of properly-defined estimation characteristic values, an 

automatic detection of fault and fault development can be developed and integrated in a fault 

diagnosis system. It generally supports the prevention of known system faults and cannot 

guarantee the avoidance of all software faults [Lyu07]. It fails to judge the algorithms for new 

faults. To prevent the breakdown in time, fault prevention requires real-time data from the 

industrial automation system. Because of the wide distribution of industrial automation systems, 

e.g. coffee makers sold by one manufacturer, it is hard to obtain real-time data with less cost in 

operation. With properly defined, specific algorithms, and estimation characteristic values for 

various systems, fault prevention can be smoothly ported for various industrial automation 

systems.  

Fault tolerance can compensate the occurred system fault as well as component failures and 

eliminate the corresponding fault impacts to assure the whole functionality of an industrial 

automation system, until the defective component can be replaced. Availability can also be 

enhanced by this method. Fault-tolerant control with redundancy allows for automatic fault 

detection which can establish a reasonable process model and a reconfiguration with redundancy 



 

 

38 

methods to isolate the fault effect of a failed component. It enables the reconfiguration of available 

functions (e.g. activating cold standby redundancy) remotely via the internet. Because of the 

necessary redundancy, fault tolerance requires very high costs for development and 

implementation, especially for a large number of systems, as the costs can increase exponentially 

over time.  

Fault removal depends on the help of additional maintenance staff to remove system faults, even 

though some specific technologies like a smartphone with a diagnosis application can minimize 

fault detection time and provoke a faster order of spare parts. That can have an effect on waiting 

time, if the breakdown of an industrial automation system cannot be avoided. Availability can 

thus only be enhanced to a certain extent. This approach can be ported for a heterogeneous 

industrial automation system, but requires a mass of skilled maintenance staff.  

Fault forecasting can predict the number of faults and fault occurrences. By means of additional 

workers, predicted faults can be removed in advance. This can enhance the availability of an 

industrial automation system. Regarding the qualitative strategy, the system can be modeled by 

process models to estimate the system behavior by gathering data and generating necessary 

characteristic values, for instance, the prediction of the fault location. Concerning the quantitative 

strategy, the analysis process needs historical data to predict the next possible fault presence time. 

This approach doesn’t take care of reconfiguration. Developing and running a conception of this 

approach requires much time for a complete and accurate prediction. Furthermore, it is hard to 

port the conception for different types of systems, due to the wide distribution of industrial 

automation systems.  

In the last section, the assessment of the model-based approaches for fault handling has been 

introduced in detail. Based on the comparison of these approaches, a brief decision and their 

limitations are given as follows. This thesis tries to enhance the availability of an industrial 

automation system via providing still available functions and available tasks. But the robust 

controllers are not considered due to the physical internet delay in the remote mode. This thesis 

considers not only known faults but also new faults, which shall be detectable like changed 

specific parameters in specific individual industrial automation systems. With a central fault base, 

a new fault will be analyzed just once. But a high level fault effect compensation, like in the 

context of Industry 4.0 [WKS+17], is not considered. It can be regarded as an extension of the 

concept of this thesis, as it just requires more factors like runtime efficiency. Because it is very 

expensive and very difficult to complete a monitoring function for worldwide industrial 

automation systems, the communication with the integrated fault diagnosis system is very 

important in order to access empirical data as well as the current state of the industrial automation 

system. For a remote reconfiguration, this thesis shall consider using reconfiguration commands 

to activate the integrated reconfiguration mechanisms in industrial automation systems. So to 

reduce the implementation cost, the reasoning process for fault handling shall be a common 

process and can be implemented after the complement development of the industrial automation 
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system. The formulization of system knowledge shall be completed by experts, but a 

formulization tool is useable to reduce the porting difficulty. 

As a result, fault handling in fault tolerance is a possible approach which meets all requirements. 

Thus, the formalization of system knowledge and the high cost for redundancy are challenges for 

the development of a conception of fault handling. Concerning the aims of this research, the 

conception can utilize fault detection approaches in fault prevention and fault tolerance, with the 

intention of detecting the fault location and establishing a reasonable system model for 

determining the fault impact on the industrial automation system. The system model can be 

formalized as the system knowledge, that is, the analysis knowledge of the experts or maintenance 

staff. With the proposed concept, the industrial automation system can prevent a system 

breakdown and reconfigure the logical system structure in the case of a component failure, as well 

as a system fault. 

3.2 Survey of the Conceptions of System Modeling 

As the last section mentioned, a proper system model is required in order to complete the fault 

detection and fault effect analysis. The aim of the system modeling is to establish a simplified 

representation of a real system via graphic or textual description.  

Table 3.2: Classification of the conception of system modeling [Goll12] 

Existing 

Modeling 

concept 

Process-

oriented system 

modeling 

concept 

Data-oriented 

system 

modeling 

concept 

State-oriented 

system 

modeling 

concept 

Object-

oriented system 

modeling 

concept 

Associated 

modeling 

approaches 

Input- and 

output-modeling 

Information 

structure 

oriented 

modeling 

Discrete state 

and state 

transition 

modeling 

Entity 

relationship 

modeling 

SADT method Information 

flow oriented 

modeling 

Continuous state 

and transition 

modeling 

Object- and 

class-oriented 

modeling 

Function-

oriented 

modeling 

 Combination 

between state 

modeling and 

data-oriented 

modeling 

 

Rule-oriented 

modeling 

 Petri nets  

 

However, along with the accuracy of the system modeling, the complexity of modeling will be 

greatly increased. This leads to a contradiction between the accuracy of the modeling and its 

comprehensibility: more accurate and harder to understand, less accurate and easier to understand. 
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Hence, it is very important to establish a proper system model along with the demands. Generally, 

there are four modeling conceptions for industrial automation systems in Table 3.2. The four 

approaches are: process-oriented system modeling, data-oriented system modeling, state-oriented 

system modeling, and object-oriented system modeling [Goll12]. Different corresponding 

approaches are listed in the table. One of them, object- and class- oriented modeling approach, is 

extended as the proposed modeling approach for describing industrial automation systems. And 

the consideration process is discussed as follows. 

 

Figure 3.8: Representation perspective of an industrial automation system 

Faults are divided into known faults and new faults. The establishment of the system model is 

aimed at handling a new fault. In order to identify the available function in case of a fault, the 

following three functionalities ought to be considered: determining the fault location of a new 

fault to know where the fault is; determining the effects of a fault to know which functions are 

affected due to the defective function(s) and which functions are still functionally available; and 

then an evaluation based on the qualitative criterion to identify which non-affected functions 

fulfilled the predefined criterion.  

Determining the fault location of a new fault requires finding out which component(s) is/are 

defective. As mentioned above, the component is located in the physical structure of an industrial 

automation system. Hence, determining the fault location can be interpreted as the identification 

of defective parts in the physical structure, i.e. a physical description is required in the modeling 

of an industrial automation system.  

Moreover, determining the effects of a fault refers to the identification of the direct consequence 

of the defective component on system functions – the term of available functions is included in 

the objective of this research. Thus, to determine the affected and not affected functions, a logical 

description with respect to the relationships between components and functions and the 

relationship between functions ought to be denoted in the system model.  

An evaluation based on the qualitative criterion is supposed to estimate whether unaffected 

functions can be performed under the condition of satisfying the qualitative constraints which are 

defined in the development phase. The requirements of an industrial automation system that 
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denotes the nonfunctional constraints ought to be highlighted. Hence, a description of the quality 

characteristics is required in the system model. 

As a result, it is worth mentioning that the four aspects, i.e., physical description, logical 

description, relationship, and quality characteristics, ought to be considered for modeling an 

industrial automation system in order to realize the required functionality in this research, namely 

determining the fault location and determining fault effect, as shown in Figure 3.8. 

3.2.1 Process-oriented System Modeling 

Process-oriented system modeling takes running processes in industrial automation systems as 

objectives to establish system models, in order to complete deductive or constructive models. To 

build a process-oriented system model, four major types are required: input- and output-models, 

modeling based on SADT method, function-oriented model, and rule-oriented model.  

Concerning the input-output-model, behavior of a system is described through the relationship 

between input and output in the system, in other words, input variables and output variables, 

utilizing the mathematic functions to describe the relationship. The input and output variables 

refer to time-dependent parameters, such as temperature, pressure, flow rate, etc. Figure 3.9 

outlines a basic concept for modeling a dynamic technical system. The input and output variables 

are described respectively: x1(t), x2(t), x3(t) … xn(t), and y1(t), y2(t), y3(t) … yn(t). Based on 

these variables, a concrete mathematical function can be developed and transformed via Laplace’s 

approach [Iser05]. [ThJa10] proposed a process model based approach for detecting and 

predicting faults in nonlinear multiple-input-multiple-output discrete-time systems.  

 

Figure 3.9: Modeling a dynamical technical system via Input-output-model [Bequ03] 

The structured analysis and design technique (SADT) method refers to an approach for 

requirement analysis in the developmental phase rather than as a modeling conception. As in 

Figure 3.9, it also consists of inputs, including setup value and measured value, outputs, including 

output value, and in the middle are the control algorithms. One of the most important roles of the 

SADT method is to build a clear hierarchical structure via step-by-step refinement [DHJ17].  
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Figure 3.10: Time dependency of faults in processes [Iser05] 

Function oriented models (also named behavior oriented models) describes functions that can be 

performed, and under which conditions and in which sequence [BRU00]. If the function describes 

the execution of an algorithm via the computational unit, the sequence of executing the function 

is named control flow. The structure of a function oriented model consists of functions and 

conditions. If one function has more than one sub-function in a fixed order, every sub-function 

can possess only one input and one output. Behaviors of a system can be clearly described with 

graphs. This is also helpful for the development phase to catch the main control flow of the entire 

system. 

Rule oriented modeling can be considered as an extension of function oriented models. This 

modeling approach describes the sequential lineal control structure with the graphic and textual 

methods. Regarding the formalization of rules, a series of “if-then-rules” is implemented to 

represent the system, for instance, “If condition is fulfilled, then function1, else function2”.  

Many have carried out research studies on the application of the process model for fault handling. 

Generally, based on the process model, the industrial automation system can be divided into 

various processes and signals. Faults can be detected by means of a process model, fault modeling, 

parameter estimation, and observer techniques. Figure 3.10 shows an example of detecting time-

dependency faults using a process model [Iser05]. Likewise, the rule oriented model enables the 

estimation of the fault location of the functions via the function-condition-relationship. On the 

basis of proper algorithms in process models, the approach to fault control reconfiguration can 

overcome, or compensate for, the impact of interference [YJSZ15]. 

3.2.2 Data-oriented System Modeling 

Data-oriented system modeling (also named: product-oriented system modeling) describes the 

information and information process in an industrial automation system instead of the input-

output-process, such as the storing and retrieving of packs in a high-bay warehouse. Data-oriented 

system modeling can be classified by data structure and data flow oriented modeling.  

Data structure modeling supposes modeling the presented data in an industrial automation system 

and deploys a hierarchical structure to all data and their relationships. Three main relationships 
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are used for describing the relationship: sequence, selection, and iteration. For example, a 

measured parameter in high abstract level consists of temperature and pressure in the low abstract 

level.  

 

Figure 3.11: Example of data flow diagram for a wine store management system  

Another widely used approach is the information as well as data flow oriented modeling concept. 

This concept describes a system with four terms, namely: data flow, data flow transformation 

(also can use “function”), memory for storing necessary information, and terminator for external 

information source. With these terms, the internal data exchange of an industrial automation 

system can be clearly defined. Generally, this conception uses the data flow diagram to describe 

the system graphically. Figure 3.11 indicates an example of the data flow diagram for a wine store 

management system. The context diagram shows all terminators, the entire system, and the 

necessary data between the terminator and system. It is worth mentioning that there is no data 

exchange between terminators. This depends on the hierarchical structure of the functions; the 

system represented with functions and data will be decomposed further. In the example, there are 

two necessary functions: managing clients and managing suppliers. Data will be also decomposed, 

such as client delivery data with the delivery note and bill data. Memory stores all data about wine. 

Additionally, minimal specs are required for specifying the input and output data. 

The data-oriented modeling approach is usually used for a structural analysis of a system in the 

development phase. With regard to fault detection and fault impact analysis, the developer is able 

to verify the developed system structure and system requirements in line with the developmental 

approach of a V-Model [LaOv11] with the intention of determining the fault location and impact. 

This is so that the developer can remove faults in the development phase in advance.  
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3.2.3 State-oriented System Modeling 

State-oriented system modeling (also named service oriented system modeling) depicts states and 

a transition among states of industrial automation systems from the internal logical perspective 

[Bell08]. This conception is able to describe discrete states and a state transition, and dynamic 

behaviors of a time-continuous or time-discrete system. As Table 3.2 shows, there are four major 

types of state-oriented system modeling, i.e., modeling via discrete states and states transition, 

modeling for a time-continuous or time-discrete system, modeling via combination with data flow 

oriented modeling conception, and modeling with a Petri net. 

Modeling via discrete states and a state transition attempts to decompose the activities of a system 

into various discrete states with various time points, and the transition between states is influenced 

by events. It provides a graphical method (state chart model) and mathematical method (finite 

state machine) to represent the states. Figure 3.12 outlines two modeling methods with examples. 

Figure 3.12a shows an example of the state chart model of an elevator. It contains two states, 

namely “elevator stops” and “elevator running”. With different events, different actions can be 

activated to complete the transition between them. Figure 3.12b indicates a general finite state 

machine in a mathematical format, in which x indicates the state in time t, u indicates the input 

data in time t, and y indicates the output data in time t. Based on these, a mathematical function 

can be created, i.e. 𝑥(𝑡) =  𝛿(𝑢(𝑡), 𝑦(𝑡)). In addition, in the real application, a decision table can 

also be utilized for representing a state-oriented model.  

 

Figure 3.12: Examples of state chart model and finite state machine 

Similarly, time-continuous or time discrete system dynamic behaviors can be modeled through a 

state chart model. In contrast to only one input and one output functions in modeling via discrete 

states and states transition, a set of input variables, a set of state variables and a set of output 

variables are presented with the vectors, specifically input vector, state vector, and output vector, 

for example, u(t) = [u1(t), u2(t), … u3(t)]. To apply them, a recurrence relation (also named: 

difference equation) method is required. 

The combination with the data flow oriented modeling approach is usually utilized for graphical 

representation of the design, since the two modeling approaches have almost the same graphic 
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diagrams. In the combination modeling approach, the states are utilized as the input instead of 

data in the data flow diagram.  

A Petri net can be considered as an extension of the state chart model, in which two additional 

features are added; in other words, a transition between two states to represent the action in Figure 

3.12a, and a point in the cycle of state to represent the current state. In addition to the change of 

graphical description, the mathematical representation is also altered. A Petri net can be described 

with a 6-tuple, i.e. P = (S, T, F, K, W, M0), where S is a finite set of places, T is a finite set of 

transitions, F are the backward and forward incidence functions, K is the capacity of S, W is the 

valuation of F, and M0 is the initial marking [SMBG02].  

In general, service-oriented modeling is used for service-oriented architecture (SOA) of software 

products as well as IT systems to provide services [Yang06]. Referring to the functional 

correctness of SOA, plenty of service oriented research regarding fault detection and diagnosis 

has been carried out. [AlBo09] proposed a model-based conception for monitoring the execution 

of events in SOA and detecting the appearance of a fault online. Likewise, Hanemann has 

suggested a hybrid architecture that includes a rule-based reasoning module and a case-based 

reasoning module via the service-oriented event correlation to identify resource failures which are 

used for impact analysis [Hane06] [HSS05]. In [CLT04], a method for modeling intermittent 

faults and their resets in the context of discrete event system models has been introduced. 

Similarly, Cabasino presented an approach for diagnosing fault events and regular unobservable 

events via labeled Petri nets [CGS14].  

According the popular software architecture AUTOSAR, in [SZW17], Schmidt proposed a 

model-based and service-oriented architecture to describe the industrial automation systems with 

different predefined functional modules. In this concept, an industrial automation system is 

divided into three levels, a basic software level to communicate with the hardware directly, a real-

time communication level, and an application level. The functions as well as their inputs, outputs 

and communications are defined in the application level. This concept allows the development of 

software with a specific template, which can be used by Matlab in order to create runnable codes 

directly without the dependence on hardware IO ports [SZW16].  

In addition, Klein proposed a cloud-based and service-oriented e-Production system to establish 

ad-hoc networks of industrial automation systems to produce individual products in the context 

of Internet of Things and Services, and smart products [KJW17]. This concept does not only 

consider the industrial automation system itself but also the orders from customers, the design of 

the product, the scheduling of the entire production line, the logistics of the production and even 

the delivery of the final product to the customer.  

Due to the fault impact, the system cannot fulfill the original requirements, which can be 

considered as the change of requirements. To meet the change requirements, Rastogi has 

presented a quality of services (QoS) based approach for multiple faults in SOA [RSS16]. On the 
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basis of specific QoS values, services in SOA can be reconfigured by means of the concept of 

finding the optimally shortest path from source to destination. Concerning web services (WS), 

Tsai supposed a services-oriented dynamic reconfiguration framework for dependable distributed 

computing [TFCP04]. 

3.2.4 Object-oriented System Modeling 

Object-oriented system modeling, or objected-oriented modeling, is an approach used for 

modeling systems by utilizing the object-oriented paradigm during the entire development phase. 

Object-oriented modeling allows the modeling of dynamic behaviors and also of static structures. 

The object-oriented system modeling conception is derived from the entity-relationship-modeling 

conception, which contains three important features to represent a system: real units with 

“entities”, relations between these units with “relationship”, and properties of the relationship with 

“attributes”. This modeling conception can describe the internal static structure of all units in an 

industrial automation system in detail. 

Object-oriented system modeling conception has been applied and extended for a long period of 

time in three fields of activity: object-oriented programming, object-oriented design, and object-

oriented analysis. In order to analytically describe a system, design and implementation as 

required, several diagrams are necessary to represent the system structure and system behaviors: 

For example, objects (classes) for the description of components, functions, requirements, 

interaction between objects for control flow, state flow. The most popular language for object-

oriented system modeling is the Unified Modeling Language (UML), which attempts to afford a 

standard way to visualize the design of a system [ViTr17]. Seven diagrams can be created to 

describe the structure: the class, component, composite structure, deployment, object, package, 

and profile diagrams., Seven diagram types are available to describe the behaviors of a system: 

the activity, communication, interaction overview, sequence, state, timing, and use case diagrams 

[RuQu12].  

As an extension based on the UML 2.0 [KiCh13], the SysML (Systems Modeling Language) was 

created as a continuation and expansion of systems engineering applications. SysML contains 

nine diagram types. Concerning behavior, sequence, state machine and use case diagrams, they 

are the same as in the UML, but the activity diagram is modified. Regarding the structure and 

package diagrams, they are the same as in UML, whereas the block definition and internal block 

diagrams are modified, and a new “parametric diagram” is added. Additionally, a requirement 

diagram is added on the same level as the behavior diagram and the structure diagram [Tolk12]. 

This allows an industrial automation system to be abstracted from three perspectives: 

requirements, structure, and behaviors. Obviously, SysML, with three views, can better represent 

an industrial automation system [KeVo13].  
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Figure 3.13: An example of object-oriented modeling based on SysML [FSV13] [KeVo13] 

[FSV13] proposed, based on the application of SysML as well as object-oriented modeling 

technique in industrial automation systems, to represent an industrial automation system from four 

views: the process view, software view, hardware view and deployment view. This thesis 

supposed that the process view could be modeled via the piping and instrumentation diagram 

(P&ID). Furthermore, the requirements described are the same as those in SysML and are included 

in the process view. The software view describes the functional behaviors of the industrial 

automation system using functions named function bases. The hardware view models controllers, 

sensors, and actuators in the industrial automation system. An example that models a technical 

production system is depicted in Figure 3.13. In this thesis, functional and nonfunctional 

requirements are described as boundary conditions. 

Considering the relationship of product, process and resources, the guideline VDI/VDE proposes 

a formalized process description for the modeling of processes based on this relationship. Marks 

proposed five categories to describe such an industrial automation system [MHWF18]. They are 

component-based parameter space, structure-based parameter space, process-specific parameter 

space, software-based parameter space and feasible parameter space. Here, the parameter spaces 

represent resources, processes and products [HMWF17]. 

In [WZS+16] Weyrich proposed a new object-oriented smart components concept for modeling 

an industrial automation system in the context of IoT networks. In this concept, smart components 

are able to independently coordinate with each other to realize the production. With a loose 

coupling of these components, using the mentioned service-based architecture [SZW16], a high 
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flexibility of the configuration of IT-systems for the production can be realized in the future 

[Weyr18].  

With respect to fault detection and fault diagnosis, Huang et al. presented a diagnosis application 

case for a vehicle infotainment system. Based on fault symptoms and object oriented model 

structures, the fault location can be localized as subsystems, functions, or operations [HMDJ08]. 

Furthermore, to determine the fault impact, Kurtoglu attempted a functional-failure identification 

and propagation framework to estimate potential faults and their propagation paths with a 

graphical schema [KuTu08]. With a confirmed fault or failure impact, the industrial automation 

system is able to reconfigure its functions based on specific techniques, such as those that are 

multi-agent based, with the intention of compensating for the fault impact. For instance, in 

[FSV13], the function of a defective sensor can be replaced by the function of other still available 

sensors to enhance the availability. 

3.2.5 Assessment of the Surveyed Modeling Methods 

To describe an industrial automation system properly, this subsection compares the introduced 

system modeling conceptions by means of reasonable criteria. The first four criteria describe the 

completeness of describing an industrial automation system as presented in Subsection 3.2.  

Additionally, concerning the requirements of lower cost, less complexity, and automatic 

reasoning, three additional requirements have been added: 

 Managing the complexity of the interior of an industrial automation system: It requires that 

the modeling techniques describe the internal four aspects of an industrial automation system 

in a clear and simple way. 

 Possibility of implementation of the system modeling conception: It means that the 

established models by the system modeling conception can support the implementation in 

either a mathematical or semantic method rather than only in graphic method. This is because 

the first two methods enable the assistance of automatic reasoning for decision making instead 

of depending on persons.  

 Lower cost and high efficiency in establishing models: Based on the last two requirements, 

this requirement demands lower cost and high efficiency in establishing a system model, 

which is the needed model which ought to be created as soon as possible in a cost effective 

manner. 

Table 3.3 shows the comparison of the four system modeling conceptions presented with seven 

criteria, where the notation used indicates if the criterion is completely satisfied (++), satisfied (+), 

partially satisfied (0), or not adequately satisfied or not considered (-). 
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As depicted in Table 3.3, process-oriented modeling can significantly describe the physical 

process, modeling the control flow in the process including the sensor, actuator, controller and 

their input variables, as well as output variables. Moreover, with the defined mathematical 

functions (control algorithms), the logical description can also be satisfied. But the requirements 

of the system are not included. In the process model, the mathematical functions process the 

variables of sensors, actuators, and controllers in the industrial automation system. Hence, the 

relationship between physical and logical descriptions is satisfied. With a clear mapping 

relationship, complexity regarding a relationship can be controlled clearly, but complexity is very 

high due to a multitude of input variables, output variables and their transition with mathematical 

functions. Hence, the requirement of managing complexity by process-oriented modeling is 

partially fulfilled. By means of mathematical transition approaches, process models can be simply 

implemented as mathematical functions, which can further be implemented in a program smoothly. 

Nevertheless, mathematical functions require much human power and time to be created to 

establish process models. In addition, adjusting the accuracy of the functions is also a hard and 

time-consuming task, which means lower cost and high efficiency cannot be satisfied. 

Table 3.3: Comparison of four presented system modeling methods with seven criteria  

 Process-oriented 

system modeling 

Data-oriented 

system 

modeling 

State-oriented 

system 

modeling 

Object-oriented 

system 

modeling 

Physical  

description 

+ - + ++ 

Logical  

description 

+ 0 ++ ++ 

Quality  

characteristics 

- - - ++ 

Relationship + - ++ ++ 

Managing  

complexity 

0 + 0 0 

Possibility of 

implementation 

+ - ++ + 

Less cost 

and high 

efficiency 

- ++ ++ 0 

Data-oriented system modeling does not refer to a physical description, but rather to the logical 

information structure and information flow diagram (specifically the data flow diagram). The data 

flow diagram provides a good hierarchical structure of functions and data via the context diagram, 

and further data flow diagrams in decomposed levels. However, it only gives general data 
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structure and data exchange. Furthermore, the quality characteristics are also not considered in 

the data flow diagram. Due to the missing physical description and quality characteristics, the 

relationships between different models are not considered. Since the data flow diagram is a single 

diagram for determining the data exchange with different functions, the complexity can be 

satisfied. The data flow diagram is only created in the form of a graphic diagram. The 

implementation of mathematical functions and semantic methods are not satisfied because of the 

simplicity of the data flow diagram. At the same time, the simplicity allows the cost and efficiency 

criteria to be satisfied optimally. 

State-oriented system modeling conception can describe parts of the system architecture, that is, 

the owner of each service and, thereby, the owner structure following the hierarchical structure of 

the services. The requirement of the physical description can be satisfied. The service-oriented 

model can represent the behaviors of the interior of an industrial automation system in detail with 

its states, actions and events. Thus, the logical description can be completely satisfied, whereas 

the quality characteristics are neither considered in the diagram nor in the models. Due to the 

mapping relation between the physical description with the owner of services and logical 

description with services, the relation can be satisfied. However, when the system is a time-

continuous system and possesses plenty of mathematical functions and input variables as well as 

output variables, this can lead to an infinite number of states for every time point, meaning the 

complexity is partially satisfied. As introduced in Subsection 3.2.4, this allows the transformation 

of graphic diagrams into mathematical functions. Currently, , service-oriented modeling, such as 

modeling with Matlab [SZW17], can be performed quickly with less cost by means of the 

development of various tools. The requirement “possibility of implementation” of the state-

oriented modeling conception can be completely satisfied. Furthermore, lower cost and high 

efficiency can also be completely fulfilled via a properly defined state model and the necessary 

tools.  

The object-oriented system modeling approach refers to the development phase, from requirement 

analysis to design and implementation phase. With the modeling techniques, as well as diagrams, 

the internal structure and behaviors of an industrial automation system can be completely 

described using physical and logical descriptions. As introduced in [FSV13], the requirements, 

including functional and nonfunctional, are included in the SysML modeling method. This allows 

the requirement of description of quality characteristics to also be completely fulfilled. Similarly, 

the relationship between different diagrams can be clearly defined. Since there are 14 diagrams in 

UML and 9 diagrams in SysML, the number of relationships and coupling between various 

diagrams is very high. This evaluation is a general assessment. Nevertheless, some researchers 

have also attempted to simplify the original SysML and describe the system from four views with 

a unified notation [FSV13]. In this case, the complexity and relationship are managed in a limited 

scope. Hence, the requirement of managing complexity is partially satisfied. Depending on the 

field of the applications, different diagrams can be formalized with semantic methods [Lano09] 
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[FSV13], such as ontologies [KhPo15]. The object-oriented diagrams can be partially realized 

with tools, which can increase the efficiency of the implementation. However, more manpower is 

required to formalize the models in a semantic format. Hence, the requirement of lower cost and 

high efficiency is partially satisfied. 

In summary, there is no system modeling conception which can satisfy all requirements. The 

object-oriented modeling, especially the proposed system modeling approach based on SysML in 

[FSV13], however, can satisfy the great number of proposed criteria. The formalization of the 

system model to system knowledge has to be considered in the establishment of a new system 

model instead of only in the ontology to adopt the different industrial automation systems and 

running platforms. In addition, the manufacturing capability of machines have to be considered 

under four perspectives: set of different operations, parameter range of different operations, set of 

feasible sequences of operations, and range of output quantity [HMWF17] [VoNe17]. These 

characteristics should also be checked in the system model, like the function model is used to 

describe operations, their sequences and also the requirements for these operations.  

A survey regarding the methods of handling faults and conceptions of system modeling was 

presented in this chapter. In the first part, four methods of handling faults, specifically fault 

prevention, fault tolerance, fault removal, and fault forecasting, were depicted in detail. Fault 

tolerance and fault removal are supposed to remove either the fault or fault effect, and they are 

two approaches of corrective maintenance. The other two methods, fault prevention and fault 

forecasting, are attempted to eliminate faults before the appearance of the faults via monitoring 

abnormities or by predicting the presence of the next fault, including fault location and fault 

consequence. In line with requirements of the proposing conception, fault tolerance is the one of 

four methods of handling faults that can fulfill almost all requirements. In the approaches of fault 

tolerance, fault handling was proposed with four steps: fault diagnosis, fault isolation, system 

reconfiguration, and system re-initialization. In the second part, four conceptions of system 

modeling (namely process-oriented, data-oriented, state-oriented, and object-oriented system 

modeling) were introduced in detail. Different approaches are supposed to represent various 

aspects of an industrial automation system, e.g. dynamic behaviors, static structures, and 

requirements. Then these four approaches were compared using seven criteria. On the basis of the 

comparison table, the object-oriented approach can fulfill most of the set criteria, in which the 

proposed system modeling approach based on SysML in [FSV13] represents the system from the 

perspective of requirements, functions and components. Hence, it provides a very good basis for 

establishing a system model with the intention of determining fault location and fault impact. The 

proposed system model will be introduced in the next chapter. 
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4 Modeling of Industrial Automation Systems 

This chapter shows the decisions for the overall design of the fault handling conception in 

consideration of the system requirements, and how to establish the system model of an industrial 

automation system as system knowledge. With regard to the overall system design, basic decisions 

will be introduced with respect to primary fault diagnosis, the method of handling a new fault, the 

automatic reasoning, the knowledge base, the execution of the reconfiguration, and system 

knowledge. Additionally, as the basis of identifying the fault location and determining the fault 

effect, the system model will aim to describe an industrial automation system in a proper way.  

4.1 Representation of an Industrial Automation System from 

three Perspectives  

This section describes a system modeling method of an industrial automation system from three 

perspectives, e.g., components, functions and requirements [FSV13]. As the requirement in 

Chapter 2.4 mentioned, the requirement “Ability of automatic, reasonable and dynamic fault 

analysis” needs a reasonable description of the industrial automation system, so that a 

computational unit is able to determine the fault location and available functions. Automatic 

analysis depends intensively on input data from the fault diagnosis system and a systematic 

reasoning process. This is because it can derive the available functions from the interior structure 

of the industrial automation system in case of the appearance of a fault. To attain the correct fault 

location and the precise fault effect, the worker who performs the reasoning must not only be 

extremely familiar with the system’s physical structure, but also the logical process structure. 

Here, there needs to be a comprehensive system knowledge, including the physical structure, 

logical structure, and some possible specific constraints for automatic analysis, that is, automatic 

reasoning. However, establishing a system model is a common method for representing or 

describing an industrial automation system from different perspectives. In addition, a correct and 

reasonable format of the system model also plays an increasingly important role for automatic 

reasoning. Later, if the automatic reasoning can be realized on a computer, it would also reduce 

the cost during the operation phase. 

Therefore, two main preparation tasks for the automatic analysis ought to be completed before 

establishing the fault analysis conception: Firstly, a rational system model from at least physical 

and logical views ought to be established to provide integral knowledge for the proposed 

reasoning. Secondly, it is essential to formulate the system model into a proper format, for instance 

rules and matrices, so that the analysis process can be achieved by the computer rather than a 

human being via the formulated knowledge. Hence, to design a proper system model, the model 

should be also suitable for the demands of the fault analysis process. In addition, different kinds 

of industrial automation systems should also be considered in the process of defining and creating 
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the system model so that the universality of fault handling for industrial automation systems can 

be validated. At the same time, the interface between the industrial automation system and the 

fault handling system should be clearly and uniformly defined to achieve the information 

exchange to be able to achieve compatibility with the existing industrial automation system. 

As discussed in the previous chapter, the goal of this research is to guide an automated system to 

reconfigure itself within a certain range, with the help of available functions when the automation 

system fails due to a component failure. Therefore, the industrial automation system must be able 

to continue to work and still provide available services for users. However, if an automated system 

follows a wrong guide, not only are the desired objectives not achieved, but also the wrong guide 

can result and a further fault impact expansion, and it even can bring the whole system to its knees, 

like a secondary failure with a system level short circuit. Hence, fully and clearly evaluating the 

fault impact scope in the inner system structure is a very important prerequisite for the decision-

making. Otherwise, some necessary constraints, like safety, ought to be considered to evaluate the 

availability of every function. Since a system model empowers the user (here, a user can be a 

computer system) to filter out unnecessary internal complexities of an automated system, the user 

is able to directly access to the extremely important parts of the industrial automation system. 

 

Figure 4.1: Development of an industrial automation system via components, functions 

and requirements  

Figure 4.1 shows the general development process of an industrial automation system. After 

coordination with the customer, the manufacture formulates the requirements with respect to 

functional requirements, which indicate the concrete functions or services of an industrial 

automation system, and non-functional requirements that indicate the constraints or quality 

attributes for availability, performance, reliability, etc. Secondly, the manufacture analyzes, 

customarily in the system design phase, the requirements to determine the possible functionalities, 

and then decomposes these into further small unit functions with necessary information inputs 

and outputs. To achieve the information exchange, the information flow between functions has to 

be defined. Generally, after the system’s logical design, the system physical structure is supposed 

to define the functional subsystems and the connection interfaces as well as the reasonable 
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components that can realize various unit functions of each subsystem. Furthermore, according to 

the designed architecture, interfaces, and information, the developer is able to convert the logical 

description into a concrete system, that is, the realization of the system with components and 

subsystems. The developer is therefore able to realize the defined functions from hardware and 

software. Here, each component means either the concrete hardware, such as a temperature sensor, 

or the encapsulated software, which can realize the function of measuring temperature. Afterwards, 

via system integration and system test, an industrial automation system, such as a coffee maker, 

can be realized. 

As mentioned above, an industrial automation system can be identified in three major views: 

physical view (component model), logical view (function model), qualitative requirements view 

(requirement model, dependencies or constrains between functions), and the mapping relationship 

among different views. 

4.1.1 Physical Description (Component Model) 

The component model outlines the physical objects of an industrial automation system, as an 

object-oriented (as well as assembly-oriented) decomposition. Firstly, the component model 

describes all the physical elements, components and their connections, of an industrial automation 

system [7], such as a microcontroller, sensor, and an actuator. In addition, a system includes 

different subsystems, each subsystem being connected by different components to achieve some 

specific tasks.  

 

Figure 4.2: Schema of the component model 

Figure 4.2 presents a schema of the proposed component model. The right tree shows an overall 

system decomposed into a hierarchical structure with two subsystems and four components. The 

left box shows the relationship of a subsystem with a technical plant [ZNM18] and two elements. 

The far-right dashed-line box illustrates the abbreviation of the subsystem, component, technical 

plant, and element. 

 Element: It means that all physical entities in a technical plant are influenced by the technical 

system and directly transforming or changing the material, information and energy [DIN 

66201], for instance, a part of a water pipe, a tank, a part of an electric wire, etc. Here, because 

of the complex mechanism in the machine field, it is hard to determine which element is 

defective without the help of manual intervention. Similarly, due to complex mechanical 



 

 

55 

engineering, the affected component of an industrial automation system is also hard to 

determine. Hence, the element fault is considered as a technical plant fault, i.e., its related 

subsystem fails, and ought to be confirmed by the maintenance service via a field 

investigation.  

 Component: It describes the entities of an automation system, including the controller, the 

sensor, and the actuator. A controller is located in the core of a subsystem to provide the 

desired system responses between components. An actuator influences the behavior of the 

physical system. Some examples of actuators are motors, pumps, valves, and switches. A 

sensor measures different properties of the technical plant, such as temperatures, pressures, 

positions, liquid levels, etc. 

 Subsystem: It consists of a certain number of components which form a special configuration 

to realize one or more functions. In addition, a subsystem is usually divided according to either 

the component distribution or the function’s influences. However, every subsystem must 

contain at least one controller. 

 Overall system: Here, it means the overall industrial automation system—which is made up 

of all subsystems. 

 Component-tree (i.e. Hierarchy): It presents the hierarchical structure of all the features in an 

industrial automation system, including components, subsystems and the overall system (see 

feature model [BaHa10] [WXH+10]). In addition, the proposed component model tries to 

number each level from bottom to top, from small to large: Figure 4.5 shows an example, the 

component level being level 1, the subsystem level, level 2, and the overall system level, level 

3. 

Afterwards, as an additional attribute, subsystems have different specific symptoms, namely that 

subsystem failure can result in one or more specific symptoms, which are also a part of the fault 

diagnosis result. 

Figure 4.3 shows a general description of the component, as well as the subsystem, on the left 

side: parameters, hierarchy and relationship with the function model. The upper right tree 

illustrates the hierarchical structure of the component model. The lower right frame gives an 

example of a component, in this case the temperature sensor, with the general attributes: general 

information, parameters, connected function, and connected subsystem. In the presented system 

model, components can only be sensors, actuators or microcontrollers. 

 Sensor: It measures the physical values of the technical plant, converts them into electrical 

variables, and transfers the variables to the computational unit, e.g. a temperature sensor. 

 Actuator: It receives commands from the computational unit and influences the technical plant, 

e.g. a heater. 
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 Computational unit: carries out the tasks that are assigned by the user. The input value (i.e. set 

value) will be processed with one or more specific algorithms and sent to the actuators, e.g. a 

microcontroller. 

 

Figure 4.3: Attributes of each feature in the component model, and an example of a 

temperature sensor 

As Figure 4.3 shows, some attributes of a temperature sensor is illustrated. The details of each 

attribute are presented as follows: 

 ID: It indicates the identification number of each unit in the component model, such as the ID 

of the temperature sensor, which is 1.  

 Name: It gives the name of the component, e.g. temperature sensor. 

 Abbreviation: It gives each unit in the component model one or more letters and a number, 

e.g. the abbreviation of a temperature sensor is “C1”, for a heating subsystem it is “SS1”. 

 Type: It indicates the type of the described item. It can be a temperature sensor, a heater, a 

heating subsystem, etc. 

 Redundancy: It shows whether the described item is a redundancy of another item, e.g. there 

are two temperature sensors. One of them is working and the other one is on standby. When 

the working temperature sensor is out of order, the redundant temperature sensor can replace 

the defective sensor to provide the required service. 

 Parameter: It denotes all the parameters of each component or each subsystem. It could be a 

certain parameter such as a measured temperature value of a temperature sensor. It can also 

be the input data and the output data of a subsystem as well as the predefined data, which is 

the user’s set value. 
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 Connected functions: It means that functions can be realized by the component or system and 

indicate the mapping relationship with the function model. For instance, a temperature sensor 

realizes the function of “measuring the temperature”. A heating subsystem realizes the 

function of “Heating water to X°C”, where X is the value of the temperature and can be 

defined by the user. 

 Connected subsystems: It shows ownership in the component model. There are two types of 

ownership: For the higher level, it means that the connected subsystems possess the described 

component or subsystem. For the lower level, it means connected subsystems belong to the 

described subsystem. 

Afterwards, as an additional attribute, subsystems have different specific symptoms, which 

correspond to the mentioned parameter, e.g. the tendency of a temperature. A subsystem fault can 

result in one or more specific symptoms, which can also be identified by the existing integrated 

fault diagnosis system in the industrial automation system as a part of the fault diagnosis result, 

providing the principle for the fault localization. With the help of symptoms, it is able to fix the 

defective area in the system, for instance, the defective subsystem.  

4.1.2 Logical Description (Function Model) 

The function model describes all functions (activities, actions, processes and operations) from the 

logical standpoint, and their connections to an automation system [HMWF17]. With the help of 

these functions, an automation system can produce plenty of products or realize various services, 

for example, producing different kinds of coffees, transporting specific bins to some specific slots, 

etc. 

However, a single process usually cannot realize a final service or manufacture a final product by 

itself in an industrial automation system. The production processes of an overall system enable 

the processing of different raw materials, to obtain the majority of intermediate products, and 

finally to manufacture the final product. Based on this production procedure, the functions of an 

industrial automation system can be divided into basic functions, sub functions and main 

functions. Certainly, there can be more than one sub function level between the basic and main 

function levels, such as sub-1 function, sub-2 function … sub-n function. 

 Each basic function represents the corresponding component with its behavior pattern. A basic 

function provides the original material or information, such as providing the cold water in a 

coffee maker.  

 Similarly, each sub function is the mapping of its corresponding subsystem with one of its 

behaviors. A sub function can supply an intermediate product through the connection of some 

basic function, such as producing hot water after heating the cold water. Here the sub function 
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“Producing hot water” is the cooperation of basic functions “Providing cold water” and 

“Heating water” in a certain order. 

 The main function represents one of the final products or services that can be provided by the 

overall system, and are usually directly required by the user. For instance, a cappuccino is one 

of the final products of an automated coffee maker. However, a main function could also be a 

part of the other main function. 

In addition, it is necessary to illustrate that the final product required by the user can also be 

provided by a sub function, for instance, the espresso can be a demand by the customer and can 

also be the material for the cappuccino product. Hence, it ought to be noted that the division of 

functions follows the basic principle of correspondence with the component model. The division 

of functions is flexible and can also be defined in light of the demand of the developer. 

Figure 4.4 illustrates the schema of the function model. As the left grey frame shows, there are 

some characteristics in the function model: the function types, the relationship between functions, 

the hierarchical structure, and the relationship to the component model and requirement model. 

The function types are already interpreted above. The functions can be divided into two major 

types: 

 Function relationship regarding the automation system: It shows the relationship of the 

function according to the internal information flow of an industrial automation system. The 

internal information flow denotes the inherent information transmission sequence to realize 

the basic functionality successfully. For instance, a temperature sensor with a function 

“measuring the temperature” sends the measured temperature to the microcontroller with a 

function “controlling the temperature”. This information flow consists of a dependency: the 

function “controlling the temperature” depends on the function “measuring the temperature”.  

 Function relationship regarding the technical process: Besides the inherent internal 

dependency, there is another logical functional dependency in line with the technical process. 

As noted above, a function aims to perform an activity or a process. Along with the application 

of a function model in the field of system engineering, a function in the function model depicts 

the objective of the transformation of the material, the information, or the energy. In 

accordance with this, the division of functions can be subdivided into material, information, 

or energy. Hence, it can generate another logical dependency higher than the inherent 

functional relationship. With this logical dependency, functions follow a defined combination 

and perform a sequence to produce a specific product or provide a specific service, which is 

the ultimate goal of the user. For example, there are three functions of a coffee maker: the 

function “producing cappuccino” needs the function “producing espresso” and the function 

“producing milk foam”. Apart from the dependency that the first function depends on the 

realization of the other two functions, there is an additional potential dependency, so that 

without the function “producing espresso”, the significance of the function “producing milk 
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foam” no longer exists. This dependency of functions is hidden in the function performing 

sequence.  

 Hierarchy (function tree): It presents a hierarchical structure of different functions. Depending 

on the relationship of the functions, they are divided into different levels and each level 

numbered from bottom to top, from small to large, for instance, as Figure 4.7 shows, the basic 

function level is level 1, the sub function level, level 2, and the main function level, level 3. 

 Relationship with the component model: It provides the relationship between the function 

model and the component model, i.e., the described functions are realized by the 

corresponding components, subsystems and the overall system. As an assumption, each basic 

function can be mapped to a component. The computational unit is, however, a special 

component and can be called upon by different subsystems. The computational unit can have 

only one, but also more control tasks. Hence, the computational unit can afford more than one 

basic control function. Otherwise, either a subsystem or the overall system can also provide 

more than one function that depend on the system’s logical design.  

 Relationship with the requirement model: It shows the relationship between the function 

model and the requirement model. This means that the described function has a relationship 

with the (qualitative) requirement. This function can be the condition of the requirement, 

through which the requirement can be fulfilled, and can also be the consequence of whether 

the function can be fulfilled under the condition of the fulfillment of the requirement.  

As Figure 4.4 shows, the function tree and an example of a basic function “measuring 

temperature” can be interpreted as follows: 

 ID: It indicates the identification number of each function in the function model, such as the 

ID of function “measuring temperature” is 1. 

 Name: It gives the name of a function, e.g. “measuring temperature”.  

 Abbreviation: It gives each function in the function model one or more letters and a number, 

e.g. a basic function “measuring temperature” is “BF1”, a sub function “Heating water to X°C” 

is “SF1”. 

 Type: It indicates the type of the described item. It can be a basic function, a sub function, a 

main function, etc. 

 Commands: It means the reconfiguration command which can control the availability of the 

function in the logical level. It can be considered as the program function in the software with 

a flag variable. For instance, the function “measuring temperature” has a flag 

“Flag_Measure_Temp”. If the “Flag_Measure_Temp = True”, then the program function of 

“measuring temperature” can execute, in other words, the function “measuring temperature” 

is activated. Conversely, if the “Flag_Measure_Temp = False”, then the program function of 
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“measuring temperature” can no longer be executed, i.e. the function “measuring temperature” 

is deactivated. In addition, if this function is a redundant function, not only the activation 

command, but also a part of specific program, are needed for a reconfiguration in certain 

circumstances. 

 

Figure 4.4: Schema of the function model 

 Redundancy: It shows that whether the described item is a redundancy of another function. 

 Rules: It denotes the relationship with the connected functions that can influence the 

availability of the described function; with the same example of a coffee maker: availability 

of “producing cappuccino” = “producing espresso” AND “producing milk foam”. Obviously, 

if the availability of two functions behind the equation is known, then the availability of the 

function “producing cappuccino” can be easily calculated. Therefore, a general rule to 

estimate the availability of a function can be concluded: If the calculating result of the 

described function is TRUE, then the described function is available. Conversely, if the 

calculating result of the described function is FALSE, then the described function is 

unavailable. 

 Connected functions: It means that the described function has the relationship with the other 

functions. It can be the function across different levels: for example, the function “measuring 

temperature” being connected with the function “heating water” in the logical relationship.  

 Connected components: It means that the described function can be realized by a component 

or system in the component mode: for instance, the function “measuring temperature” is 

realized by the temperature sensor.  

 Connected requirements: It denotes that the described function has the relationship with a 

requirement. This function can be a tenable condition or a tenable consequence of the 

requirement. 
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 Parameter: It denotes the parameter of the function. It could be a certain parameter, such as a 

measured temperature value. It can be the input data and the output data, as well as the 

predefined data of the function, for instance, the function “Heating water to X°C”, where X is 

the value of the temperature and can be defined by the user. 

4.1.3 Description of Qualitative Requirements (Requirement Model) 

As previously mentioned regarding the general development procedure, a requirement can be 

realized by one or more functions. The functional requirements are actually implemented in the 

function model. It is unnecessary to describe the functional dependency again in the requirement 

model. But the non-functional requirements, which describe the qualitative constraints of the 

system, ought to be described in the requirement model. Hence, in the following chapters, the 

term requirement is used instead of the term non-functional requirement. 

 

Figure 4.5: Classification of the requirements in functional und non-functional types 

The requirement model gives a specific description of qualitative constrains for functions and 

components (see Figure 4.5): the requirement model here does not consider the functional 

requirements, which are concluded in the function model, but non-functional requirements. The 

[Part12] has defined 13 non-functional requirements: performance, interface, operational, 

resource, verification, acceptance, documentation, security, portability, quality, reliability, 

maintainability, and safety requirements. As mentioned in the literature [Part12], three non-

functional requirements are clarified as follows: 

 Security: The inoperative function and the not-affected functions should not threaten the 

privacy data and operation. When a memory that stores the system’s root password is 

defective, not all functions can be activated until the repair addresses the security of the 

privacy of the user. 

 Safety (Survivability): The rest of the functions must not threaten the safety of system as well 

as of the user. For instance, the pressure in a bottling plant must be validated within a safety 

range to avoid a potential hazard. 
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 Performance: A specific requirement in [Part12] concerns response time, speed, volume, rates, 

etc. According to the performance requirement, the result of the function should be defined in 

a specific scope for meeting the user’s demands. 

Beside the mentioned non-functional requirements, specific user requirements ought to be 

included in the requirement model.  

Afterwards, an additional requirement about the main component, which refers to a subsystem or 

the entire system, and plays a key role as the core element, such as a microcontroller, should be 

included. If the main component is defective, its subsystem or the entire system can be out of 

order. This is helpful in decreasing the handling process. The functions’ analysis can begin 

directly from the subsystem level instead of the component level. 

 Non-functional requirement: The details of the non-functional requirements are described 

above. 

 Promise condition: It defines the estimation logic of a requirement. With the help of this 

promise condition, it enables either the fulfillment of the higher level requirements or the 

consequence of the functions to be estimated. Generally, in an IF-THEN logic, in order to 

perform a reasonable reasoning, the primary judgment is to determine the IF statement. 

Depending on this result, the THEN consequence can be fixed.  

 Consequence: It denotes which actions ought to be activated corresponding to the analysis 

result of the promise condition. For instance, if the system safety is true, then the function 

“heating water” can be performed, or else the function “heating water” cannot be activated. 

 Hierarchy: It presents a hierarchical structure of different requirements. Different from the 

component model and function model, the highest level of the requirement tree is the entire 

system requirement that consists of all different requirements. The second level shows every 

specific requirement, such as safety, security, etc. Then these specific requirements are 

decomposed into more sub requirements in the requirement tree. In addition, the requirement 

tree is numbered at each level from bottom to top according to the principle of small to large, 

e.g. the basic requirement level is level 1, the sub requirement level is level 2, and the system 

requirement level is level 3. 

 Relationship to the function model: It shows the relationship between the requirement model 

and the function model. It means that the described requirement has relationship to different 

functions. These functions can be either the condition or the consequence of this requirement. 
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Figure 4.6: Schema of the requirement model 

Figure 4.6 shows the schema of the requirement model, the conceptual hierarchy, and an example 

of a basic requirement “Temp <= 80°C”. The first two are already interpreted above. The details 

of the example are described as follows: 

 ID: It indicates the identification number of each requirement in the requirement model, such 

as the ID of the requirement “Temp <= 80°C” is 1. 

 Name: It gives the name of a requirement, e.g. “Temp <= 80°C”. 

 Abbreviation: It gives each requirement in the requirement model one or more letters and a 

number, for example, a basic requirement “Temp <= 80°C” is “BR1”, a sub requirement 

“Safety of the system” is “SR1”, the entire system requirement is “ESR1”. 

 Type: It shows the type of the described requirement such as entire system requirement, sub 

requirement, basic requirement.  

 Rule (Promise condition): It provides a formal conditional statement that describes the 

relationship with the corresponding functions or the other requirements in a mathematical 

equation. The described requirement is located on the left side of the mathematical equation 

and the corresponding functions or requirements described on the right side. With the help of 

the calculation of the right side, it enables the determination of the value of the described 

requirement. The rule will later be used in the IF side of the IF-THEN logic. For instance, 

“Temp<=80°C” = “Monitoring temp”, it means that if the function “Monitoring temp” is 

available with the value of TRUE, then the requirement “Temp<=80°C” is available with the 

value TRUE. Otherwise, if the function “Monitoring temp” is not available with the value of 

FALSE, then the requirement “Temp<=80°C” is also not available with the value FALSE. 
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 Consequence of the described requirement: It defines different actions according to the 

decision results of the promised condition, i.e., the consequence is the left side, thus THEN of 

the IF-THEN logic. In general, there are two possibilities in this thesis, either TRUE or FALSE. 

If the result of the promise condition is TRUE, then the limited corresponding functions fulfill 

the requirements and are available; otherwise, if it is FALSE, then the limited corresponding 

functions are not available. 

 Connected requirements: It denotes that the described requirement has the relationship with 

the other requirements.  

 Connected functions: It means that the described requirement has the relationship with 

functions.  

 Connected components (optional): It indicates the principal components of a system. The 

failure of one principal component can lead directly to a breakdown of one or more subsystems 

and even stop the entire industrial automation system.  

This section described the categories of the non-functional requirements, as well as the major 

aspects of modeling the non-functional requirements of an industrial automation system. 

Moreover, the concrete details of the attributes of a non-functional requirement together with 

specific examples were also indicated above. 

4.2 Formalization of the System Model via Matrices and 

Rules as System Knowledge 

This section gives the formalization principle of the system model via matrices, which are used to 

describe simple relationships, and via rules, which are used to describe complex relationships and 

utilize them as the system knowledge, which is utilized for identifying the fault location and the 

available function in case of a fault. In this thesis, a simple relationship denotes the relationship 

between two items, and a complex relationship describes a relationship that has three or more 

items. If the state of an item is decided by two other items, a 3-dimensional matrix will be 

proposed rather than a 2-dimensional one. Along with the increase in the number of items, the 

dimension of the matrix will increase, so that not only will the difficulty of describing the 

relationships increase, but also the difficulty of future operations. To avoid a high dimensional 

matrix, this thesis proposes to utilize a rule to describe a relationship type of more than three items. 

4.2.1 Formalization of Simple Relations via Matrices 

A matrix can be used to describe the relationship of m rows and n columns of various items. In 

traditional math applications, each position in the matrix can be used with different values. In 

addition, different operations can be performed on matrices, if particular rules are met. Depending 
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on the application conditions, a matrix can be utilized with particular limitations to meet the 

purpose of computing or reasoning, like a 0/1 matrix, i.e., the value of each position in the matrix 

is either 0 or 1.  

There are three typical interactions between two features in Figure 4.7: 

 

Figure 4.7: Three interactions between two features 

 Dependent mode: One item depends on, or is part of, another item, e.g. A is part of B or B 

depends on A, then the value of the position BA is 1. For instance, component A is part of 

subsystem B.  

 Independent mode: It denotes that there is no relationship between the two items, e.g., the 

position AB and BA are set to 0, as shown in the figure. 

 Interactive mode: It means that two items depend on each other, e.g., as the above figure shows, 

position AB and BA are set to 1. For instance, a temperature sensor in the component model 

performs the function measuring the temperature in the function model. In this case, the 

interactive mode can be used to describe the mapping relationship between different models. 

These basic modes can be used to describe the relationship between any two items in the system 

model. Nevertheless, in the above description, a confusion between the dependent mode and the 

interactive mode can occur, if both A depends on B and B depends on A and, therefore, AB and 

BA are 1. Hence, in order to better distinguish relationships and serve reasoning, a one-way 

matrix will be applied in this thesis, i.e. either the row of the relying item or the high-level item 

will be set to 1. 

 

Figure 4.8: Specific rule example for the application of the matrix 

Afterwards, to simplify the reasoning cost, the relationship of the item to itself will be set to 0. 
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In addition, for the complex relationship where an item can be decided by more than 2 items, 

simply whether a relationship exists can be described by a simple matrix, i.e., 1 with relation, or 

0 without relation. In addition, different values are applied to replace the simple 1 to better mark 

the locating level of the described item. The rule is that the lowest level is 1, is the second level is 

2, up to the top level N. There is no level 0, as 0 indicates that there is no relationship. For instance, 

in the function tree, the function “heating water” SF1 requires the function “heating” BF1, and 

the function “heating water” SF1 is one level higher than the function “heating” BF1. Then, in the 

matrix description, the position SF1BF1 will be set to 2, and BF1SF1 will be set to 0.  

Typically, there are six relations for internal relationships and relationships across models. The 

first three matrices are used to formalize the relationship across models, and the remaining three 

matrices depict the simple internal relationships of each model. In addition, a matrix of 

redundancies has to be established.  

 Matrix between components and functions: It describes the mapping relationship between 

components and functions. It includes the independent mode and the interactive mode. There 

are thus usually two values: 0 indicates no relationship, and 1 indicates a relationship.  

 Matrix between functions and requirements: It describes the mapping relationship between 

functions and requirement. It includes the independent mode and interactive mode. So there 

are usually two values: 0 indicates no relationship, and 1 indicates a relationship. 

 Matrix between components and requirements: It shows the mapping relationship between 

components and requirement. It includes the independent mode and the interactive mode. 

There are thus usually two values: 0 without relationship, and 1 with relationship. In addition, 

this is only used to depict the principle components with the requirements. If the principle 

components are defective, then one or more subsystems, or even the entire system, can be out 

of order. With the help of this matrix, the reasoning process of identifying available functions 

can be simplified.  

 Internal matrix of components: It depicts the simple owner-member relationship between 

components and subsystems, subsystems and systems, as well as elements and subsystems. It 

includes the dependent mode, independent mode, and interactive mode. In addition, it is also 

a one-way matrix. The first two relationships show relations inside of the component model. 

The relationship between elements and subsystems indicates the necessary mechanical parts 

of the technical process which do not belong to the can-controlled automation system, but 

could impact the workflow of a part or the entire system. 

 Internal matrix of functions: It shows the simple owner-member and influence relationship 

between functions. It includes not only the three modes, but also the one-way matrix and 

relations with the level value. As Figure 4.8 shows, the bigger the number, the higher the level 

in the function tree. In addition, not only can the relationship’s different levels be indicated, 
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but also the relationship on the same level. For instance, the function “controlling heating 

water” demands the function “measuring the temperature” to keep the water at a concrete 

temperature. They are, however, at the same level, and parts of the sub function “heating 

water”. Hence, such a control flow relationship is also indicated in this matrix.  

 Internal matrix of requirements: It depicts the simple owner-member and influence 

relationship between requirements. It includes the three modes and is a one-way matrix and 

relations with the level value. However, it is necessary to note that the level of the requirement 

is not the same as that of the functions. Since the highest level in the requirement model is 

system requirements, and then system requirements are decomposed into various specific non-

functional requirements, and then those specific non-functional requirements are further 

decomposed into concrete requirements, which are generally realized by specific functions. 

 Redundancy matrix: It indicates the redundancy relationships in an industrial automation 

system of the redundant components, but also those of the redundant functions. This is 

because, in the real industrial automation system, the utilization of redundancies is still a very 

common approach to insure the normal working ability of an industrial automation system 

when a fault occurs. Hence, in this thesis, redundancy has to be considered to replace functions 

as well as the defective components. This matrix is specific: one column shows the original 

components or functions, and another column shows the redundant components or function.  

In addition, it is important to define the application of the term component, which can denote the 

component itself, for instance, a sensor, and can also denote any item in the component model, 

for example, a subsystem. To avoid misunderstanding in the following sections, this thesis utilizes 

the term basic component to indicate the first meaning, i.e. the component itself. 

4.2.2 Formalization of Complex Relations via Rules 

A set of mathematical formulas equivalent to the system model is used to describe the logical 

structure of the industrial automation system. There are four typical relations, in general, among 

the three features in the feature model [BMC05] [WNW15]: 

 Mandatory: It means that a junior feature is required by the superior feature in a feature tree. 

Formalized in a semantic format, the state of the superior feature is equal to the state of the 

junior feature, namely, SUPER_Feature = JUNIOR_Feature. When there is more than one 

junior feature, the state of the superior feature is equal to the state of the junior features in term 

of a logical conjunction, i.e. SUPER_Feature = JUNIOR_Feature1 AND JUNIOR_Feature2. 

 Or-relation: It depicts a superior feature that requires at least one of its junior features. 

Formalized in a semantic format, the state of superior feature is equal to the state of junior 

features in term of a logical disjunction: SUPER_Feature = JUNIOR_Feature1 OR 

JUNIOR_Feature2. 
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 Alternative: It means that the superior feature requires exactly one of the junior features, i.e. 

it does not allow the activity of two junior features at the same time. Formalized in a semantic 

format, the state of the superior feature is equal to the state of junior features in terms of an 

exclusive disjunction: SUPER_Feature = JUNIOR_Feature1 XOR JUNIOR_Feature2. To 

develop a new product in the development process, it is necessary to indicate the relation of 

the alternative for the system design and system implementation. However, for a developed 

product, if a single junior feature cannot be realized, it will not influence the execution of the 

superior feature. This is because the alternative relation in this thesis can be simplified as the 

or-relation, namely, SUPER_Feature = JUNIOR_Feature1 OR JUNIOR_Feature2. 

 Optional: It shows that the superior feature can be performed either with a junior feature or 

without the junior feature. That is, the optional junior feature exerts no influence on the 

superior feature. Due to this, this relation will be not considered in this thesis. 

These four relations are indicated in one feature tree branch. Actually, the relations exist across 

tree branches and across levels. For example, a function of an air pressure switch requires the 

function of an air supply system. Hence, a new relation is introduced to describe the relationship 

of the cross tree: 

 Require: It means that one feature requires one or more features of the tree. In the case of one 

required feature, in order to formalize it with the semantic format, the state of one feature is 

equal to the state of the required feature, that is, Feature1 = Feature2. If there is more than 

one feature, in order to formalize it, the state of the feature is equal to the state of the required 

features in term of a logical conjunction or a logical disjunction, that is, Feature1 = Feature2 

AND Feature 3; Feature1 = Feature2 OR Feature3.  

For the sake of judging the availability of each function and each requirement, the rule for 

functions and requirements should be formulated: 

Principle of building up function rules 

As discussed in Chapter 4.1.2, there are three function relationships: function constitution 

relationship, function relationship regarding the automation system, and function relationship 

regarding the technical process. In addition, this includes the function tree of each branch and 

across branches. The principle of building function rules is defined as follows: 

Objective_Function = Functions in the branch AND Functions across branches, i.e. 

Objective_Function = (Consitution_Functions_In_One_Branch AND 

Infomation_Constraint_Functions_In_One_Branch) AND 

(Information_Constraint_Functions_Across_Branches AND 

Material_Constraint_Functions_Across_Branches AND 

Energy_Constraint_Functions_Across_Branches) 
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With the help of this principle, it is possible to build a rule for each function in the function model. 

For instance, there are three functions of a coffee maker: the function MF1 “producing cappuccino” 

needs the function SF1 “producing espresso” and the function SF2 “producing milk foam”. And 

these two required functions are combined functions. Then, the rule for the function “producing 

cappuccino” is: MF1 = SF1 AND SF2. 

For the utilization of the function rule, this thesis assumes that there are two states exclusively: 

true and false. Obviously, if the value of the state is true, then the analyzed function is available. 

Conversely, if the value of the state is false, then the analyzed function is unavailable. 

Principle of building up the requirement rule 

As discussed in Chapter 4.1.3, there are two major requirement relationships: relationships with 

functions, and relationships with other requirements. Considering the requirement tree of one 

branch and across branches, the principle of building up requirement rules is defined as follows: 

Objective_Requirement = Functions AND Other requirements, i.e. 

Objective_Requirement = (Functions) AND (Requirements_In_One_Branch AND 

Requirements_Across_Branches) 

With help of this principle, it is possible to build a rule for each requirement in the requirement 

model. For instance, there is a requirement BR1 “Temp <= 80°C” and a demanded function SF2 

“Monitoring temp”. Then, the rule for the requirement “Temp <= 80°C” is: BR1 = SF2. 

For the utilization of the requirement rule, this thesis assumes that there are a total of two states 

for each requirement: true and false. Obviously, if the value of the state is true, then the analyzed 

requirement is available. Consequently, along with the predefined consequence for the true-state, 

the corresponding actions ought to be performed. Conversely, if the value of the state is false, then 

the analyzed requirement is unavailable. Similarly, with the help of the predefined consequence 

for the false-state, the related function will not be executed, for instance, some corresponding 

functions should be not performed anymore and the state of these functions should be set to false, 

even keeping the stop state of the entire system due to a safety reason. 

 

In summary, this chapter has proposed a system model to describe an industrial automation system 

and the formalization of the proposed system model via matrices and rules as system knowledge. 

Firstly, the establishment of a specific system model was proposed from three perspectives, i.e. 

physical description with component model, logical description with the function model and 

quality characteristics with the requirement model. For each model, its specific attributes with a 

concrete simplified example were introduced. Differently to the normal UML notation, the 

proposed model utilizes a tree structure to represent various features in the model. Finally, the 

formalization of the system via matrices and rules were presented to establish the system 
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knowledge, which can easily and directly be implemented on a computation platform such as a 

computer. Simple relations are represented via matrices among components, functions, 

requirements and themselves. For complex relations, specific rules for all functions are 

represented. Principles for building function rules and requirement rules were also outlined.  
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5 Conception of Dynamic Fault Handling and 

Reconfiguration  

An industrial automation system can be represented by the system model from three perspectives, 

namely: the component model, function model, and requirement model. With the purpose of 

utilizing the system model as the system knowledge, the system model is formalized by various 

matrices and several rules. In this chapter, the conception of the dynamic fault handling and the 

reconfiguration based on knowledge will be presented. Firstly, this chapter introduces the 

conception and different kinds of fault handling knowledge. Consequently, the approaches of 

handling known faults and new faults will be presented. Finally, in approaching the handling of 

new faults, three major operations with respect to fault localization will be indicated, thereby 

identifying the available functions and the process of the reconfiguration. Through this chapter, 

the concept of dynamic fault handling and the automated reconfiguration of industrial automation 

systems can be observed in detail.  

A missing or inadequate empirical foundation is an often-occurring problem in scientific work 

[PRK12] [ScHv18]. Despite the choice of a topic of practical interest, the relevance of scientific 

work with regard to practice is often inadequate, so that ultimately the scientific findings are not 

applied in practice [ScHv18] [PRK12]. To solve this problem Design Science Research was 

developed. 

Design Science Research is a recognized method for gaining knowledge of the information system 

[Trep15] [PRK12] and provides an iterative approach to both the scientific foundations (rigor) 

and the practical relevance (through empirical studies) of the research results [ScHv18]. The 

Design Science Research sees itself as a construction-oriented method that focuses on the creation 

and evaluation of IT artifacts [ScHv18] [HeCh10] [GrHe13]. Its cyclical and iterative structure 

makes it flexible and enables the consideration of short-term changes as well as new insights. The 

main idea is, to develop an artifact and then to evaluate the developed artifact with empirical data, 

to then improve the artifact in a new cycle of the development of the artifact. The definition of an 

artifact is given as a construct, model, method or an instantiation. By those iteration, a constant 

verification of the concept by empirical data is guaranteed, which improves the quality and the 

practical relevance of the concept [PRK12]. 

Therefore, the concept of this dissertation was developed by using the Design Science Research 

and the required empirical investigations.  

The final objective of this research is to realize a dynamic fault handling and reconfiguration 

concept for various industrial automation systems. Following the approach of the Design Science 

Research the research process can be divided into three phases for the concept development and 

the concept evaluation based on a reasonable demonstrator. In the first phase, a simple concept 
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for the dynamic fault handling and reconfiguration was developed via a simple relation matrix of 

components, functions and requirements. It was the start point for gathering scientific results. To 

identify available functions, known fault locations for new faults were analyzed. In order to better 

analyze, whether the developed concept is feasible, a coffee maker simulator was introduced as 

the object of practice testing. By manually adding the fault component in the background, the fault 

handling system can infer the available functions using the simple relationship matrix, and then 

activate the available functions of the coffee machine. Through the establishment of a background 

database of the fault information, the fault handling system can read the available functions from 

the database for known faults. After verifying the feasibility of the developed concept, the 

dynamic fault handling and reconfiguration concept was expanded in two ways. They were to 

construct a more detailed system model, to describe the industrial automation system from the 

perspective of components, functions and requirements, and to construct a reasonable inference 

machine, with the purpose of identifying available functions. This inference machine contains not 

only the reasoning logic, but also the required logic resources, integrated in the dynamic fault 

handling and reconfiguration system. In addition to the implementation on the coffee maker, this 

concept was implemented on the newly introduced high-bay warehouse system, which includes 

more components, like more than 50 sensors. This verified the possibility of porting the fault 

handling concept on diverse, complex systems. At the same time, in the new test demonstrator, a 

more complex monomial matrix and therefore more complex rules were introduced for the 

individual functions, to analyze the influence of other functions by the defective functions and to 

evaluate the influence on basis of their materials, information and energy relationship. After 

testing, the developed dynamic fault handling and reconfiguration concept can easily infer the 

available functions of the coffee maker and the high-bay warehouse as well as create the 

reconfiguration commands for available functions. Since the fault location of the new fault may 

be unknown, and therefore to identify the fault location became an important functionality for the 

third development stage for the concept. In addition, taking into account the diversity of industrial 

automation systems, an inference machine for a particular industrial automation system cannot be 

well ported to a new industrial automation system, so in the third stage of the concept development, 

an individual inference machine with separated knowledge, including fault knowledge and system 

knowledge, was required. In order to verify the feasibility of the developed concept, whether it 

can better infer the fault location of the industrial automation system and can be transferred to the 

new industrial automation systems, in the third stage, a new test object, namely the two-tank 

system, is introduced. For the new system, a new fault generation approach was brought from the 

perspective of variables via changing the parameters during the operation of the two-tank system 

by fault injection, so that the dynamic fault handling and reconfiguration concept can be tested, if 

any arbitrary fault can be identified and handled. Meanwhile, in the two-tank system, the required 

knowledge was formulated in a specific format and stored in the database instead of being 

implanted into the inference engine. In this way, it can achieve the liberation of the inference 

machine and can be more efficient to transfer the concept to diverse industrial automation systems. 
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This porting ability was evaluated by another two demonstrators after the implementation of the 

coffee maker and the high-bay warehouse.  

5.1 Overview of the Conception of Dynamic Fault Handling 

and Reconfiguration 

This section gives an overview of the conception of dynamic fault handling and automated 

reconfiguration. With the help of this conception, the complexity of the fault handling process can 

be controlled via the automated fault handling, rather than the manual fault diagnosis. 

Consequently, the fault can be quickly handled and the downtime of industrial automation system 

could be reduced. The general objective of the research is to increase the availability of the 

industrial automation system by means of performing the still available functions in case of a fault. 

To realize this goal, three functionalities can be outlined as follows:  

 Identifying available functions of either known faults or unknown faults: The fault handling 

system is able to classify faults which occur into categories of known and unknown and to 

provide available functions. For known faults, it can directly provide the available functions, 

as well as reconfiguration commands. In addition, for a new fault, it enables the determination 

of the fault location, the available functions, and the integration of the reconfiguration 

commands. 

 Automatic and remote handling of faults: it ought to perform the fault identification, fault 

localization and address fault effect, namely the affected functions, automatically.  

 Guiding the reconfiguration for the industrial automation system: it ought to evaluate the 

reconfiguration types, integrate the reconfiguration commands and determine the related 

necessary measures to perform the reconfiguration successfully. 

To realize the above the functionalities, an outline of handling the fault in an industrial automation 

system is given (see Fig. 5.1). This conception of dynamic fault handling and reconfiguration 

consists of the following main modules: fault pretreatment, handling known faults, handling new 

faults, reconfiguration, and a knowledge base.  

Industrial automation system: this is an individual system that has its own inherent control 

module, execution module and data collection module. It can independently complete certain 

functions and services required by the operator. 

Fault diagnosis system: this system is usually integrated in the industrial automation system. The 

fault diagnosis system has to monitor a system, gather process data, identify the appearance of a 

fault, and determine the fault location.  
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Figure 5.1: Overview of the conception of dynamic fault handling and reconfiguration 

Local fault knowledge: it stores the known fault knowledge, which will be regularly updated with 

the fault knowledge in the server. In addition, the local knowledge base stores the sensor data and 

system preset data within a certain time interval before the fault occurs.  

Interfaces: this consists of a local interface that is located in the industrial automation system, and 

a server interface, which is located in the server. The local interface supplies the possibility of 

sending the fault message and historical data from the fault diagnosis system to the server and 

receiving the reconfiguration commands. The sever interface is meant to receive fault messages 

and historical data and send the reconfiguration commands. 

Fault pretreatment: this module serves to analyze the fault message and assign the fault 

information to the related fault handling based on the fault type, i.e. known faults, to the module 

of handling known faults and new faults to the module of handling new faults. If the fault is 

unknown, the historical data will be required and gathered from the local industrial automation 

system.  

Handling known faults: with the help of the fault ID, this module accesses the fault knowledge to 

get the available functions and sends this information to the reconfiguration module. 

Handling new faults: this module aims to identify fault impacts as well as available and not 

available functions by two steps, namely, fault localization, and identifying available functions.  

Reconfiguration: this module aims to evaluate the reconfiguration possibilities (e.g. available 

functions, available tasks in the industrial automation system, and several specific corresponding 

measures) and creates the specific reconfiguration commands. 

Fault handling knowledge consists of the fault knowledge, symptom knowledge, and system 

knowledge. The detail of this knowledge will be presented in the next section. 



 

 

75 

 

Figure 5.2: General process of handling a fault in the dynamic fault handling and 

reconfiguration system 

In addition, it is necessary to highlight the general process of handling a fault in the dynamic fault 

handling and reconfiguration system (as shown in Figure 5.2). Firstly, the fault information will 

be previously processed. If the fault is known, then it will be assigned to the module of handling 

a known fault. Otherwise, if it is a new fault, it will be assigned to the module of handling a new 

fault. If the fault location is already included in the fault diagnosis results, i.e. known, then it will 

be directly assigned to the module of identification of available functions. Otherwise, the fault 

location ought to be determined first. 

The procedure for fault handling through remote fault handling and reconfiguration is introduced 

as follows. In the local part, when an industrial automation system is out of order due to the failure 

of a component, the integrated fault diagnosis system performs its test cases, or several diagnosis 

approaches, such as process-identification methods [Iser06], with the intention of identifying the 

fault. Then it creates the fault message for the dynamic fault handling and reconfiguration system. 

Here, if the fault is known in its local fault knowledge, the fault information will be created with 

a fault message including the fault ID, states of the resources, and current tasks. Conversely, if it 

is a new fault, the fault information will be created with a fault message including a specific fault 
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ID and previous fault diagnosis results, states of the resources, current tasks, and historical data 

including a time stamp. In addition, it is necessary to point out that the local fault knowledge will 

be synchronized with respect to a certain time interval. Theoretically, this thesis assumes that the 

number of known faults in the local fault knowledge base is equivalent to the number of known 

faults in the server. 

In the server, with the help of the fault message, the module of fault pretreatment in the dynamic 

fault handling and reconfiguration system identifies the fault type and assigns the fault 

information to a different module. The information is fed to a current module of reconfiguration. 

If the fault is known, the module “handling known fault” accesses the fault knowledge to 

determine the available functions. Otherwise, if this is a new fault, the module “handling new 

faults” can handle the fault through fault localization with the aid of the symptom knowledge and 

historical data, and identifying the available function by means of the system knowledge. 

Afterwards, based on the available functions, the module “reconfiguration evaluation” identifies 

the available tasks as well as changing the priorities of each task, and creates the related commands 

for available functions and tasks. Finally, the remote fault handling and reconfiguration system 

sends these commands to the industrial automation system, thereby guiding the industrial 

automation system to complete the reconfiguration. 

5.2 Knowledge for the Dynamic Fault Handling and 

Reconfiguration 

This section is intended to outline the detail of the fault handling knowledge which consists of 

symptom knowledge, fault knowledge, and system knowledge. 

Symptom knowledge consists of symptom ID, fault location, features regarding parameters.  

 Symptom ID indicates the unique identification of each symptom.  

 Fault location depicts the possible defective components or subsystems which can result in 

this symptom.  

 Features regarding parameters that show the analytical parameters, which can be the threshold, 

errors, parameter change tendency, parameter change rate, etc.  

In accordance with the system level, the symptom knowledge, namely, the symptom table in the 

database, is divided into N-1 types. Here, N is the highest number of the system level. For instance, 

if there are three levels of a system and two subsystems, then there will be two types of symptom 

tables. Three symptom tables ought to be given later: one table for the system for determining 

defective subsystems, and two tables for the two subsystems for identifying the defective 

components. 
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Fault knowledge contains the fault ID, fault type, fault location, fault effect, available functions, 

reconfiguration commands for functions, and corresponding measures for reconfiguration.  

 Fault ID indicates the unique identifier for each fault. 

 Fault type shows the type of the fault such as an abrupt fault, incipient fault or intermittent 

fault.  

 Fault location depicts the defective components or subsystems. 

 Available functions are still available functions described with abbreviations.  

 Reconfiguration commands are specific program commands and can be interpreted by the 

industrial automation system, which can be reconfigured with the help of these commands.  

 Corresponding measures for reconfiguration are specific actions or instructions like inserting 

a small piece of code, operation instruction for the user, etc.  

System knowledge is made up of component knowledge (formalized by the component model), 

function knowledge (formalized by the function model) and requirement knowledge (formalized 

by the requirement model). In the area of practical application, this knowledge will be redesigned 

and redefined with different matrices and rules (see Chapter 4). Furthermore, it is necessary to 

note that all tasks which have the relationship with functions and resources should be clearly 

defined. For example, a task “Heating 4 liters water at 45°C” requires the function “Injecting X 

liter water” and the function “Heating water to Y°C”. Regarding the resources in this task, it 

demands 4 liters water from tank1, which provides tank2 with heated water.  

In addition, another necessary factor is process models or fault models for each parameter in the 

symptom tables. These models support the processing of the historical data reasonably and 

identify the defective component, thus creating the required symptoms for the current historical 

data. 

5.3 Handling a Known Fault 

As discussed above, faults in an industrial automation system are known as a known fault which 

has taken place at least one time either in the test phase or in the operating phase. Figure 5.3 shows 

the procedure of handling a known fault. 
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Figure 5.3: Procedure of handling a known fault 

When a known fault in the industrial automation system occurs, the existing fault diagnosis system 

detects the fault, and then it sends the fault information, including fault ID, system tasks and state 

of resources. The module of the fault pretreatment then recognizes the fault ID, which is a normal 

fault identifier, and assigns the fault ID to the module of handling known faults. Subsequently, it 

accesses the fault knowledge and reads the available functions, as well as the reconfiguration 

commands for available function, after comparison with the fault ID in the database. This 

information will be sent to the reconfiguration module. The module of the reconfiguration 

analyzes the availability of tasks in the industrial automation based on the available functions and 

the states of resources. Then it generates the reconfigure commands for tasks and functions, and 

sends them to the industrial automation system with the intention of guiding the reconfiguration. 

An example of interpreting the process of handling a known fault is introduced as follows: In a 

two tank system, there are three tasks with the following sequence, i.e. task1 “Heating 4 liters 

water at 45°C”, task2 “Injecting 3 liters water”, and task3 “Cleaning”. There are three functions: 

function1 “injecting X liters water from tank1 to tank2”, function2 “Heating water to Y°C”, and 

function3 “Outputting Z liters water from tank2 to tank1”. Hence, when a fault occurs, the 

integrated fault diagnosis system detects the fault and sends the fault diagnosis results, i.e. the 

fault ID, with 0x0001, and fault location to the temperature sensor. In terms of the fault ID, the 

module of the fault pretreatment identifies this fault as a known fault. Likewise, with the help of 

the fault ID, the module of handling known fault accesses the fault knowledge, identifies the 

available functions as well as the reconfiguration commands, i.e. function1, function2 and 0x110. 

Subsequently, the module of the reconfiguration analyzes the availability of the current tasks from 

two aspects: the availability of functions and the availability of resources. Due to the malfunction 

of function2, task1 cannot be completed. But the other two functions are still available. Then, 

considering the availability of resources here, which is the capacity of water in the tank1, it 

assumes that tank1 has 6 liters of water. Hence, there are enough resources for task2 and task3. 

This module generates the commands for the tasks, i.e. 0x011. Finally, the dynamic fault handling 
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and reconfiguration system sends the reconfiguration command to the industrial automation 

system to perform the reconfiguration.  

5.4 Handling a New Fault 

Due to the weakness of the existing fault diagnosis system, it cannot determine the fault location 

for a new fault. Hence, in contrast to the known fault, there is no existing knowledge about 

available functions of a new fault; even the fault location is unknown. In order to solve this 

difficulty, this thesis proposes two steps in terms of the symptom knowledge and system 

knowledge respectively: the fault localization, to detect the fault location, and the identification 

of available functions. 

 

Figure 5.4: Procedure of handling a new fault 

Figure 5.4 shows the procedure of handling a new fault in the industrial automation system. When 

a new fault in the system occurs, the automation system is out of order. With the help of 

monitoring, the existing fault diagnosis system detects the fault. Due to the lack of enough test 

cases or algorithms, the fault location cannot be confirmed in this case. The FDS later sends all 

generated existing fault information to the dynamic fault handling and reconfiguration system. 

The fault information includes a specific fault ID like 0x0000, previous fault diagnosis results, 

states of the resources, current tasks, and historical data including a time stamp. By means of the 

specific fault ID, the module of the fault pretreatment identifies this fault as new. It then assigns 

the fault with the proper information to the module of handling a new fault, that is, the fault 

message and historical data. Afterwards, with the benefit of various fault models and process 

models, the historical data can be analyzed and different features generated. Then, the generated 

features are compared with features in the symptom knowledge to determine the fault location. 

By means of the fault location and the system model, the available function can be identified 
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through two steps respectively: identifying the not-affected function via a function model, and 

identifying available functions via the requirement model. Details of the fault localization and 

identifying available functions will be introduced in the Sections 5.5 and 5.6 sequentially. In terms 

of the identified available functions, similar to handling a known fault, the module of the 

reconfiguration analyzes the availability of tasks in the industrial automation based on the 

available functions and the states of resources. Then it generates the reconfigure commands for 

tasks and functions and sends them to the industrial automation system with the intention of 

guiding the reconfiguration. An example for handling a new fault will be included in the following 

subsections. 

5.5 Fault Localization for a New Fault 

As mentioned in the last section, the dynamic fault handling and reconfiguration system enables 

the handling of a new fault in an industrial automation system. Following the general maintenance 

approach (Wang et al. 2015a), this research proposes two major steps to handle a new fault: fault 

localization, and the functional analysis. This section attempts to introduce the identification of 

the fault location with the help of historical data and symptom knowledge.  

The main principle of fault localization is to determine the fault location from top to bottom in the 

component model. That is to say, the research determines the approximate scope of the fault 

location, namely possible defective subsystems. By means of inspecting all components belonging 

to the determined subsystems, the exact fault location can be ascertained. Apart from the fault 

information, including the fault message, previous fault diagnosis result and historical data, two 

kinds of knowledge play an important role in this principle: symptom knowledge and the 

component model. The component model divides the entire industrial automation system from 

top to bottom into various levels and groups.  

Figure 5.5 outlines the conceptual procedure of the fault localization compatible with the 

component model from top to bottom. Firstly, the fault message and historical data are processed 

as input to generate the possible symptoms for the entire system in the component model. Then, 

by means of the symptom knowledge regarding to the entire system, it can inspect which of the 

subsystems of the entire system is the fault location. It is worth noting that here the system to 

analyze refers to the possible scope of the fault. It aims to check the subsystems of the system to 

analyze is the fault location. For instance, if a two-tank system is analyzed, then the top 

subsystems, i.e. injection subsystem, heating subsystem, and drawing out subsystem, are the 

possible fault locations.  
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Figure 5.5: Conception of the fault localization, where N means the number of the top 

level of the component model 

After the comparison between present symptoms and symptom knowledge, the fault location can 

be identified. If the fault location is all subsystems, then there is no necessity for further inspection, 

for it outputs the fault location to the entire subsystem. If the fault location is one subsystem, then 

this subsystem will be outputted to the next analysis procedure for a further inspection. If it 

involves more than one subsystem, but not all subsystems, then all the inspected subsystems will 

be checked for the further inspection. On the basis of the component model, the corresponding 

inferior subsystems, which have the relationship with the possible fault location, can be assured 

for the further analysis. Then the process of generating symptoms and comparison symptoms will 

be repeated again and again until it reaches the lowest subsystems. At that level, the components 

of the possible subsystems will be inspected. Finally, the fault location can be determined at the 

component level and will be outputted for the next module in identifying available functions. Now 



 

 

82 

that the main conceptual procedure of the fault localization is presented, the concrete conception 

of processing the fault message and historical data will be introduced in the next section. 

5.5.1 Principle of Generating the List of Symptoms  

Fault models and process models are utilized for the purpose of establishing the list of symptoms 

which is based on the data of an industrial automation system. The historical data will be used as 

input for the various models and is further analyzed. As a result, the list of analytical symptoms 

will be generated. 
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System
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Figure 5.6: Relationship of various terms for the fault localization 

Each industrial automation system is composed of different subsystems. The subsystem owns 

input values, output values and state parameters. The subsystems consist of various components, 

e.g. temperature sensors, heater, etc. The subsystems represent different functions of the industrial 

automation system. When a component of the system is out of order, this can result in certain 

abnormal changes in technical processes, such as variables, sensor data, etc. And these abnormal 

changes are described in the traditional fault diagnosis system as symptoms. A defect in different 

subsystems or components leads, further on, to different corresponding symptoms. Therefore, if 

the symptoms can be clearly identified, and there is a symptom table, which stores all known 

symptoms and their related fault locations, it is simple to identify the source of the fault, or fault 

location. Hence, to determine the fault location, the important problem is how to generate the 

symptoms. There are two ways this goal can be achieved. The previous fault diagnosis results of 

the existing fault diagnosis system can be utilized as an information source for symptoms. 

Furthermore, because the historical data of the parameters are known, and with the help of the 

historical data and reasonable mathematical models, such as fault models and process models, it 

is possible to derive various required features which make up the symptoms. Feature means a 

specific variable or parameter in the symptom table, such as an abnormal parameter, an error with 
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the set-up value, a change tendency, a change rate, etc. Symptoms here consist of: identifier, 

feature types, fault / process model, and related location. Fault models and process models are 

certain specific mathematic models: for example, a process model checks the error with the set-

up value,  𝑓(𝑥) = 𝑇𝑒𝑚𝑝𝑆𝑒𝑡𝑢𝑝𝑉𝑎𝑙𝑢𝑒 − 𝑇𝑒𝑚𝑝𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 . These models are actually 

recognized as completed diagnosis components. They are developed by the producers and can 

perform the diagnostic function individually. These relationships are indicated in Figure 5.6. 

 

Figure 5.7: General principle of generating symptoms and localizing the fault 

Figure 5.7 outlines the general working principle of generating the list of symptoms and localizing 

the fault. For the sake of generating symptoms and localizing the fault, this thesis proposes the 

following principle: feature identification, feature extraction, fault detection, and fault diagnosis. 

Feature identification intends to access the correlative symptom table, fetching the feature types 

in the symptom table and analyzing the fault message. Feature extraction aims to generate the 

necessary fault and process models, as well as features from the historical data, such as the 

temperature value with the time stamp. Fault detection proposes to process historical data, i.e. 

executing the calculation function, and generating the symptoms. Fault diagnosis is intended to 

compare the generated symptoms with the chosen symptom table with the intention of 

determining the fault location. The general working principle of generating symptoms and 

localizing the fault is as follows: Firstly, based on the system to be analyzed, the corresponding 

symptom table will be obtained from the symptom knowledge. After comparing the fault message 

and symptoms in the symptom table, if the required symptoms already fully exist in the fault 

message, it will directly go to the step of fault diagnosis. If not, it ought to generate the required 

symptoms initially and proceed to the step of feature extraction. In feature extraction, using 

symptom knowledge, the required data, as well as the features, are derived from the historical 

data. Subsequently, this extracted data will be further processed with the help of various specific 

fault models and process models to generate the required symptoms. Finally, with the benefit of 

the generated symptoms, the available symptoms will be chosen from the symptom table in line 

with the generated symptoms. It is natural that the possible fault location will be determined in 

the symptom table.  
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5.5.2  Fault Localization Procedure 

As mentioned regarding fault localization, the aim is to identify the possible subsystems or 

components and the processing of the historical data, which is accessed from the fault diagnosis 

system in the pretreatment step.  

 

Figure 5.8: Processing the fault information to identify the fault location  

As Figure 5.8 shows, this section proposes the procedure for processing the fault information to 

identify the fault location. Firstly, the system to be analyzed is inputted to the feature identification 

step. The symptom table will be obtained with regard to the system to be analyzed from the 

symptom knowledge, which consists of an amount of the symptom table for the entire system and 

different subsystems. Next, the symptom type will be recognized in the symptom table. The fault 

diagnosis of the fault message from the FDS is then analyzed. If the symptoms are already 

included in the fault message, the next step is to perform the fault diagnosis. Otherwise, fault 
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models and process models for all symptom types are generated. Here, the symptom types are the 

same as the feature types, which means abnormal behaviors in the industrial automation system. 

Then, the required data from the models will be extracted from the historical data in the next step.  

Subsequently, the extracted historic data can be processed via each fault model and each process 

model. Then symptoms for all the required symptom types are generated. For example, if the error 

of the temperature is 5°C, two symptoms can be generated: the abnormal parameter is temperature, 

and the error is 5°C. The generated symptoms are then matched to the symptoms in the symptom 

table to determine which symptoms are fulfilled. Subsequently, the fault location is fixed in the 

symptom table. However, one symptom can be the result of more than two different locations. 

For example, if the temperature is abnormal, the reason for this symptom can be a broken 

temperature sensor or a broken heater. In such cases, all possible locations are considered as the 

fault location. As in the above example, if there are no further exact symptoms, the temperature 

sensor and the heater are denoted as the fault location. If all subsystems or components of the 

system to be analyzed are the possible fault location, then the system to be analyzed as the fault 

location is denoted. Finally, the identified subsystems or components are outputted as the fault 

location. 

5.5.3 Example of the Fault Localization 

This section provides an example of fault localization. Here, it is assumed that a two-tank system 

has three levels in the component model: the entire system, subsystems, and components. It 

consists of four subsystems: an injecting water system, a heating water system, an inflating gas 

system, and a drawing water system. There are four different typical parameters for these four 

subsystems respectively: the liquid level, the temperature, the pressure and the flow rate. The 

heating water system consists of a temperature sensor, a microcontroller, and a heater. As 

introduced in the section where the procedure of the fault localization is described, when a new 

fault of the heater in the heating water system occurs, the dynamic fault handling and 

reconfiguration system proposes two major steps to determine the exact fault location: identifying 

the defective subsystems, and then identifying the defective components. These two steps will be 

presented in the next two sections. 

5.5.3.1 Identification of the Defective Subsystem 

This section gives the example of identifying the defective subsystem (see Figure 5.9). It assumes 

that the fault information is as follows: “0x0000; the temperature of water in the tank is too high; 

temperature 15, 20, 30…; liquid level, 1.0, 1.2, 1.4… ”. As Figure 5.9 shows, the symptom 

knowledge regarding the entire system is indicated in the table. There are four symptoms: Firstly, 

symptom1 consists of the abnormal temperature and the fault location of the heating water system. 

Symptom2 possesses the abnormal liquid level and the fault location of the injecting water system. 

For symptom3, the abnormal parameter is the pressure and the fault location is the inflating gas 
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system. In symptom4, the abnormal parameter is the flow rate and the fault location is the drawing 

water system. 

 

Figure 5.9: Procedure of identifying the defective subsystem of a two-tank system 

Firstly, the dynamic fault handling and reconfiguration system assures that the entire system is to 

be analyzed. In step1 of feature identification, the fault ID is extracted from the fault information, 

i.e. 0x0000. It determines that this is a new fault. Then it accesses the symptom knowledge 

regarding the entire system and fetches the symptom types, including the state of the four 

parameters, i.e. the temperature, the liquid level, the pressure, and the flow rate. Afterwards, it 

checks the fault information to ascertain whether the previous fault diagnosis results includes the 

corresponding symptoms. Here the fault message shows “Water temperature in the tank is too 

high”. So the required symptom type already exists in the fault message. Hence, the steps of 

feature extraction and fault detection can be skipped. It can be confirmed that the abnormal 

parameter is the temperature. Then it turns to the fault diagnosis step. In this step, it compares the 

abnormal parameter – the temperature – with the symptom knowledge concerning the entire 

system. Obviously, only symptom1 in the symptom table can be fulfilled with the abnormal 

temperature. Finally, it is able to figure out that the fault location is the heating water system. In 

the component model, the heating water system consists of a heater and a temperature sensor that 

are supposed to be checked in the next step.  
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5.5.3.2 Identification of Defective Components  

The four steps of processing fault information will be repeated again, but with various data and 

symptom knowledge concerning the heating water system to identify the defective component in 

the heating water system. It can be certain that the abnormal parameter is the temperature. Hence, 

the data of the temperature should be further derived and processed. In addition, to simplify the 

complexity, it is assumed that there are two known symptoms in the symptom table. Symptom1 

has the following attributes: the working process is the heating process, the value of the 

temperature smaller than 25°C, the error between the setup value and the real value is smaller than 

15°C, the change tendency rate is 0 and the fault location is the heater. Symptom2 has the 

following attributes: the heating process, the value of the temperature is 0, the error is more than 

21°C, the change tendency rate is 0, and the fault location is the temperature.  

 

Figure 5.10: Procedure of identifying the defective components of a two-tank system 

Figure 5.10 indicates the procedure of identifying the defective components. Firstly, in the feature 

identification step, the symptom knowledge regarding the heating water system is derived from 

the knowledge base. And the required feature types, that is, symptom types, are identified as the 

process, the value of the temperature, the error of the temperature, and the change tendency rate. 

However, in the existing fault message, only the previous fault diagnosis result that the 

temperature is abnormal is presented. It is visibly certain that this symptom cannot handle the 

demands for analyzing the fault location any more. Hence, the system turns to the step of the 
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feature extraction. In this step, the necessary fault models and process models regarding the 

heating water system ought to be extracted from the system model: the value of the temperature 

with f(x), the error between the setup temperature and the real temperature with g(x), and the 

change tendency rate with z(x). In addition, the required data regarding the temperature will be 

filtered and extracted from the historical data. In Figure 5.10, the original historical data consists 

of the temperature data, the liquid level data, and so on. After this step, the data on the temperature 

is extracted as the input for the next step of the fault detection. The extracted temperature data is: 

Setup value at 17:15: 35°C, actual value at 17:15: 21°C, setup value at 17:16: 35°C, actual value 

at 17:16: 21°C, etc. Subsequently, in the fault detection step, this data is determined in the process 

of the heating water process. Then, the value of the temperature is 21°C with the help of the 

mathematical function f(x). The error between the setup value and the actual value is 11°C by 

means of the mathematic function g(x), e.g. 

g(x) =  ∑
𝑆𝑒𝑡𝑢𝑝𝑉𝑎𝑙𝑢𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒

𝑁

𝑁

1

. 

On the basis of the mathematic function z(x), the change tendency rate of the temperature can be 

obtained with 0. Ultimately, based on the determined symptoms and the symptom table for the 

heating water system, it is simple to figure out that symptom1 can conform to the analyzed results 

from fault detection step: the working process with the heating process, the value of the 

temperature with 21°C, the error of the temperature with 11°C, and the change tendency rate with 

0. Hence, the heater is identified as the fault location for the current fault. And this result will be 

the output for the next step to identify available functions. 

5.6 Identification of Available Functions 

Following the identified fault location, this section proposes to analyze the fault impact in the 

logical scope of the overall industrial automation system, namely, the identification of available 

functions. As the requirement supposed, an automatic analysis is required for solving the problem 

of identifying the available functions. This thesis proposes a knowledge-based approach in order 

to realize an automatic reasoning for this objective, but without intervention in the reasoning 

process; in other words, in order to identify the available function, the dynamic fault handling and 

reconfiguration system is able to be trigged by a specific input, own the knowledge in a formal 

format, utilize automated algorithmic calculation with the help of that knowledge, and follow the 

instruction of a specific logic. 
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Figure 5.11: General approach of reasoning with knowledge 

Figure 5.11 indicates the general approach of reasoning with knowledge. The input is the 

information which can trigger the reasoning process; in this research, the trigger is the fault 

location. The reasoning result is the output of the reasoning process; in this research, the output is 

the available functions. The system knowledge is the knowledge in the knowledge base; in this 

research, it is the formalized system model; in other words, the various matrices and rules 

mentioned in Chapter 4. The working memory stores the intermediate results of the reasoning: the 

states of functions and requirements, the availability of functions and requirements, functions to 

check, etc. The agenda provides the performing instructions for the reasoning. The calculation 

center executes the central reasoning functionality: triggering the reasoning process, accessing the 

system knowledge, reading and storing the intermediate results in the working memory, following 

the instruction from the agenda, and outputting the reasoning result.  

In addition, in order to achieve the calculation of the reasoning, the availability of functions and 

requirements are denoted into TRUE and FALSE, 1 and 0, respectively. The value “TRUE” means 

that the function to be analyzed is available. Conversely, the function to be analyzed is not 

available.  

5.6.1 Overview of Identification of Available Functions based on the 

Fault Location 

Figure 5.12 outlines the overview of the identification of available functions based on the fault 

location and the system model. It performs the two steps of the identification of not-affected 

functions and the evaluation of not-affected functions: verification and validation.  



 

 

90 

 

Figure 5.12: Overview of identification of available functions based on the fault location 

On the one hand, the former receives the fault location, e.g. the defective basic component, 

reasoning with the component model and function model, and outputting the not-affected 

functions. The former is supposed to check if the system to be analyzed can meet all functional 

demands, and identifies the functions which cannot be achieved any more, in order to verify if the 

functions of the system to be analyzed can still work correctly internally. On the other hand, based 

on the requirement model, the latter attempts to inspect whether the system to be analyzed can 

meet all the specific requirements, e.g. safety, and identify the available functions from the not-

affected functions, to validate that the functions of the system to be analyzed are still the correct 

functions which are needed by the customer. Moreover, if some new affected functions are found 

in the evaluation step of the non-affected functions, those newly found affected functions are 

transferred into the former step to identify whether some functions can be affected by those newly 

found affected functions. 

Finally, if no newly affected functions are found in the evaluation step of unaffected functions, all 

unaffected functions are denoted as available functions. Subsequently, the available functions are 

transferred to the next step of the reconfiguration. The available functions will also be stored in 

the fault knowledge as one attribute of a new fault. 

Before introducing the two steps in detail, it is necessary to give an overview of the reasoning 

methodology. There are a total of seven matrices in the system model which can be grouped in 

three types. They are in charge of two abilities: addressing, i.e. finding the individuals that need 

to be analyzed and mapping, and finding individuals in different models corresponding to the 

individual. The three types are the mapping matrices which can realize the decision conversion 

across different models through each matrix, addressing matrices which can indicate the 

relationship between items in each model, and a redundant matrix which can outline redundant 

relationships. System knowledge also includes plenty of rules, and consists of two parts: the 

conditional part, the quantitative analysis of the effectiveness of the individual, and the operational 
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part, the consequences of the conditional part. Functions own only the computational part. But 

requirements possess these two introduced parts.  

With the help of the system knowledge, this thesis proposes the following methodology for 

identification and evaluation. Firstly, it maps the defective component to the function model via 

the matrix between components and functions. Then, it identifies the functions to be analyzed and 

values the basic functions with 0. Subsequently, by means of the rule of each function, it calculates 

the value of each function. Then it transfers the value of the functions to the requirement model. 

Finally, it evaluates each requirement and outputs the available functions.  

5.6.2 Identification of not-affected Functions via Function Model 

This section introduces the approach for identifying not-affected functions with the help of the 

function model. It consists of four main steps (see Figure 5.13): step 1, mapping defective 

components to functions; step 2, valuation of basic functions; step 3, identification of related 

functions of the malfunction; and step 4, estimation of related functions.  

For step 1, the dynamic fault handling and reconfiguration system utilizes the matrix between the 

components and functions, the relationship between the component model and the function model, 

and determines the malfunction which can be mapped from the defective component. For instance, 

the malfunction is the basic function of “measuring the temperature”, when the defective 

component is the temperature sensor.  

In step 2, to prepare for the further automatic reasoning, the dynamic fault handling and 

reconfiguration system values basic functions on the basis of the malfunction. If the malfunction 

is a basic function, then the basic function will be valued as 0, and the other basic functions are 

valued as one. If the malfunction is a sub function, then the sub function will be valued as 0 and 

all its basic functions will be valued as 0, too. Here, 0 means unavailable, and one means available. 

Continuing with the example in the previous paragraph, the basic function of “measuring the 

temperature” is valued as 0. 

In step 3, the related functions in the function tree are recognized via the matrix between functions. 

The dynamic fault handling and reconfiguration system identifies the related functions as directly 

related to the malfunction, at first. Reflected in the function tree, these related functions have the 

direct upper and lower relationship with the malfunction. Then, based on the newly recognized 

functions, it continues to search in the functional matrix to find their related functions until there 

are no longer any relevant functions. For instance, the malfunction “measuring the temperature” 

has the relationship with the sub function “heating water to X°C” and the basic function “heating”. 
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Figure 5.13: General procedure of identification of not-affected functions 

Step 4 evaluates the availability of the recognized related functions by means of the rules for each 

function. In accordance with the hierarchical structure of the function tree, each function has its 

own level. The reasoning logic is, according to the number of levels in the function tree, from the 

largest number, namely the highest level; each function is evaluated in line with its rule equation 

following the principle from top to bottom until all related functions are analyzed. Subsequently, 

because the unrelated functions are unaffected by the malfunction, they will still be available and 

set to one. For instance, for the malfunction BF1 “measuring the temperature” with the value of 

0, the related sub function SF1 “heating water” needs this function BF1. If the rule for this sub 

function is 𝑆𝐹1 = 𝐵𝐹1 𝑨𝑵𝑫 𝐵𝐹2, it assumes that the BF2 “heating” is available with the value 

of one. Then, after the calculation, the value of the sub function is 0. Hence, the sub function 

“heating water to X°C” is affected.  

5.6.2.1 A Single Basic Component Fault 

This section introduces an example of identification of not-affected functions with a single basic 

component fault, i.e. a defective temperature sensor in a two-tank system. After the fault 

localization, the fault location is determined with the temperature sensor following the procedure 

for the identification of available functions.  

Firstly, it maps the fault location of the temperature sensor with the help of the matrix between 

the components and functions, (see Figure 5.14). In the matrix, the connected function BF1 

“measuring the temperature” is indicated.  
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Figure 5.14: Mapping the defective component to the function model 

Secondly, it attempts to give a value to each basic function. In this example, there are three 

functions, a sub function “heating water to X°C” with the abbreviation SF1, a basic function 

“measuring the temperature” with the abbreviation BF1, and a basic function “heating” with the 

abbreviation BF2. The BF1 is then set to 0 and the BF2 is set to 1. These results are transferred to 

the intermediate function matrix, (see Table 5.1).  

 

Figure 5.15: Matrix between functions in the two-tank system and the function tree 

Thirdly, with the help of the one-way matrix between functions as shown in Figure 5.15, the 

related functions are identified in the matrix. SF1 needs these two basic functions to attain the 

heating water functionality. BF2 has the relationship due to the information flow, i.e. heating 

provides the objective of monitoring the temperature. Similarly, heating is based on the ability to 

measure the temperature as a prerequisite. Hence, in line with the malfunction BF1, it is simple 

to recognize that SF1 and BF2 are related. SF1 is located in the high level with level 2, and BF1 

is located in the low level with level 1. These two functions will be transferred to the matrix to 

store the intermediate results of the functions in the reasoning process as an analytical function 

buffer, e.g. Functions_to_analyze = (SF2, BF1). 

Table 5.1: Matrix to store the intermediate results of the functions in the reasoning process 

ID Availability State 

BF1 True Checked 

BF2 True To check 

SF1 Null To check 

Finally, it evaluates the availability of the function SF1 and BF2. Following the principle from 

top to bottom, it searches for the analytical route in the function tree.  

To perform the search, this thesis proposes the depth-first-search (DFS) approach, which is a 

recursive algorithm for searching a tree structure [WXH+10]. It starts searching from the high 

level to low level and moves forward as far as possible. In this process, if there are two possible 

<<Temperature sensor>>

Abbreviation: C1

Connected Function: BF1

<<BF1>>

Rule: -

Connected Comp: C1

Value:

SF1

BF1 BF2

Level 2

Level 1
One-way matrix
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traversing nodes, one node is suspended, and it continues the search with another node. When 

there are no more nodes in the current path, it moves backwards, until it meets a node which has 

two possible traversing node. Then the search will be continued along with the suspended node. 

And it repeats this process until all nodes of the tree to be analyzed are covered. This method is 

usually used in the navigation system to help the driver to find a new route. 

In this thesis, the DFS approach is supposed to be used in the process of evaluating the availability 

of functions. In the function tree, all basic functions are assumed with values in step 2. To assess 

the functions of the upper layer, the DFS approach selects a function to analyze in the highest 

level, e.g. SF1. In line with its rule equation, such as SF1=BF1*BF2, the required functions will 

be identified. In the function tree, it moves forward until it meets the basic functions. After the 

recalculation of basic functions, the value of basic functions is reset. Then it moves backwards 

with the value of basic functions until all required functions have been verified with its rules, 

which is presented in the right of the rule equation. 

 

Figure 5.16: Evaluation of functions with the help of the DFS approach 

For the example of the two-tank system, Figure 5.16 shows the procedure for evaluating functions 

with the help of the DFS approach. Subfigure a shows the original function tree with three 

functions: SF1 with its rule equation, BF1 with the value 0, and BF2 with the value 1. Subfigure 

b outlines the application of the DFS to calculate the SF1. The function tree will be transferred 

with direction, from top to bottom. As a previous search result, BF1 and BF2 are required for the 

further calculation. Subfigure c shows that BF2 will be sought further due to it rule equation which 

has the connection with the function BF1. Because the function BF1 is 0, there is no need to search 
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further. The deep search process is finished for now. Then backtracking ought to be started. As 

subfigure d shows, the first backward step is from BF1 to BF2. Then, based on the rule equation 

of BF2 = BF1, the value of BF2 is reset to 0. Subfigure e indicates the second backtracking, from 

BF1 to SF1 and from BF2 to SF2. The values of the functions BF1 and BF2 are transferred to the 

function SF1. Finally, with the help of the determined BF1 and BF2, the function SF1 is evaluated 

with equation SF1 = BF1 * BF2 = 0 (see subfigure f). As a result, the functions to be analyzed, 

i.e. SF1 and BF1, are evaluated in terms of the DFS approach. Due to the negative value, both 

functions, i.e. SF1 and BF1, are identified as affected functions. 

It is worth noting that the remaining functions which are not covered by the related functions and 

the malfunction ought to be marked as unaffected; in principle, these functions are functionally 

available. In another words, the states of those functions not covered are set to 1. 

5.6.2.2 Multiple Basic Components Fault  

The previous section introduced an example with a single basic component fault. However, in a 

complex industrial automation system, the fault diagnosis result usually not only provides a single 

basic component fault, but multiple fault locations. There are many reasons for such results. For 

instance, it may be a fact that a number of basic components are out of order. It is also possible 

that one basic component is out of order due to the second damage of the defective component, 

such as a defective heater burning out the temperature sensor because of the too high temperature 

of the liquid. In most instances, the fault diagnosis result is subject to the ability of the fault 

diagnosis system. It cannot be completely accurate in terms of a specific point of the fault, but can 

only provide a scope of the fault location or parts of all components as the fault location. Hence, 

as mentioned in Section 5.5, there are still another two possibilities for the fault location: the 

multiple basic components fault, and a subsystem fault. 

When it is a multiple basic component fault, the steps of identifying not-affected functions are the 

same as for a single component fault. There are two possibilities to attain the objective of the 

identification of not-affected functions: processing one by one, and processing them at the same 

time. The drawback of the first possibility is that the same basic component fault will be assigned 

twice so, while increasing the amount of repeated calculations, the same function to be analyzed 

may be set as different results. Hence, this thesis proposes dealing with multiple basic component 

faults in the meantime. That is to say, in the first step of identification of not-affected functions, 

all defective basic components will be mapped to the function model. And the value of these basic 

functions will be set to 0. The remaining reasoning process is the same as the process of dealing 

with a single basic component fault.  
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Figure 5.17: Evaluation of related functions for a subsystem fault 

But if it is a subsystem fault, there are some differences when comparing it with the basic 

component fault. Firstly, it maps the subsystem to the function model. Then the related sub 

functions are denoted as defective, and are set to 0. Subsequently, based on the relationship matrix 

between functions, the related functions are determined. Due to the lack of clarity of the fault 

location, in step 4, before evaluating from the highest level, the functions which are included by 

the defective sub functions are identified and set to 0. For example, as Figure 5.17 a shows, the 

function SF1 is defective and has two basic functions, BF1 and BF2. Figure 5.17 b indicates that 

there are only two basic functions that can affect the state of the sub function SF1. Then these two 

basic functions will be set to 0 (see Figure 5.17 c). The evaluation process later is the same as 

dealing with a single component fault.  

5.6.3 Identification of Available Functions via Requirement Model 

In the previous section, the identification of not-affected functions has been introduced, namely, 

that the system has been correctly verified in case of a fault. However, not-affected functions 

cannot be assured of still fulfilling every reasonable requirement. By evaluating a requirement, it 

denotes not only the states of the requirement itself, but also the state of the corresponding 

functions. It might be that a safety function is affected by the malfunction. In this case, the function 

restricted by this safety function cannot be activated. For instance, the safety requirement requires 

the highest temperature under a safe value. Otherwise, there is the danger of an explosion. 
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Figure 5.18: Procedure of the identification of available functions via requirements 

The procedure of identification of available functions via requirements, specifically the evaluation 

of not-affected functions, is presented in Figure 5.18. It is made up of three main steps: mapping 

the function states to corresponding requirements, validation of each requirement, and outputting 

the available functions. 

In the last step, the affected functions and not-affected functions are identified and also marked 

with the values 0 and 1, respectively. Generally, these states are stored in the intermediate function 

matrix. Firstly, the states of all functions ought to be transferred to the corresponding 

requirements. These function states enable the evaluation of the availability of specific 

requirements. It must also be highlighted that the requirement has a relationship with functions. 

In this thesis, the requirement itself is not considered, but rather the relation to its necessary 

functions, so if the necessary functions exist and are not-affected by the malfunction, then the 

requirement can be assured and performed.  

Secondly, to assure the completeness of the requirements, it is necessary to check the availability 

of all of them. The DFS approach starts from the top system requirement in the requirement tree. 

Then it identifies all needed requirements in its rule. To search further, specific requirements, 

which make up the system requirements, ought to be checked, e.g. safety, security, etc. In 

choosing one specific requirement, this search process continues until the lowest level of 

requirements. Then these requirements are evaluated with the help of the states of their required 

functions. Subsequently, it begins the process of the backtracking, transferring its value to the 

upper level. However, in contrast to the backtracking process of functions, the consequence of the 
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requirement ought to be performed before transferring the value to the upper level. The 

consequence of a requirement defines the change of some corresponding functions. In addition, 

the consequence of the requirement states of these newly found functions in the intermediate 

function matrix is set to 0 until all specific requirements and the system requirement are inspected. 

If there are no newly found functions, i.e. the states of functions are not changed, then all not-

affected functions are denoted as available functions. Otherwise, if there are some newly found 

functions, then these newly found functions ought to be transferred to the last step, to identify 

whether these newly found functions can affect the other functions. Finally, these available 

functions are outputted to the next step to generate suitable reconfiguration commands. 

5.6.3.1 An example of the evaluation of not-affected functions  

To begin with, there are five requirements in the example: system requirement (SR), safety 

requirement (SaR), security requirement (SeR), Safety requirement considering the temperature 

(SaR1), and Safety requirement considering the pressure (SaR2). This example considers only 

two functions: sub function “heating water to X°C” (SF1) and sub function “monitoring the 

temperature” (SF2). One matrix of intermediate states of functions records the function states after 

the identification of not-affected functions. The relationship matrix between functions and 

requirements shows the relationship between two sub functions and two safety requirement. One 

requirement tree depicts the hierarchical structure of the five mentioned requirements. To simplify 

the complexity of the calculation, there are two assumptions concerning states of functions and 

requirements: SF1 = 0, SF2 = 1, SaR2 = 1 and SeR = 1.  

The analysis procedure of identifying an available function via the requirement model is 

simplified in Figure 5.19.  
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Figure 5.19: Identification of available function via the requirement model 

As Figure 5.19 a shows, stats of functions are mapped to the requirement model. It shows that the 

requirement SaR1 has a relationship with two functions, SF1 and SF2. In this example, the process 

of searching in the tree begins from the specific safety requirement SaR, which has the rule 

equation SaR = SaR1 | SaR2. The symbol “|” stands for the relationship OR. In accordance with 

the DFS approach in Figure 5.19 b, it recognizes that two safety requirements, SaR1 and SaR2, 

are needed to evaluate the availability of the requirement SaR. To evaluate the availability of the 

requirement SaR1, the figure depicts the state of SaR1 to be equal to the state of the function SF2. 

And because the state of the functions SF1 is positive, the state of the requirement SaR1 is 1, 

meaning this requirement is available. Before further searching or backtracking, the consequence 

of this requirement ought to be evaluated (see Figure 5.19 c). The consequence provides that If 

SaR = False, then SF1 = False. Due to the positive state of the requirement SaR, it performs no 

change of the state of functions. Figure 5.19 d outlines the backtracking in the branch of the 

specific safety requirement SaR. With the help of the rule equation, i.e. SaR = SaR1 | SaR2 = 1 | 

1 = 1, the state of SaR is set to 1, meaning this requirement is also available. Figure 5.19 e 

highlights the backtracking until the top of the requirement tree. The state of the system 

requirement SR1 is later evaluated with the rule equation, i.e. SR1 = SaR * SeR = 1 * 1 = 1. Hence, 

the requirement SaR is confirmed as an available requirement. Finally, states of functions and 

requirements are showed in Figure 5.19 f. All requirements are available and there are no function 

that have changed their states in the analysis process. Therefore, there is no need to analyze the 

availability of functions again. The function SF1 is then determined as an unavailable function, 

and the function SF2 is confirmed as an available function.  

In addition, it is worth noting that this analysis process can be stopped at any step, when a rule of 

a requirement is fulfilled, and the consequence of the requirement indicates that the industrial 
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automation system ought to be shut down, i.e. all functions should be deactivated. For example, 

the loss of a safety requirement can result in an explosion. Going back to Figure 5.19 e, if the 

requirement SaR is unavailable, it provides that the system be shut down to avoid a potential 

injury to personnel. In this case, all functions will be directly set to negative, i.e. 0. The entire 

analysis process of handling a new fault will be stopped during this time, the next reconfiguration 

step is skipped.  

5.7 Reconfiguration based on the Available Functions 

In this section, the method of reconfiguration in terms of available functions is presented. In 

general, there are three reconfiguration possibilities. Hardware reconfiguration [ShJh02] changes 

the physical structure or physical connection among physical cell devices. Software 

reconfiguration changes the context of the logical structure, like as the parameter, the control 

algorithms, the logical structure among applications, etc. [SZW17]. The third possibility is the 

combination of hardware and software reconfiguration. However, it is hard to reconfigure the 

physical structure of an industrial automation system in practice without the help of experts 

because the change of a developed industrial automation system requires detailed knowledge 

about the system, and very professional skills. In addition, another limitation of hardware 

reconfiguration is that a physical reconfiguration usually relies on a specific hardware type, e.g. 

FPGA.  

The objective of the reconfiguration is to lead the defective industrial automation system into a 

new working or partially working mode, so the fault effect will be isolated. This thesis proposes 

a reconfiguration approach to change the logical structure of an industrial automation system, i.e. 

changing function states in the industrial automation system by activating available functions and 

isolating unavailable functions. Needless to say, an industrial automation system, especially in the 

field of industry, has more than one task, each of which is arranged in advance. Hence, the ongoing 

tasks in the system ought to both be reevaluated and rearranged.  

To attain a reasonable and successful reconfiguration, this thesis proposes two steps: 

1. Consideration of the availability of ongoing tasks: Based on the available functions and 

necessary aspects, the availability of ongoing tasks will be considered.  

2. Generation of reconfiguration commands for functions and tasks: This requires the dynamic 

fault handling and reconfiguration system to generate reconfiguration commands, which 

includes not only the commands for functions and tasks, but also the possible corresponding 

measures, such as activating specific codes for a redundancy. On the basis of step 1, necessary 

commands are created for a defective industrial automation system.  
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5.7.1 Estimation of the Reconfiguration Types and Verification of 

Current Tasks 

Based on the available functions, this thesis suggests four reconfiguration possibilities in the scope 

of the logical structure (see Figure 5.20), i.e. functions and ongoing tasks: 

 

Figure 5.20: Four reconfiguration types for the industrial automation system 

1. Reconfiguration in terms of available functions: All affected functions are disabled, which 

are marked as ‘FALSE’ in the reconfiguration commands, and available functions are enabled 

again, which are marked as ‘TRUE’ in the reconfiguration commands, like “Function:0x010010”. 

2. Reconfiguration in terms of redundant functions: This changes the geometry between 

functions, as well as in the logical view, i.e. using one function to replace another function. For 

example, there are two liquid level sensors in the water tank: an ultrasonic sensor can measure the 

value of the water level, and a photoelectric switch can monitor a specific water level. When the 

latter fails, this function “monitor a specific water level” cannot be performed and its function can 

be replaced by the former function. Nevertheless, a specific command is also required, e.g. 

function.switch.level.high = (function.ultrasonic.level =3L). 
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3. Reconfiguration in terms of redundant components: This changes the geometry between 

components and functions, as well as from a physical view to a logical view [KeVo13]. For 

instance, there are two valves between two tanks, and one is the redundant valve for the other. In 

this situation, when the valve is out of order, then the redundant one can replace its work to 

transport the water. 

4. Reconfiguration of ongoing tasks: This attempts to verify the availability of all ongoing tasks 

and change the priorities of all tasks. To obtain this goal, three aspects must be considered: 

available functions, relationship between functions and tasks, and the states of all resources, such 

as the volume of water. After the evaluation of these conditions for every task, the available tasks 

will be chosen and enabled, so the industrial automation system can reconfigure its functional 

structure with available functions to complete the available tasks in a specific prioritized sequence. 

5.7.2 Procedure of the Reconfiguration based on Available Functions 

The reconfiguration procedure is proposed in this section, along with the four different 

reconfiguration types, where available functions are the key for reconfiguration. Figure 5.21 

indicates the main procedure of the reconfiguration with the available functions. Based on the 

result from the previous step, the available functions, as well as unavailable functions, are 

recognized. Here, six steps are required to complete the reconfiguration: 

 Identification of available functions: Concerning the result of identification of available 

functions, which are stored in the intermediate matrix of function states, these functions with 

their states will be divided into different groups in accordance with the function levels, such 

as basic functions, sub functions, main functions, redundancy, etc.  

 Identification of the redundancy: This attempts to identify the activated redundancy to identify 

corresponding measures, such as the state of restart, specific code, and assistant help by the 

user.  

 Verification of current tasks: This suggests an evaluation of the availability of the ongoing 

tasks from two aspects in this thesis respectively: the availability of required functions, and 

the availability of required resources.  

 Support service for the reconfiguration: This is supposed to confirm the necessary measures 

which need the help from the maintenance service or user, e.g. operation instruction, service 

contact information, etc.  
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Figure 5.21:  Overview of the reconfiguration based on available functions 

 Integration of reconfiguration commands: This generates the reconfiguration commands for 

functions, ongoing tasks, specific code, state of restart and support service in a specific format. 

In addition, if it is a new fault, the fault information with fault ID and symptoms will be also 

integrated together.  

 Performing the reconfiguration: This undertakes the reconfiguration in the industrial 

automation system in practice. The corresponding fault information will later be stored in the 

database with a new fault ID, symptoms, available functions and reconfiguration commands 

for functions. The fault name and fault description can be manually replenished by the experts. 

With the help of integrated reconfiguration commands, the industrial automation system 

interprets the reconfiguration commands locally and performs the reconfiguration to transfer 

the system from a shutdown mode to a working mode again. The existing fault diagnosis 

identifies the fault information during this time and stores this fault information in its local 

fault database as a known fault. 

5.7.3 An Example for the Reconfiguration 

In order to interpret the concept of the reconfiguration, an example for the two-tank system will 

be presented in this section. Figure 5.22 shows that there are three functions, i.e. injecting X liter 

water from tank1 to tank2, heating water in tank2 at Y°C and drawing Z liter water from tank2 to 

tank1. The original water resource in tank1 is 10 liters. Due to a detective heater, the function 

“heating water” can no longer be performed, but the other two functions are still available. There 

are still three ongoing tasks respectively: task1 “heating 3L water to 45°C”, task2 “cleaning”, and 

task3 “Injecting 4L water”. 
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Firstly, with the state of functions from the previous step, the availability of the functions is 

identified. Here in the example, only the main functions are depicted. Then, the activation of 

redundancies ought to be recognized because there is neither redundancy for the heater nor for the 

function “heating”. No redundancy is thus activated in this case. The availability of ongoing tasks 

will be concurrently reevaluated. For one thing, from the perspective of the availability of 

functions, on the basis of the relationship between tasks and functions (see Figure 5.20), namely 

that task1 demands all three functions, the task2 requires functions “water injection” and “drawing 

water”, and task3 requires the function “water injection”, task1 cannot be performed, and the other 

two tasks can be adopted in practice. Furthermore, from the perspective of the availability of 

resources, task1 and task2 will be further reevaluated. Task2 “cleaning” needs 5L water to 

complete the cleaning of the water pipes and the tank2. Task3, “injecting 4L water in tank2”, 

requires 4 liters of water as the resource. So 10 liters of water is enough for both task2 and task3. 

 

Figure 5.22: An example of the reconfiguration 

Finally, the reconfiguration commands are integrated for functions with 0x011 and tasks with 

0x011. The code 0x011 is hexadecimal for 0000 0001 0001 and means that the functions F1 “water 

injection”, and function F5 “drawing water”, can be executed. To calibrate the initial state of the 

water level in the two tanks, the system is in need of a restart, i.e. system_restart: true. Due to the 

non-activation of redundancies, specific codes are not demanded for the reconfiguration. As 

additional information for the local user, the normal service information will be also integrated, 

e.g. Wang, 67296. Subsequently, this information will be sent to the industrial automation system 

with the intention of performing the reconfiguration. 

5.8 System Recovery after the Reparation 

System recovery is concerned with applying reasonable repairs to eliminate the fault source and 

bring the industrial automation system back to normal operation. Due to the reconfiguration of 

the logical structure in the industrial automation system, namely the change in the software, 
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although the hardware component has been replaced, its corresponding software is also in need 

of new update.  

A unified recovery command ought to be created. Firstly, all functions can be activated, and 

redundant functions brought back to the standby state, e.g. 0x111, which makes it unnecessary to 

analyze the availability of ongoing tasks. It can integrate a simple command to activate all tasks 

in the industrial automation system, e.g. “@task:AllTrue”. To avoid potential recovery faults, this 

thesis suggests that a restart is always required after the system recovery. The specific code for 

some specific functions will have been deactivated and the assistant instruction eliminated. 

Actions for the reconfiguration that have been manually performed by the user, such as reopening 

the closed valve in the water pipe, will, on the other hand, also be performed. 

 

In order to summarize the entire conception of this chapter, Figure 5.23 outlines the working 

sequence of dealing with faults. When a fault in the industrial automation system occurs, the 

existing fault diagnosis system detects the fault, stops the industrial automation system, and 

performs the previous fault diagnosis. Then it connects with the dynamic fault handling and 

reconfiguration system and sends the fault information to it. The EFDS shows the user the 

occurrence of a fault at the same time. The user can contact maintenance service to repair the 

system. 

 

Figure 5.23: Sequence Diagram for handling faults via the dynamic fault handling and 

reconfiguration system 

With regard to the fault type, i.e. known fault or new fault, different analytic processes will be 

performed to identify available functions. If it is a known fault, it accesses the fault knowledge 

directly and generates the reconfiguration commands. If it is a new fault, two main steps have to 



 

 

106 

be taken: identification of fault location with the help of symptom knowledge and fault 

information including previous fault diagnosis results and historical data, and identification of 

available functions by means of the system knowledge including component model, function 

model, and requirement model. Then the reconfiguration commands will be generated for 

functions, ongoing tasks and other necessary information after the appraisal of the availability of 

ongoing tasks and the necessity of the redundancy and service information. Afterwards, the new 

fault information will be stored in the fault knowledge database. In the meantime, the 

reconfiguration commands and the new fault information will be sent to the local. With help of 

the interpretation of the reconfiguration commands, the industrial automation system can perform 

the reconfiguration with still available functions and provide further services for the user. In 

addition, some reconfiguration requires the help of the user who can follow the provided 

instruction to do certain specific actions. After the repair by the maintenance service, the industrial 

automation system extracts the recovery commands, which includes resetting functions, resetting 

tasks, restarting, deactivating specific code and eliminating the instructions, and performing the 

recovery of the logical structure to bring the industrial automation system back to normal 

operation mode. 
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6 Realization and Evaluation of the Conception 

The aim of this chapter is to describe the technical realization of the conception of the dynamic 

fault handling and reconfiguration system, to evaluate the conception with the help of three 

demonstrators, and to assess the conception on the basis of the requirements. To describe the 

realization of the conception, the next section will explore this topic from the following 

perspectives: system architecture, software architecture, and realization of the fault handling 

knowledge in a database. The conception will be evaluated by qualitative aspects with regard to 

the correctness of required functionalities as well as quantitative aspects concerning the increasing 

availability of industrial automation systems. Afterwards, the three demonstrators will be 

presented with reference to the simulators, the combination and evaluation. Finally, the 

conception of dynamic fault handling and reconfiguration will be qualitatively evaluated 

concerning the predefined requirements. 

6.1 Realization of the Conception 

Referring to the realization of the conception, this section attempts to present it from the following 

aspects: system architecture, data type, and realization of the knowledge including the local fault 

knowledge as well as the knowledge that is stored on a server. This contains symptom knowledge, 

fault knowledge and system knowledge. In the following section, the realization of various 

functionalities in the dynamic fault handling and reconfiguration system will be outlined with 

specific examples and figures. 

For the purpose of evaluating the proposed conception, three applications were developed. These 

were evaluated by empirical ascertained results, allowing the conception of the dynamic fault 

handling and reconfiguration system to be realized. The following student works in Appendix A 

have been performed during the research process. These works can be classified as investigation 

works, conception test works, system development works based on specific demonstrators, and 

further improvement and application works. 

6.1.1 Overview of the System Architecture 

Due to features like robustness, platform independence and security, the implementation of the 

conception of dynamic fault handling and reconfiguration was based on the programming 

language Java. As mentioned in Chapter 4, this thesis proposes a conception of handling faults 

automatically, making it possible to serve all distributed industrial automation systems of the same 

type worldwide. This thesis suggests a server as the platform for the implementation of the 

presented conception because a server can be installed at the location of the manufacturer to 

facilitate easy maintenance. With help of a server, a centralization of control can be attained.  
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The Apache Tomcat is an application server that provides Java Servlet, JavaServer Pages (JSP), 

the Java Expression Language, and Java WebSocket technologies. Due to the features of open 

source, it affords a pure Java HTTP webserver environment. The Tomcat server supports the 

HTTP protocol that allows information exchange through the Internet as well as a JSP engine 

(named Jasper) which can compile JSP files into Java code. Because of its web technologies, it 

provides plenty of possibilities of extension with the intention of the utilization of web access, e.g. 

for maintenance. To increase the security of the server, the Tomcat server provides an additional 

layer of security [McHa02]. Hence, this thesis uses the Tomcat server as the platform to run the 

Java applications.  

To store historical data, local fault knowledge, fault knowledge in server, symptom knowledge 

and system knowledge, this thesis utilizes a MySQL database. Due to its security and reliability, 

the MySQL database is very suitable for a server application. Additionally, the MySQL database 

is a relational database which is helpful in building the database for the system knowledge. 

 

Figure 6.1: System architecture of the deployment  

Figure 6.1 shows an overview of the system architecture of the dynamic fault handling and 

reconfiguration system. The system architecture of the deployment consists of the application of 

the dynamic fault handling and reconfiguration system, the application of an automation system, 

the application of existing fault diagnosis system (EFDS), the local knowledge, and the server 

knowledge. To deal with a fault, either known or new, the server part of the dynamic fault handling 

and reconfiguration system consists of six main modules, as well as an application programming 

interface (API) which is necessary for the communication with the local communication interface 

(CI) via the TCP/IP protocol. The EFDS application realizes the fault diagnosis functionalities of 
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detecting faults and creating the previous diagnosis results. The application of the automation 

system is able to simulate the behaviors of a real industrial automation system as well as to 

generate various faults. The communication between the EFDS and the automation system is 

based on an internal API.  

6.1.2 Software Architecture 

Figure 6.2 depicts the software architecture of the dynamic fault handling and reconfiguration 

system which contains the services of the server. The example regarding the software architecture 

of Figure 6.2 has already been simplified. To realize the software application, eight major classes 

are designed and developed. Four classes realize the functionalities of handling faults. The class 

“MainDFHRS” is the core processing junction for the different classes and is responsible for the 

previous handling of a fault, identifying the fault type (either known or new), communicating with 

different information sources to acquire different information, transferring information for 

different classes, and calling on the other three assistive classes to complete the reasoning work. 

For a known fault, the available functions will be directly acquired via the program function 

“JSONObject handleFault()”. For a new fault, the program function will access the class 

“FaultLocalization” and the class “FunctionAnalysis” with the intention of achieving the 

reasoning work. The required knowledge for reasoning is transferred by the class “MainDFHRS”. 

The class “ReconfCommandGenerator” takes charge of generating reconfiguration commands 

after confirming available functions and available tasks. 
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Figure 6.2: Software architecture of the realized dynamic fault handling and 

reconfiguration system 

The class “FRSGUIRouter” and the class “FDSSimulatorrouter” are APIs for transferring 

information. “FRSGUIRouter” transfers information for the class “MainDFHRS” and the class 

“GUI” which is not shown in the example. “FDSSimulatorrouter” is in charge of exchanging 

information with external systems including EFDS and industrial automation systems. The classes 

“SystemDatabaseHandle”, “SymptomDatabaseHandler” and “FaultDatabase Handler” attempt to 

access the database to acquire system knowledge, symptom knowledge and fault knowledge, as 

well as to update the fault knowledge in case of a new fault. Beside the class “GUI”, another 

useful class “Demonstration” is also included in the figure. These two classes depict the fault 

processing procedure and visualize the procedure in the form of animations. 

6.1.3 Realization of Fault Handling Knowledge 

As presented in Chapter 5, the fault handling knowledge includes three knowledge types (KType), 

i.e. system knowledge (SSK), symptom knowledge (SMK), and fault knowledge (FK). Appendix 

B lists the necessary tables of the fault handling database.  

In addition, it is worth mentioning that the number of symptom tables depends on both the 

hierarchy of the component model and the number of the subsystems. Appendix B denotes the 

symptom table regarding only three layers and several subsystems. 
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Figure 6.3: Implementation of the fault handling knowledge via MySQL 

Figure 6.3 shows the fault handling knowledge in form of database tables which are realized with 

the MySQL software. The attributes of each table are listed in the figure. This figure contains 15 

tables in total. However, due to an uncertain number of symptom tables, this number can be more 

than 15 tables in the realization. Additionally, the attribute “Parameter*” in the symptom table is 

a generic term for parameters. It denotes various parameters, such as temperature, liquid, pressure, 

etc. Furthermore, it denotes various features for one parameter, such as abnormal parameter, error, 

change tendency, change rate, etc. In a real application, the attribute “Parameter*” ought to 

multiply depending on the specific application.  
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6.1.4 Realization of Data Format and Communication Type 

As described above, the dynamic fault handling and reconfiguration system utilizes the Tomcat 

server as the application platform to handle service requests from multiple industrial automation 

systems. However, for handling faults, especially a new fault, a large amount of information is 

transferred in the process of the communication among EFDS, dynamic fault handling and 

reconfiguration system and industrial automation systems. For instance, this includes historical 

data which comprises a mass of sensor data in a specific time interval. In addition, due to distance 

between the server and local industrial automation systems, and in light of the wide popularization 

of the internet nowadays, the internet is a worthy choice as the communication media [Shyr12]. 

The realization of the information exchange, the data format and the communication type are 

discussed in this chapter.  

This thesis chooses JSON (JavaScript Object Notation) as the data format to represent the 

information and data of the dynamic fault handling and reconfiguration system. JSON is a 

lightweight data exchange format. On the basis of a subset of the ECMA Script, it utilizes a text 

format completely independent of the programming language to store and represent data. JSON 

is recognized as an ideal data exchange language for this purpose because of its simple and clear 

hierarchical structure. The data in the JSON format is extremely easy to comprehend and can be 

generated by either humans or machines. Due to its lightweight feature, the utilization of JSON 

can effectively improve network transmission efficiency [DuSi16]. Figure 6.4 shows two 

simplified examples of the application of JSON as a data format in the dynamic fault handling 

and reconfiguration system. The left figure depicts the reconfiguration commands, and the right 

shows the data of a temperature sensor at a specific time. 

  

Figure 6.4: Reconfiguration commands (left) and historical data (right) in the JSON 

format 

In order to realize the communication with the dynamic fault handling and reconfiguration system 

server via TCP (transmission control protocol), the following three possible communication types 

can be considered: 

 WebSocket: This is a full duplex communication protocol based on TCP connection. It can 

realize data exchange between clients and servers and allows the server to push data to clients 
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initiatively. To build the connection between one server and one client, it requires only a 

handshake with an acknowledgement (ACK), allowing the client and the server to directly 

establish a permanent connection to transfer data to each other until the connection is 

initiatively broken by one of them [BaMa14]. 

 HTTP: This is an application-layer protocol for distributed collaborative, hypermedia 

information system [BMR17]. HTTP is a request-and-response standard for clients and servers. 

Used in the context of the internet, a client pulls a request and builds the connection with a 

specific UDP port of the server. Once the server receives the request, the server responds with 

a status and the required information.  

 HTTPS: HTTPS is similar to the HTTP protocol. The superiority of HTTPS is the higher 

security which is guaranteed by a certification mechanism and a data encryption technology.  

WebSocket demands a permanent connection, which can result in other industrial automation 

systems being blocked. To assure a secure and unblocked communication, this thesis chooses 

HTTPS as the communication type. With the help of an HTTPS protocol, two request methods 

from eight specified by HTTP/1.0 [BFN45] and HTTP/1.1 [FiRe14] are chosen for the realization 

of the communication between the dynamic fault handling and reconfiguration system server and 

local EFDS, as well as the local industrial automation system. The chosen request methods are 

GET and POST. The former can be used for communication in which the request does not pack 

any resource data. The latter can be applied for communication when some data needs to be 

packed in the request, for instance, historical data by EFDS. The application format of the two 

methods are as follows: GET - Http://<IP_DFHRS>/FRS/status; POST - 

Http://<IP_DFHRS>/FRS/reportFault; <Request > JSON Data packet {fault_ID: 

“0X00000”}; <Response > JSON Data packet {Recon_Function: “0X10011111”}. 

6.1.5 Development of Interfaces between local Systems and a Server 

It is necessary to establish a generic interface within the local system to realize the communication. 

The communication interface (CI) consists of three modules: CI_EFDS to realize the 

communication with the EFDS, CI_CentralControl to realize the communication with the central 

control module of the industrial automation system and CI_DFHRS to achieve the data exchange 

with the dynamic fault handling and reconfiguration system. Subsequently, the CI is in charge of 

the data exchange between different systems. In consideration of different protocols, the CI is able 

to package data in a specific manner and interpret protocols [FA2722] such as JSON. 
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Figure 6.5: Establishing a communication interface (CI) [FA2722] 

To complete the data exchange, i.e. handling faults, the communication is divided into two major 

steps in this thesis. To establish the connection between CI and API via HTTPS, an initialization 

process is performed (see Figure 6.6). The local CI receives the connection request from the EFDS 

and sends a specific command, which utilizes the GET method, i.e. GET - 

Http://<IP_DFHRS>/FRS/status, to inquire about the status of the dynamic fault handling and 

reconfiguration system, if it is running and free at the moment. If the dynamic fault handling and 

reconfiguration system is running and free, then the dynamic fault handling and reconfiguration 

system gives a response to the local system with the following information, Response – JSON: 

{status: “running”}. Conversely, if the dynamic fault handling and reconfiguration system is busy, 

it sends a response to the local system with the following information, Response – JSON: {status: 

“busy”}. 

  

Figure 6.6: Initialization of the connection between CI and APT via HTTPS 

On the basis of a successful connection, the fault handling process will be carried out as follows 

(see Figure 6.7): Depending on the fault type, the exchange information is differentiated. In case 

of a known fault, the local EFDS posts the fault information with the fault ID to the dynamic fault 

handling and reconfiguration system. Subsequently, after analysis of the fault, the dynamic fault 

handling and reconfiguration system returns a response with reconfiguration commands, e.g. 

<Response > JSON Data packet {Recon_Function: “0X10011111”…}. In case of a new fault, 

the local EFDS sends the fault information with a specific fault ID and the previous fault diagnosis 

result, such as “fault ID = 0x00000”. Because of a new fault, the dynamic fault handling and 

reconfiguration system responds with status information “success” to the EFDS and waits for the 

historical data from the EFDS. Having received the response, the EFDS packages the historical 

data and reports it to the dynamic fault handling and reconfiguration system. With the historical 
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data and fault information, the fault handling process can be carried out. In the response package, 

there are two parts: the fault information with the new fault ID, and the reconfiguration commands. 

With the help of the former information, the local fault knowledge base will be updated. The latter 

is helpful for guiding the reconfiguration of the industrial automation system. 

  

Figure 6.7: Communication via CI and API for handling a fault 

Additionally, it is worth noting that the initialization of the connection does not mean that a long 

term connection is built up. Actually, the connection is closed after the response. The advantage 

of such a connection is that it can avoid an overlong occupation of the communication channel by 

one industrial automation system. Thus, it can avoid some potential faults, such as long time 

suspension of the system, and improve the work efficiency of the dynamic fault handling and 

reconfiguration system. 

6.1.6 Prototype of the Conception 

To realize a user-friendly interaction with the system, a flexible interface is needed. Thus, this 

section outlines the realization of various user interfaces of the dynamic fault handling and 

reconfiguration system and explains the realization of the corresponding functionalities.  
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Figure 6.8: User interface of the dynamic fault handling and reconfiguration system 

[MA2800] [MA2913] 

Figure 6.8 depicts the user interface of the dynamic fault handling and reconfiguration system. 

This prototype is based on the fault handling for the two-tank system. The flexible design of the 

UI allows experts to check the status of the dynamic fault handling and reconfiguration system, 

such as the procedure of the fault localization or the procedure of the identification of available 

functions.  

 

Figure 6.9: Adding faults into the industrial automation system 
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Simulating a fault requires the tester to add the simulated fault into the industrial automation 

system, such as the two-tank system simulator. As Figure 6.9 illustrates, the interface provides a 

choice panel for every component in the two-tank system. After choosing a component, the tester 

is able to specify the characteristics of the fault by using different attributes, making it possible to 

realize, for instance, a change rate fault for the temperature in case of the fault of a temperature 

sensor.  

  

Figure 6.10: Primary fault diagnosis results of the EFDS 

The local existing fault diagnosis system usually monitors the industrial automation system 

continuously. If a fault occurs, the EFDS performs the fault diagnosis approaches [Frie15] to 

detect the fault, and depicts primary fault diagnosis results, such as fault ID, fault parameters, etc. 

Figure 6.10 highlights the fault diagnosis results. 

  

Figure 6.11: Simplified Reconfiguration commands  

With the received fault information and system run-time tasks, the dynamic fault handling and 

reconfiguration system analyzes the fault, identifies available functions and tasks and generates 

the appropriate reconfiguration commands for functions and tasks. Additionally, necessary 

information (see Figure 6.11), such as user instructions [Frie15] and contact information of the 

maintenance staff, are displayed for the user of the system. 
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Figure 6.12: Fault handling procedure with the demonstration 

Figure 6.12 shows the fault handling procedure of a new fault. The user is able to verify whether 

the analysis has been performed accurately, and if the result of each step is correct. The left side 

of the illustration shows all the steps carried out while handling a new fault (see Chapter 5.6). The 

corresponding analysis results, such as the defective subsystem, and the fulfilled symptoms for 

current faults, are depicted accordingly. The right side gives a dynamic animation of the reasoning 

process with the function tree and the requirement tree by using the depth-first-search approach. 

In total, four colors are utilized to emphasize the current status: not checked with white, available 

with green, under analysis with brown, and not available with red. 

6.1.7 Evaluation of the Conception  

To evaluate the conception of the dynamic fault handling and reconfiguration system, a qualitative 

as well as a quantitative evaluation approach is conducted in the scope of the present thesis. The 

evaluation process is based on a concrete industrial automation system (simulators in this thesis). 

In addition to the evaluation of the dynamic fault handling and reconfiguration system, the 

correctness of the simulators ought to be checked as well.  

Qualitative evaluation  

The qualitative evaluation attempts to perform systematic testing to confirm the quality of projects 

and software. In this thesis, it aims to verify the dynamic fault handling and reconfiguration 

system by using specific test cases and by examining whether the dynamic fault handling and 

reconfiguration system was capable of performing its functionalities correctly. It is not feasible to 

test the dynamic fault handling and reconfiguration system by itself. Thus, it is necessary to add 
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at least one corresponding industrial automation system as an execution object, referred to here 

as the simulator.  

 Evaluation of the simulator: A simulator is a program which reproduces the behavior of an 

industrial automation system. The following aspects should be evaluated: simulation of the 

processes of the industrial automation system, fault simulation, adding various faults, fault 

diagnosis by the local fault diagnosis system and performing the reconfiguration. 

 Evaluation of the dynamic fault handling and reconfiguration system: Depending on the fault 

handling steps, the following aspects ought to be verified: identification of fault type (known 

or new), identification of fault location, identification of available functions and generation of 

reconfiguration commands. 

 Interaction: There are two possibilities: the interaction between dynamic fault handling and 

reconfiguration system and the local system, and the interaction with the corresponding 

database. The former refers to the interaction between the dynamic fault handling and 

reconfiguration system and the existing fault diagnosis system, as well as the interaction 

between the dynamic fault handling and reconfiguration system and the simulator. The latter 

indicates the interaction between the dynamic fault handling and reconfiguration system and 

its server database, as well as the interaction between the existed fault diagnosis system and 

its local database.  

Quantitative evaluation 

Quantitative evaluation is the evaluation which refers to the goal of the research with 

mathematical characteristics, i.e. to improve the availability of industrial automation systems and 

assess the amount of increase in availability. The quantitative evaluation is used to determine the 

availability. With reference to [Stap09], the mean time to failure (MTTF) plays an important role 

in the calculation of the availability. Hence, this thesis presents the following two equations to 

calculate the availabilities: 

Original availability (OA) 

OA =  (∑
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅

𝑁

1

) 𝑁⁄  

The OA attempts to calculate the average value of the original availability without the help of the 

dynamic fault handling and reconfiguration system; specifically, there is no reconfiguration in 

case of a fault, where N stands for the number of tests. 

Real availability (RA) 
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RA =  (∑
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
+

𝑇𝐵𝑅𝐵𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
∗ 𝑁𝑎𝑓

𝑁

1

) 𝑁⁄  

The RA addresses the average value of the real availability with the help of the dynamic fault 

handling and reconfiguration system, i.e. the industrial automation system reconfigures with 

available functions in case of the occurrence of a fault. TBRBF is the time before repair between 

faults after reconfiguration. Naf is a binary parameter pointing out whether there are available 

functions or not. Naf equals 1 in case of available functions and 0 in case of no available functions. 

In the interval of the MTTF, all functions of an industrial automation system are available. 

However, in the interval of the TBRBF, only the available functions are activated. The RA cannot 

highlight the weight of the number of the available functions for the availability. Hence, in this 

thesis the proportion of the available functions is used to calculate the availability for the interval 

of the TBRBF. The real availability concerning the proportion of available functions is calculated 

as follows: 

RApf =  (∑ (
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
+

𝑇𝐵𝑅𝐵𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
∗

𝑀𝑎𝑓

𝑀𝑓
)

𝑁

1

) 𝑁⁄  

Maf is the number of available functions and Mf stands for the total number of functions. 

To highlight the change in the availability, the difference value of the availability (D_Availability) 

is additionally calculated using the following equation:  

D_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝐴𝑝𝑓 − 𝑂𝐴. 

In order to simplify the calculation process, the following assumptions have been made: 1 hour 

for the MTTF, 0.5 hour for the MTTR, 5 minutes to replace the defective component, and 25 

minutes for working with available functions. Due to the fact that the fault handling time is very 

short, the time span between the appearance of a fault and the reconfiguration can be ignored. 

As introduced in 2.1.1, industrial automation systems are classified into three types. To check the 

universality of the proposed conception (see Requirement 5 in Chapter 2), this conception was 

implemented with three demonstrators: 

 A two-tank system simulator simulating the two-tank system and representing the continuous 

process type of industrial automation systems.  

 A coffee maker simulator simulating the coffee machine and representing the sequential 

process type of industrial automation systems. 

 A high-bay warehouse simulator simulating the high-bay warehouse and representing the 

discrete object type process type of industrial automation systems. 
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6.2 Evaluation of the Conception on the Two-Tank System 

Simulator 

For the evaluation, three simulators for I, II and III were developed in line with the research. These 

simulators were combined with the developed dynamic fault handling and reconfiguration system 

and were tested in many test cases.  

I. A two-tank system simulator, simulating the two-tank system and representing the 

continuous process type of industrial automation systems.  

II. A coffee maker simulator, simulating the coffee machine and representing the sequential 

process type of industrial automation systems.  

III. A high-bay warehouse simulator, simulating the high-bay warehouse and representing the 

discrete object process type of industrial automation systems. 

In this subsection, the realization of the dynamic fault handling and reconfiguration system on the 

basis of a two-tank system simulator will be presented. Subsequently, the realization of the 

connection between the dynamic fault handling and reconfiguration system and the simulator will 

be outlined. Finally, the evaluation of the system will be presented.  

Realization of the two-tank system simulator 

The two-tank system simulator recreates the real two-tank system which includes two tanks, a 

heater, a temperature sensor, four photoelectric liquid level sensor, one ultrasonic liquid level 

sensor, an air pressure switch, a flow transducer, a pump, a pressure sensor, an electrical 

proportioning valve and some pipes. The simulator is illustrated in Figure 6.13. 

 

Figure 6.13:  Simulator of the two-tank system [MA2800] 

The process in the original two-tank system is controlled by a specific Java application which runs 

on an industrial computer [Bord16]. To maintain consistency with the assumption in the 



 

 

122 

conception, a microcontroller is simulated as the central controller, replacing the industrial 

computer. Additionally, four processes are implemented in the simulator as follows: 

 Process1 (injecting process): It attempts to inject the water from tank 102 to tank 101 at a 

specific volume. Between two tanks, the air pressure switch (v102 in figure 6.13) is 

responsible for controlling the flow through the pipe. It provides the sub function “Injecting 

water”.  

 Process2 (air inflating process): It provides the air for the air pressure switch which keeps the 

pressure at 6 Pa. It offers the sub function “Providing air”. 

 Process3 (heating process): It tries to heat the water in tank 101 to a specific temperature 

according to the demand of the user. It affords the sub function “Heating water”. 

 Process4 (water draining process): It is responsible for draining water from tank 101 to tank 

102 because there is no other output pipe to keep a continual simulation. The discharge of the 

draining is equal to the volume of the injecting water by default. 

  

Figure 6.14:  Simulator of the existing fault diagnosis system [MA2800] 

To realize the fault diagnosis and the monitoring of the system, a Java application for a fault 

diagnosis system is developed. Figure 6.14 depicts the GUI of the developed fault diagnosis 

system. The application of adding a fault was shown in Figure 6.9. In the case of the appearance 

of a fault, the EFDS can detect the fault and generate the fault information (see Figure 6.10).  

The simulator, which includes the two-tank system and the fault diagnosis system, creates the 

basis for the further evaluation. 

Combination of the dynamic fault handling and reconfiguration system and two-tank 

system simulator 

In the realization, the Java applications of the dynamic fault handling and reconfiguration system 

and the simulator run on two computers individually. For the purpose of establishing the 

connection between the dynamic fault handling and reconfiguration system and the two-tank 
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system simulator, an Internet router is utilized as communication media. It runs three individual 

applications, i.e. the two-system simulator, adding faults, and the existing fault diagnosis system 

(EFDS). The EFDS monitors the real-time data from the two-tank system simulator and stores it 

in the database as historical data. In addition, the fault knowledge affords the necessary 

verification knowledge for the fault diagnosis. With the help of the Java application of adding 

faults, it provides the possibility to add various faults. 

 

 

Figure 6.15: Combination between the dynamic fault handling and reconfiguration system 

and the two-tank system simulator [MA2800] 

Moreover, the computer furnishes the operation system to run the Tomcat server as the platform 

for the DFRHS application. The fault handling knowledge including fault knowledge, symptom 

knowledge and system knowledge is simultaneously stored in the MySQL database. 

Evaluation of the conception on the two-tank system simulator 

In order to evaluate the functionalities of the dynamic fault handling and reconfiguration system 

on the basis of the two-tank system simulator regarding the qualitative aspect, 12 test cases were 

defined and carried out to evaluate the correctness of the two-tank system simulator (TSS), its 

corresponding fault diagnosis system (FDS) and the dynamic fault handling and reconfiguration 

system (DFHRS). 

Table 6.1: 12 Test cases for the evaluation of the developed software [MA2800, pp. 54-68] 

Test case Test object Test objective 

Client initialization  TSS, FDS, 

DFHRS 

Testing the correctness of GUI of TSS and FDS; testing 

the connection between local and server 
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Server initialization DFHRS Testing the correctness of GUI of the DFHRS; testing 

connection between DFHRS and its database 

Behavior of the two-

tank system 

TSS, FDS Testing if the simulation of the behavior of TSS is correct; 

testing the correctness of recording historical data 

Fault detection FDS Testing the correctness of process monitoring, data 

extraction and fault diagnosis by FDS 

Adding fault TSS, FDS Testing the correctness of the data change of TSS and 

diagnosis result of FDS 

Sending historical data FDS, 

DFHRS 

Testing the correctness of the data exchange between 

FDS and DFHRS 

Sending reconfiguration 

data 

DFHRS, 

TSS 

Testing the correctness of the data exchange between 

DFHRS and TSS 

Reconfiguration TSS Testing the correctness of performing the reconfiguration 

by TSS 

Updating the fault 

knowledge 

DFHRS, 

DFS 

Testing the correctness of fault knowledge exchange 

between DFHRS and FDS; testing the correctness of 

updating local fault database 

Handling a known fault DFHRS Testing the functionalities of DFHRS for handling known 

faults, including accessing the fault knowledge, 

identification of available ongoing tasks and generation 

of reconfiguration commands 

Handling a new fault DFHRS Testing the functionalities of DFHRS for handling new 

faults, including fault localization, identification of 

available functions, automatic reasoning, identification of 

available ongoing tasks and generation of reconfiguration 

commands 

With the help of the introduced test cases, the basic functionalities of the software were tested 

successfully [MA2800], providing a basis for performing a quantitative test in which 100 random 

faults were fabricated, including 40 single component faults for 26 components, 10 single 

subsystem faults for 4 subsystems, and 50 multiple faults. As introduced in Chapter 6.17, due to 

the objective of the research, the two-tank system simulator can be reconfigured based on the 

available functions. The reconfiguration is conducted in the time span from the appearance of a 

fault to its repair. However, for some faults, the dynamic fault handling and reconfiguration 

system cannot provide available functions, since the defective component can cause a loss of all 

functions, such as a microcontroller, etc. After the test, 83 faults could be processed, i.e. the two-

tank system simulator was able to be reconfigured with the available functions. The rest could be 
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processed so that the two-tank system simulator had to maintain the stop status. This thesis makes 

assumptions concerning the following parameters: 1 hour for MTTF, 0.5 hour for MTTR and 5 

minutes for replacing a defective part. Based on the equation in Chapter 6.17, the calculation result 

of the availability of the two-tank system simulator is presented below.  

Table 6.2: Availability of the two-tank system simulator 

Availability Percent 

Original availability (OA) 66.67% 

Real availability (RA) 89.72% 

Real availability concerning the proportion 

of available functions (Rapf) 

87.46% 

D_Availability 20.79 % 

Table 6.2 shows the availability of the two-tank system simulator. Moreover, by means of the 

integrated timers in the program, the average fault handling time from receiving the request to 

sending a response is 465.72ms. Hence, the following conclusion can be derived: the dynamic 

fault handling and reconfiguration system can handle a fault very rapidly.  

As a result, the three software tasks perform flawlessly based on the qualitative and quantitative 

test. Each functionality of the dynamic fault handling and reconfiguration system achieved its 

expectation, as evidenced by the test cases. Not only the known faults but also new faults were 

located successfully. The two-tank system can be reconfigured smoothly and availability can 

evidently be enhanced. According to the evaluation results of the two-tank system simulator, an 

industrial automation system of the continuous process type can be successfully maintained and 

reconfigured by the dynamic fault handling and reconfiguration system with the available 

functions. The objective of the research, i.e. an increase in availability, can be achieved. 

6.3 Evaluation of the Conception on the Coffee Maker 

Simulator 

After the two-tank system simulator, the dynamic fault handling and reconfiguration system 

conception was realized with the coffee maker simulator, which simulates the industrial coffee 

maker at the Institute of Industrial Automation and Software Engineering, i.e. the WMF 

CombiNation S [MT2782] [SA2861][SA2721]. The coffee maker simulator is presented below. 

The concept of the dynamic fault handling and reconfiguration system will be evaluated later 

based on the coffee maker simulator.  

Description of the coffee maker simulator 
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The coffee maker simulator represents industrial automation systems of the sequential processes 

type. The coffee maker enables the production of different products, for instance cappuccino, 

espresso, coffee with milk, hot water, etc. The structure of the coffee maker is outlined in the 

following figure.  

  

Figure 6.16: System structure of the coffee maker simulator [MT2782] [SA2721] 

The coffee maker consists of four subsystems. 

 Subsystem1: The grinding system is in charge of grinding the coffee beans into coffee powder 

for the further brewing.  

 Subsystem2: The brewing system is responsible for controlling the brewing temperature, the 

brewing pressure, the proportion of coffee powder and hot water for specific coffee types, and 

the collection of coffee residue.  

 Subsystem3: The water heating system is responsible for pumping the water from the water 

tap and heating water in the kettle.  

 Subsystem4: The milk processing system is in charge of drawing milk from the milk tank, 

heating milk and producing milk foam. 

The coffee maker includes 24 components, 12 elements, 4 subsystems, 9 main functions, 9 sub 

functions and 36 basic functions [MT2782]. The simulator, including the simulation of the coffee 

maker and its fault diagnosis system, creates the basis for the connection with the dynamic fault 

handling reconfiguration system and further evaluation. 

Combination of the dynamic fault handling and reconfiguration system and the coffee 

maker simulator 
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Figure 6.17 indicates the combination of the dynamic fault handling and reconfiguration system 

and the coffee maker simulator. To show the production process intuitively, this research realized 

the combination between the coffee maker simulator and the real coffee maker through the USB-

CAN adapter [FA2722] [SA2861]. In this realization, the Java applications of the dynamic fault 

handling reconfiguration system and the simulator ran on two computers individually. For the 

purpose of the establishment of the connection between the dynamic fault handling 

reconfiguration system and the coffee maker simulator, an internet router was utilized as 

communication media. Computer 1 ran three individual applications, i.e. an application of the 

coffee maker simulator, an application of adding faults and an application of the existing fault 

diagnosis system (EFDS). The EFDS monitors the real-time data from the coffee maker system 

simulator and stores it in the database as historical data. In addition, the fault knowledge affords 

the necessary verification knowledge for the fault diagnosis. With the help of the Java application 

of adding faults, it provides the possibility to add various faults in the simulator.  

  

Figure 6.17: Combination between the dynamic fault handling reconfiguration system and 

the coffee maker simulator [MT2782] [SA2861] 

Computer 2 furnishes an operation system to run the server as platform for the application of the 

dynamic fault handling reconfiguration system. The fault handling knowledge, including fault 

knowledge, symptom knowledge and system knowledge, was implemented in the MySQL 

database. 

Evaluation of the conception on the coffee maker simulator 

In order to evaluate the functionalities of the dynamic fault handling and reconfiguration system 

on the basis of the coffee maker simulator, 5 test cases were defined and carried out to test the 

correctness of the coffee maker simulator (CMS), its corresponding fault diagnosis system (FDS), 

and the dynamic fault handling and reconfiguration system (DFHRS) in Table 6.3. 

Table 6.3: Test cases for evaluating the developed software [MT2782, pp. 50-62] 

Test case Test object Test objective 
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Coffee producing 

simulation 

TSS, FDS,  Testing the correctness of simulating the process of coffee 

production, including GUI of TSS and FDS; testing the 

correctness of resource state simulation 

Fault occurrence 

simulation 

TSS Testing the correctness of the application of adding faults 

Determining fault type FDS Testing the correctness of the diagnosis result of the FDS  

Handling a known fault  TSS, FDS, 

DFHRS 

Testing the correctness of handling a known fault; testing 

the correctness of reconfiguration  

Handling a known fault 

but new in local  

FDS, 

DFHRS 

Testing the correctness of updating the fault knowledge; 

testing the correctness of reconfiguration 

Handling Fault New 

Locally and Remotely 

FDS, 

DFHRS 

Testing the correctness of handling a new fault, including 

fault localization and identification of available functions; 

testing the correctness of reconfiguration 

Following this, with the help of the introduced specific test cases, the basic functionalities of the 

three software applications were later tested and they ran correctly and flawlessly [MT2782], 

providing a basis for performing a quantitative test, in which 100 various random faults, consisting 

of 40 single components faults and 60 multiple faults, were fabricated. As introduced in Chapter 

6.1.7, the coffee maker simulator can be reconfigured with available functions in the time span 

from the appearance of a fault to its repair. After the test, 96 faults could be processed, i.e. the 

coffee maker simulator could be reconfigured with the available functions. The rest could be 

processed, so that the coffee maker simulator had to maintain the stop status. Here, this thesis 

assumes: 1 hour for MTTF, 0.5 hour for MTTR, and 5 minutes for replacing a defective part. 

Based on the equation in Chapter 6.17, the calculation result of the availability of the coffee maker 

system simulator is shown below. 

Table 6.4: Availability of the coffee maker simulator 

Availability Percent 

Original availability (OA) 66.67% 

Real availability (RA) 93.33% 

Real availability concerning the proportion 

of available functions (Rapf) 

85.40% 

D_Availability 18.73 % 

Table 6.4 shows the availability of the coffee maker simulator.  
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As a result, based on the qualitative and quantitative test, the three software applications 

performed flawlessly. Each functionality of the dynamic fault handling reconfiguration system 

had achieved its expectation as defined in the test cases. Not only the known faults but also new 

faults were successfully dealt with. The coffee maker was reconfigured smoothly and its 

availability evidently enhanced. According to the evaluation result of the coffee maker simulator, 

industrial automation systems of the sequential process type can be successfully maintained and 

reconfigured by the dynamic fault handling reconfiguration system with the available functions. 

The objective of the research to increase the availability is achieved. 

6.4 Evaluation of the Conception on the High-bay 

Warehouse Simulator 

In the last two subsections, the realization and evaluation based on the two-tank simulator and the 

coffee maker simulator were presented. Those applications were based on the Java programming 

language. For the purpose of verifying the universality to implement the conception of dynamic 

fault handling and reconfiguration, the high-bay warehouse simulation and its fault diagnosis 

system, as well as the dynamic fault handling reconfiguration system, were realized based on the 

program language C# instead of the Java program language. The dynamic fault handling 

reconfiguration system utilizes the self-defined TCP Server with the communication method of 

Sockets rather than the Tomcat server. Based on the realization of the three applications, the 

conception of the dynamic fault handling reconfiguration system was evaluated with regard to 

qualitative and quantitative aspects.  

Description of the high-bay warehouse simulator 

The high-bay warehouse represents an industrial automation system of discrete object process 

type. It is able to store packaged products automatically.  

  

Figure 6.18: Overview of the high-bay warehouse simulator [MA2801] 
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As Figure 6.18 depicts (left side), the simulator stores a package in the rack and removes a specific 

package from the rack. To realize a better visualization, the behavior of the high-bay warehouse 

was implemented based on 3D modeling software, i.e. Unity, which provides mature and 

standardized developed modules. Its integrated development environment cannot afford a 

completed control simulation and cannot satisfy the further deployment of other functions, such 

as the simulation of faults. Hence, the control application (right side in Figure 6.18) was developed 

individually and an interface was established to complete the communication between the control 

application and the 3D simulator. The high-bay warehouse and its simulator consist of three 

stations, i.e. three subsystems: 

 Station1: The shelf control system is responsible for controlling the conveyor cage. It can 

build the physical connection with the input and output stations to receive the packages and 

output the packages respectively. It then stores the packages into specific slots and removes 

packages from specific slots, respectively. This subsystem is realized with X-axis sensors, Z-

axis sensors, a presence sensor, a telescopic conveyor, a horizontal track, and a vertical track.  

 Station2: The input station transfers the packages from the guide ramp to the storage location 

which can build the connection with the conveyor cage with the help of the conveyor belt. 

This subsystem is made up of a storage sensor, a unit motor, two analytical sensors, an end-

position sensor, a conveyor motor, and a light barrier for the removal position. 

 Station3: The output station is able to access the package from the conveyor cage in the storage 

location by means of the conveyor belt and puts the package on the guide ramp. This 

subsystem includes a light barrier for the delivery position, a conveyor motor, and an 

electromechanical bolt. 

The high-bay warehouse simulator provides 3 main functions, 71 sub functions and 49 basic 

functions. Based on the high-bay warehouse simulator, the combination of the dynamic fault 

handling and reconfiguration with the simulator will be presented in the next section. 

Combination of the dynamic fault handling and reconfiguration system and high-bay 

warehouse simulator 

Since the realization of the high-bay warehouse simulator was based on the programming 

language C# instead of Java, as well as the self-defined TCP server rather than Tomcat server, the 

communication method between server and client was replaced by the socket. But the principle 

of communication was still internet-based and only the communication approach was different. 

JSON was, in terms of the data type, the same as in the other two applications. The overview of 

the combination between the dynamic fault handling reconfiguration system and the high-bay 

warehouse simulator is depicted in Figure 6.19.  
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Figure 6.19: Combination between the dynamic fault handling reconfiguration system and 

the high-bay warehouse simulator  

In the realization, the C# applications of the dynamic fault handling reconfiguration system and 

the simulator run on two computers individually. For the purpose of the establishment of the 

combination between the dynamic fault handling and reconfiguration system and the high-bay 

warehouse simulator, an internet router was utilized as the communication media. Computer 1 ran 

five applications, i.e. the application of adding faults and the application of the existing fault 

diagnosis system (EFDS), and the Unity engine, which supported the C# application in controlling 

the 3D-simulator and the 3D-simulator of the high-bay warehouse. The C# application provided 

the possibility to add various faults. The EFDS monitors the real-time data from the high-bay 

warehouse simulator and stores it in the database as historical data. Computer 2 furnished the 

operating system to run the server as the platform for the application of the DFRHS. In addition, 

the fault knowledge afforded the necessary verification knowledge for the fault diagnosis.  

Evaluation of the conception on the high-bay warehouse simulator 

This was done to evaluate the dynamic fault handling and reconfiguration system on the basis of 

the high-bay warehouse simulator. To evaluate the functionalities of the developed software from 

the qualitative aspect, 12 test cases were defined and carried out to evaluate the correctness of the 

high-bay warehouse simulator (HWS), its corresponding fault diagnosis system (FDS), and the 

dynamic fault handling and reconfiguration system (DFHRS). 

Table 6.5: 12 Test cases for evaluating the developed software [MA2801, pp. 57-77] 

Test case Test object Test objective 

Changing the camera 

positions 

HWS Testing the correctness of the observation view of the 3D-

Simulator 

Server initialization DFHRS, 

HWS 

Testing the correctness of starting the DFHRS and the 

combination between DFHRS and HWS 
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Setting tasks HWS Testing the correctness of adding tasks for HWS 

Deleting tasks HWS Testing the correctness of deleting tasks of HWS 

Performing tasks HWS Testing the correctness of performing tasks with the 3D-

Simualtor  

Adding faults HWS, FDS Testing the correctness of adding faults; testing the 

correctness of diagnosing faults by FDS 

Presenting the 

reconfiguration results 

DFHRS, 

HWS 

Testing the correctness of receiving the reconfiguration 

commands from DFHRS and showing the result in a log 

field 

Local combination HWS, FDS Testing the correctness of the combination and the data 

exchange between HWS and FDS  

Sending fault 

information 

FDS, 

DFHRS 

Testing the correctness of the data exchange between 

DFHRS and FDS 

Handling faults DFHRS Testing the correctness of handling known and new faults 

with the help of the fault ID, symptom knowledge and 

system knowledge 

Presenting 

reconfiguration  

DFHRS  Testing the correctness of the graphical representation of 

the reconfiguration results 

Recovery  HWS, 

DFHRS 

Testing the correctness of resetting the system states of 

HWS and DFHRS when the fault is removed 

With the help of the introduced specific test cases, the basic functionalities of the three software 

applications were tested and ran correctly and flawlessly [MA2801]. Hence, it provided a basis 

for performing a quantitative test in which 100 various random faults were fabricated, including 

42 single components faults and 58 multiple faults. As introduced in Chapter 6.1.7, the high-bay 

warehouse simulator could be reconfigured with available functions in the time span from the 

appearance of a fault to its repair. However, for some faults, the dynamic fault handling 

reconfiguration system could not provide the available functions because the defective component 

could have resulted from any one of all the functions being out of order, such as the 

microcontroller, etc. After the test, 88 faults were processed, i.e. the high-bay warehouse simulator 

could be reconfigured with the available functions. The rest could not be processed, so that the 

high-bay warehouse simulator had to maintain the stop status. Here, this thesis assumes: 1 hour 

for MTTF, 0.5 hour for MTTR, and 5 minutes for replacing a defective part. Based on the equation 

in Chapter 6.17, the calculation result of the availability of the high-bay warehouse simulator is 

presented below. 
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Table 6.6: Availability of the high-bay ware house simulator 

Availability Percent 

Original availability (OA) 66.67% 

Real availability (RA) 91.11% 

Real availability concerning the proportion 

of available functions (Rapf) 

85.07% 

D_Availability 18.41 % 

Table 6.6 shows the availability of the high-bay warehouse simulator. 

As a result, based on the qualitative and quantitative tests, various applications can be performed 

flawlessly. Each functionality of the dynamic fault handling reconfiguration system has achieved 

its expectation as defined in test cases. Not only known faults but also the new faults could be 

successfully dealt with. The high-bay warehouse could be reconfigured smoothly and the 

availability evidently enhanced. According to the evaluation result of the high-bay warehouse 

simulator, industrial automation systems of the discrete object process type can be successfully 

maintained and reconfigured by the dynamic fault handling and reconfiguration system with 

available functions. The objective of the research, to increase the availability, is achieved. 

 

6.5 Summary of the Demonstrators 

In this section, the mentioned the demonstrators including the two-tank system, the coffee maker 

and the high-bay warehouse are about to be summarized.  

Demonstrator 1: Coffee maker  

The introduced coffee maker consists of a grinding system to grind coffee beans into coffee 

powder, a water heating system to pump water and heat water, a milk processing system to heat 

milk and produce milk foam, and a brewing system to mix water and coffee powder. This coffee 

maker can produce hot water, espresso, cappuccino, latte, milk coffee, etc. In the simulator, the 

resources and the process are simulated by the mathematical model in the background. It provides 

the possibility to use the fault injection approach, for example, it is easy to change a parameter, 

like temperature, into an abnormal state as well as directly set a component into a defective state. 

In addition, a fault diagnosis system for the coffee maker is developed, which can monitor, not 

only the volume of the resources, like water, milk, coffee beans but also the intermediate 

parameter in the coffee producing process like water flow rate, water adding time, the weight of 

the coffee beans, etc. Hence, the fault diagnosis system can identify the presence of a fault.  
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In order to simulate various faults in the coffee maker, an additional fault injection panel was 

developed, which can change the state of a component, a subsystem as well as arbitrary parameter 

in the process. Hence, a single temperature sensor, a single weight sensor or both can be simulated 

into a defective state.  

To evaluate the developed dynamic fault handling and reconfiguration system for the coffee 

maker, different test cases were designed and implemented. Firstly, the developed coffee maker 

simulator can correctly simulate the coffee maker to produce different products through the value 

of the final parameters of the products. The coffee maker simulator can successfully receive the 

reconfiguration commands and perform the reconfiguration, like deactivating the not available 

functions. Secondly, the developed fault diagnosis system can monitor the coffee producing 

process correctly, such as reading the ongoing parameter value correctly, identifying the abnormal 

parameter via the predefined process model and assigning the presented faults to known fault 

correctly. Thirdly, the communication between the developed fault diagnosis system and the 

dynamic fault handling and reconfiguration system was established successfully. The fault 

diagnosis system can successfully send the fault information to the dynamic fault handling and 

reconfiguration system and also receive the new fault information as well as the reconfiguration 

commands. Finally, the functionality of the dynamic fault handling and reconfiguration system 

for the coffee maker can be successfully executed. The presented faults can be correctly identified 

as known faults or new faults. The available functions can be successfully and correctly accessed 

from the data base, namely the fault knowledge. It was possible to correctly identify the fault 

locations of the coffee maker. The inference machine can perform the process of fault localization 

and identification of available functions correctly. The available functions of the coffee maker can 

be correctly identified via two processes, identification of affected functions and identify available 

functions, respectively. The ongoing tasks in the coffee maker can be successfully identified, 

based on the available functions and ongoing capacity of water, coffee beans and milk. 

Additionally, the speed of the entire fault handling time is fast.  

Demonstrator 2: High-bay warehouse 

The introduced high-bay warehouse consists of a shelf control system to control the conveyor 

cage for building the physical connection between the input and output stations to receive the 

packages and output the packages from and to the specific slots, an input station to transfer the 

packages from the guide ramp to the storage location, and an output station to access the packages 

from the conveyor cage in the storage location. The high-bay warehouse contains axis sensors, 

tracks, motors, etc. and can store a package in the rack and remove the package from a specific 

rack. In the high-bay warehouse simulator, the capacity of the slots with packages, the speed of 

the motor and the signal of each position sensor can be simulated. Moreover, the processes of 

transporting a package and storing it in a specific slot were simulated by the mathematical model. 

So it provides the possibility to use the fault injection approach, for example, it is easy to change 

a parameter, like the state of an X-axis sensor in the shelf into a defective state. It is necessary to 
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point out that the main sensors of the high-bay warehouse are Boolean type variables, such as a 

light barrier for the delivery position. Moreover, a fault diagnosis system for the high-bay 

warehouse is developed, which can monitor not only the capacity of the free slots in the shelf but 

also the sensor states. Hence, the fault diagnosis system can identify the presence of a fault from 

the component view directly, for example, if no signal of a light barrier in a specific time is 

received. 

In order to simulate various faults, a fault injection panel was also developed, which can change 

the state of a component and a subsystem, like a motor. Hence, a single unit motor, a single end-

position sensor or both can be simulated into a defective state.  

To evaluate the developed dynamic fault handling and reconfiguration system for the high-bay 

warehouse, different test cases were designed and implemented. Firstly, the developed high-bay 

warehouse simulator can correctly simulate the real high-bay warehouse to transport a package to 

the storage position, to store the package into a specific slot, to get out the package to the output 

position, and to access the package from the output position. The high-bay warehouse simulator 

can successfully receive the reconfiguration commands and perform the reconfiguration like 

deactivating the not available functions. Secondly, the developed fault diagnosis system can 

monitor the package transporting and storing process correctly, such as reading the ongoing sensor 

value correctly, identifying the abnormal parameter via the predefined process model and 

assigning the presented faults to known fault correctly. Thirdly, the communication between the 

developed fault diagnosis system and the dynamic fault handling and reconfiguration system was 

established successfully. The fault diagnosis system can successfully send the fault information 

to the dynamic fault handling and reconfiguration system and also receive the new fault 

information as well as the reconfiguration commands. Finally, the functionality of the dynamic 

fault handling and reconfiguration system for the high-bay warehouse can be successfully 

executed. The presented faults can be correctly identified as known faults or new faults. The 

available functions can be successfully and correctly accessed from the data base, namely the fault 

knowledge. It was possible to correctly identify the fault location of the coffee maker. The 

inference machine can perform the process of fault localization and identification of available 

functions correctly. The available functions of the coffee maker can be correctly identified via 

two processes, identification of affected functions and identify available functions, respectively. 

The ongoing tasks in the high-bay warehouse can be successfully identified based on the available 

functions and ongoing capacity of free slots in the shelf and the volume of the rest packages with 

specific colors. Additionally, the speed of the entire fault handling time is fast.  

Demonstrator 3: Two-tank system 

The introduced two-tank system consists of an injection system to inject water from one tank to 

another in a specific volume, a heating water system to heat water to a required temperature, a 

water draining system to drain water from one tank to another, and an additional air inflating 
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process to provide air for the air pressure switch. In the simulator, the resources and the processes 

are simulated by the mathematical model in the background. It provides the possibility to use the 

fault injection approach, for example, it is easy to change a parameter, like temperature into an 

abnormal value as well as directly set a component into a defective state. In addition, a fault 

diagnosis system for the two-tank system simulator is developed, which can monitor not only the 

volume of the resources like water and temperature but also the intermediate parameter in the 

pumping process like the water flow rate and the degree of the air pressure switch. Hence, the 

fault diagnosis system can identify the presence of a fault.  

To simulate various faults in the two-tank system, a fault injection panel was developed, which 

can change the state of a component, a subsystem as well as arbitrary parameter in the process. 

Hence, a single temperature sensor or the value of the safety water level sensor or both can be 

simulated into a defective state.  

To evaluate the developed dynamic fault handling and reconfiguration system for the two-tank 

system, different test cases were designed and implemented. Firstly, the developed two-tank 

system simulator can correctly simulate the two-tank system to produce different volumes of 

water with different temperatures. The two-tank system simulator can successfully receive the 

reconfiguration commands and perform the reconfiguration like deactivating the not available 

functions. Secondly, the developed fault diagnosis system can monitor the water injecting and 

heating process correctly, such as reading the ongoing parameter value correctly, identifying the 

abnormal parameter via the predefined process model and assigning the presented faults to known 

fault correctly. Thirdly, the communication between the developed fault diagnosis system and the 

dynamic fault handling and reconfiguration system was established successfully. The fault 

diagnosis system can successfully send the fault information to the dynamic fault handling and 

reconfiguration system and also receive the new fault information as well as the reconfiguration 

commands. Finally, the functionality of the dynamic fault handling and reconfiguration system 

for the two-tank system can be successfully executed. The presented faults can be correctly 

identified as known faults or new faults. The available functions can be successfully and correctly 

accessed from the data base, namely the fault knowledge. It was possible to correctly identify the 

fault location of the two-tank system. The inference machine can perform the process of fault 

localization and identification of available functions correctly. The available functions of the two-

tank system can be correctly identified via two processes, identification of affected functions and 

identify available functions, respectively. The ongoing tasks in the two-tank system can be 

successfully identified based on the available functions and ongoing capacity of the water volume 

in both tanks. Additionally, the speed of the entire fault handling time is fast.  

The following three tables shows the evaluation results with three demonstrators intuitively.  
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Table 6.7: Demonstrator of the Coffee maker simulator 

Structural Design Usage  Evaluation Actions 

Realization of the coffee 

maker simulator:  

 Realization in Java 

 Uses MySQL database 

 Includes 5 classes and 2900 

LoC 

 USB-CAN-Bus based 

communication with the real 

coffee maker 

 Simulate the coffee maker 

functions  

 Remote connection to 

server  

 Simulate unknown faults 

 Local connection with the 

fault diagnosis system 

 Simulate parameter faults 

for components  

 Reconfigure available 

functions 

 Simulated 9 products as well as 45 

functions  

 Simulated 10 known faults including 

5 single component faults and 5 

multiple faults  

 Simulated 90 new faults including 

35 component faults and 55 multiple 

faults 

 Received reconfiguration commands 

from server  

 Reconfigured available functions 

Realization of the fault 

diagnosis system: 

 Rees MySQL database 

 Includes 9 classes and 3700 

LoC 

 Monitor the parameters of 

the coffee maker 

 Record the process data in 

the data base within 10 

minutes  

 Remote connection to 

server 

 Fault diagnosis  

 

 Recoded the process data within 10 

minutes 

 Monitored the change of the 

parameter in the coffee maker 

 Identified the known faults with 

predefined process model and 

symptom knowledge 

 Identified new faults and provided 

fault diagnosis results for server 

 Received the new fault information 

and stored it in the local fault 

knowledge base 

Realization of the dynamic 

fault handling and 

reconfiguration system: 

 Realization in Java 

 Uses MySQL database 

 Base on Apache server  

 Includes 12 classes and 

11500 LoC 

 Remote connection with 

the coffee maker 

 Identify fault type 

 Handle known faults 

 Handle new faults 

 Create reconfiguration 

commands 

 Identify available 

ongoing tasks 

 Fault analysis with the 

inference machine 

 Connected coffee maker 100 times 

 Connected with the fault diagnosis 

system 100 times 

 Identified known faults 10 times 

 Identified new faults 90 times 

 Accessed available functions from 

fault knowledge base 10 times 

 Accessed the symptom knowledge 

and specific mathematical model 

correctly 90 times 

 Inferred fault location 90 times  

 Inferred affected functions 90 times  

 Inferred available functions 86 times 

 Checked ongoing tasks 96 times  

 Created reconfiguration commands 

96 times 

 Average response time 513.83ms 
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Table 6.8: Demonstrator of the High-bay Warehouse 

Structural Design Usage  Evaluation Actions 

Realization of the high-bay 

warehouse:  

 Realization in C# 

 Based on the Unity-3D 

 Using MySQL database 

 Includes 16 classes and 4300 

LoC 

 

 Simulate the high-bay 

warehouse functions  

 Remote connection to 

server  

 Simulate unknown faults 

 Local connection with the 

fault diagnosis system 

 Simulate parameter faults 

for components  

 Reconfigure available 

functions 

 Simulated 3 services as well as 123 

functions  

 Simulated 10 known faults including 

5 single component faults and 5 

multiple faults  

 Simulated 90 new faults including 

37 component faults and 53 multiple 

faults 

 Received reconfiguration commands 

from server  

 Reconfigured available functions  

Realization of the fault 

diagnosis system: 

 Realization in C# 

 Uses MySQL database 

 Includes 3 classes and 2100 

LoC 

 Monitor each component 

state of the high-bay 

warehouse 

 Record the process data in 

the data base within 10 

minutes  

 Remote connection to 

server 

 Fault diagnosis  

 

 Recoded the process data within 10 

minutes 

 Monitored the change of the 

parameter in the high-bay warehouse 

 Identified the known faults with 

predefined process model and 

symptom knowledge 

 Identified new faults and provided 

fault diagnosis results for server 

 Received the new fault information 

and stored it in the local fault 

knowledge base 

Realization of the dynamic 

fault handling and 

reconfiguration system:  

 Realization in C# 

 Uses MySQL database  

 Based on Apache server 

 Includes 12 classes and 

12000 LoC 

 Remote connection with 

the high-bay warehouse 

 Identify fault type 

 Handle known faults 

 Handle new faults 

 Fault analysis with the 

inference machine 

 Create reconfiguration 

commands 

 Identify available 

ongoing tasks 

 Connected the high-bay warehouse 

100 times 

 Connected with the fault diagnosis 

system 100 times 

 Identified known faults 10 times 

 Identified new faults 90 times 

 Accessed the available functions 

from fault knowledge base 10 times 

 Accessed the symptom knowledge 

and specific mathematical model 

correctly 90 times 

 Inferred the fault location for 90 

times  

 Inferred affected functions 90 times  

 Inferred available functions 78 times  

 Checked ongoing tasks 88 times  

 Created reconfiguration commands 

88 times 

 Average response time 571.26ms 
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Table 6.9: Demonstrator of the Two-Tank System  

Structural Design Usage  Evaluation Actions 

Realization of the two-tank 

system simulator:  

 Realization in Java 

 Uses MySQL database 

 Includes 6 classes and 6000 

LoC 

 

 Simulate the two-tank 

system functions  

 Remote connection to 

server  

 Simulate unknown faults 

 Local connection with the 

fault diagnosis system 

 Simulate parameter faults 

for components  

 Reconfigure available 

functions 

 Simulated 52 functions  

 Simulated 10 known faults including 

5 single component faults and 5 

multiple faults  

 Simulated 90 new faults including 

45 component faults and 45 multiple 

faults 

 Received reconfiguration commands 

from server  

 Reconfigured available functions  

 System stopped in the presence of a 

fault and system restarted after 

reconfiguration 

Realization of the fault 

diagnosis system: 

 Realization in Java 

 Uses MySQL database 

 Includes 5 classes and 7000 

LoC 

 Monitor the parameters of 

the two-tank system 

 Record the process data in 

the data base within 10 

minutes  

 Remote connection to 

server 

 Fault diagnosis  

 

 Recoded the process data within 10 

minutes 

 Monitored the change of the 

parameter in the two-tank system 

 Identified the known faults with 

predefined process model and 

symptom knowledge 

 Identified new faults and provided 

fault diagnosis results for server 

 Received the new fault information 

and stored it in the local fault 

knowledge base 

Realization of the dynamic 

fault handling and 

reconfiguration system: 

 Realization in Java 

 Uses MySQL database  

 Based on Apache server 

 Includes 12 classes and 

16000 LoC 

 Remote connection with 

the two-tank system 

 Identify fault type 

 Handle known faults 

 Handle new faults 

 Fault analysis with the 

inference machine 

 Create reconfiguration 

commands 

 Identify available 

ongoing tasks 

 Connected two-tank system 100 

times 

 Connected with the fault diagnosis 

system 100 times 

 Identified known faults 10 times 

 Identified new faults 90 times 

 Accessed the available functions 

from fault knowledge base 10 times 

 Accessed the symptom knowledge 

and specific mathematical model 

correctly 90 times 

 Inferred fault location for 90 times  

 Inferred affected functions 90 times  

 Inferred available functions 73 times  

 Checked ongoing tasks 83 times  

 Created reconfiguration commands 

83 times 

 Average response time 465.72ms 
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As showed in the introduced tables, the dynamic fault handling and reconfiguration system is able 

to handle various faults. They are known faults, including a single component fault and multiple 

components fault, new fault parameter faults, like temperature abnormally increased (still working 

but no not correctly), a single component fault (not working), two-components-fault (combination, 

one working and another not working, both working but without correct results, both not working), 

a subsystem fault, a subsystem and component fault, and more combinations. Based on the 

evaluation results, the correctness of every functional module in the dynamic fault handling and 

reconfiguration system and the correctness for handling various faults in different demonstrators 

were proven. However, available functions can also not always be provided in case of a defective 

main component. 

6.6 Assessment of the Dynamic Fault Handling and 

Reconfiguration System regarding the Requirements 

In the last four sections, the dynamic fault handling and reconfiguration system was evaluated by 

means of the two-tank system simulator, the coffee maker simulator, and the high-bay warehouse 

simulator. This sub section proposes to estimate the conception from qualitative aspects. 

R1: Ability of enhancing the availability of the entire automation system 

With the help of the dynamic fault handling and reconfiguration system, industrial automation 

systems can be transferred into another operation mode via the reconfiguration in case of a fault 

has occurred. This is because the dynamic fault handling reconfiguration system enables the 

industrial automation system to be kept in operation before the fault is removed. Moreover, from 

the perspective of the operation time, the original mean time to repair is reduced and the mean 

time between faults is increased. According to the definition and the discussion in Section 6.1 

concerning availability, the availability of industrial automation systems can be extremely 

enhanced. This was proved in the last three sub sections. 

Result: The average availability of the implemented industrial automation systems is enhanced 

by more than 18% as shown in the experiments.  

R2: Ability of automatic, reasonable and dynamic fault analysis  

By means of the defined system model, the description of an industrial automation system can be 

formalized in the database as the system knowledge, such as the relationship matrix of the 

components, the functions and the requirements, specific rules for each function, and specific 

rules for each requirement, as well as their consequences. The formalized system knowledge 

provides the opportunity for determining the fault effect. In addition, with the help of the 

formalized symptom knowledge for the component model, the dynamic fault handling 

reconfiguration system can localize the fault location for either single or multiple faults. 

Moreover, based on the fault location, the function tree, and the requirement tree, the dynamic 
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fault handling reconfiguration system can identify either affected or unaffected functions, and 

identify available functions automatically through the depth-first-search approach. In addition, the 

ongoing tasks can be evaluated with the relationship between functions and tasks. Finally, the 

reconfiguration commands can be generated and integrated to perform the reconfiguration in the 

industrial automation system, because all these analyses and reasoning procedures are performed 

automatically with the specific defined reasoners.  

Result: The fault location of new faults and corresponding available functions can be identified 

based on the specific system models. 

R3: Ability of reconfiguration with the available functions 

As mentioned above, with the aid of the available functions and available ongoing tasks, the 

dynamic fault handling reconfiguration system can generate appropriate reconfiguration 

commands, with which the industrial automation system can carry out its available functions. For 

one thing, if it requires no specific commands or additional actions for isolating not available 

functions, i.e. the system requires no restart, the industrial automation system can reconfigure 

itself. For another thing, the dynamic fault handling reconfiguration system affords specific codes 

for activating specific functions and provides user instructions to the user for isolating unavailable 

functions. For instance, to isolate the function of a valve in a pipeline in the two-tank system, the 

user ought to switch off the manual valve which is in the front of the defective valve in the pipeline. 

Hence, the dynamic fault handling reconfiguration system can directly help the industrial 

automation system to complete the reconfiguration with available functions. 

Result: The dynamic fault handling and reconfiguration system does not only allow specific 

reconfiguration commands to be generated, but also its necessary corresponding measures in order 

to assure the operation of industrial automation systems with available functions. 

R4: Ability of reducing the cost for implementation and in operation 

In order to implement the dynamic fault handling reconfiguration system, instead of developing a 

new local fault diagnosis system, this thesis proposes to cooperate with the existing fault diagnosis 

system via an adaptive communication interface. Moreover, this thesis attempts to run the 

dynamic fault handling reconfiguration system on a remote server to handle faults via the internet, 

rather than one dynamic fault handling and reconfiguration system for each industrial automation 

system, so that the associated fault handling knowledge is stored in the server and faults are 

handled by the server uniformly. Therefore, the local industrial automation system has no need to 

add additional costs to increase storage space and computing power such as faster, more powerful 

processors and a larger memory. Hence, the entire implementation cost can be further limited. 

Due to a server system, the thesis enables the managing of the dynamic fault handling 

reconfiguration system and fault handling knowledge remotely with the help of professional 

experts. To avoid resource waste, enhance the processing speed, and overcome the weakness of 
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existing fault diagnosis systems, the dynamic fault handling reconfiguration system can analyze 

the fault diagnosis results at first and localize the fault location with its own integrated fault 

diagnosis methods. Subsequently, benefiting from automatic reasoning, the dynamic fault 

handling reconfiguration system can support the 24 hours computer-based automatic fault 

handling without the intention of additional maintenance services. The labor cost for this service 

can be saved. Depending on the analysis above, the cost of implementing the dynamic fault 

handling reconfiguration system can be reduced exponentially, or at least to a limited extent.  

Result: The predefined common communication interface assures a low development cost and 

provides a high portability for more various industrial automation systems. Moreover, the 

automatic server platform makes it possible to keep costs for handling faults low, reducing or 

eliminating the need for additional maintenance services. 

R5: Ability of porting the conception for heterogeneous industrial automation systems 

Concerning the heterogeneity of industrial automation systems, this conception of the dynamic 

fault handling and reconfiguration has been defined as a uniformed communication interface (see 

6.1.5) to suit the communication of different systems. Furthermore, this thesis has attempted to 

use a common uniform data type (JSON) and communication type (HTTPS). Moreover, with the 

help of formalized system knowledge and the reasoning logic for identifying available functions, 

the dynamic fault handling reconfiguration system can be easily transferred and implemented in 

other industrial automation systems. As evaluated in the last three sections, the conception of the 

dynamic fault handling and reconfiguration was implemented for three types of industrial 

automation systems. The realization of the dynamic fault handling reconfiguration system is 

application platform-independent. The conception of dynamic fault handling and reconfiguration 

can be simply ported to heterogeneous industrial automation systems. 

Result: With the help of the predefined uniformed communication interface, data type and 

communication type, the dynamic fault handling and reconfiguration system can be developed 

efficiently for heterogeneous industrial automation systems. 

As a result, the approved dynamic fault handling and reconfiguration system is able to handle 

faults in industrial automation systems successfully and efficiently. Additionally, with the help of 

the proposed universal interface, the conception can be easily integrated into new industrial 

automation systems. Since the execution is done without the intervention of users, the cost for 

running the proposed dynamic fault handling and reconfiguration system is greatly reduced. 

Moreover, the availability of industrial automation systems can be improved to a great degree 

with the proposed dynamic fault handling and reconfiguration system. 

 

In summary, the prototype and the evaluation of the dynamic fault handling and reconfiguration 

systems were presented in detail in this chapter. The entire system structure, and the major parts 
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of the software structure via the class diagram were outlined. The fault handling knowledge, 

including system knowledge, symptom knowledge, and fault knowledge, were listed. And all 

attributes of these tables were depicted in detail. Subsequently, the adaptive communication 

interface for industrial automation system was outlined from the conceptual perspective. 

Afterwards, based on the two-tank system simulator, the realized dynamic fault handling 

reconfiguration system was presented as follows: the user interface of the dynamic fault handling 

reconfiguration system, the GUI of adding faults, the fault diagnosis results of the existed fault 

diagnosis system, the reconfiguration commands, and the procedure of identifying available 

functions with the visual demonstration, with which the analysis process in the function tree and 

requirement tree could be displayed step by step. Then, the evaluation methods concerning the 

qualitative aspect and the quantitative aspect were defined. It was shown that former attempts to 

evaluate the correctness of major functionalities and the latter tries to evaluate if the dynamic fault 

handling reconfiguration system can really enhance the availability of industrial automation 

systems with the three proposed calculation equations. Afterwards, on the basis of the 

demonstrators, i.e. the two-tank system simulator, the coffee maker simulator and the high-bay 

warehouse simulator, the structure of the simulator in combination with the dynamic fault 

handling reconfiguration system and the results of the evaluation were presented. Finally, the 

predefined requirements for the conception, the proposed conception of the dynamic fault 

handling and reconfiguration were evaluated. As a result, the proposed conception can fulfill the 

requirements, the industrial automation system can perform the available functions smoothly and 

the availability of industrial automation systems can be increased to an extreme degree.  
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7 Conclusion and Future Work 

In line with the requirements presented in Chapter 2.4, the conception of dynamic fault handling 

and reconfiguration were evaluated in the last chapter. In this chapter, the results of this research 

will be recapitulated. Then two limitations on the conception will be presented. Finally, some 

possible future work will be outlined.  

7.1 Summary and Contribution of the Research 

Along with the widespread use of industrial automation systems, the continuous working ability 

of industrial automation systems plays an important role in daily production processes and life. 

Likewise, availability has become an extremely important indicator for an industrial automation 

system, and cannot be ignored. Due to the global expansion of the sales area, however, the 

traditional maintenance mode, e.g. manual door-to-door service, has been unable to fully adapt to 

that change. Therefore, within this context, ways to solve the issue of helping manufacturers 

increase their availability of produced industrial automation systems and to provide users with 

smoother services are needed urgently. To solve this problem, and support the maintenance for 

manufacturers, a novel dynamic fault handling and reconfiguration approach was developed and 

introduced. With the help of the dynamic fault handling and reconfiguration system, the current 

fault, as well as its effect, can be quickly identified, and the industrial automation system can still 

work with the available functions. If the fault is known, its effect can be directly identified by 

accessing the fault knowledge base, so that the fault can be handled rapidly. If the fault is new, 

partial functions can be identified by means of the dynamic fault handling and reconfiguration 

system based on the system model. The industrial automation system can perform the partial 

functions via the reconfiguration, even if the fault still exists. Hence, the availability of the 

industrial automation system can be improved.  

The result of the research is a dynamic fault handling and reconfiguration system able to cooperate 

with the existing fault diagnosis system to deal with faults in an industrial automation system. 

Fault diagnosis systems provide fault diagnosis results for the dynamic fault handling and 

reconfiguration system when a fault is present. Based on the fault diagnosis results, a dynamic 

fault handling and reconfiguration system analyses the fault results, identify the functions still 

available, and generates corresponding reconfiguration commands to guide the reconfiguration of 

industrial automation systems. In this way, the industrial automation system can supply available 

services as well as partial functions for users before the fault is removed. The dynamic fault 

handling and reconfiguration system is a fixed constituent for the industrial automation system 

that runs in parallel to its execution. The benefit of the cooperation between the existing fault 

diagnosis system and the dynamic fault handling and reconfiguration system is that the manual 

fault diagnosis and maintenance activities can be replaced by an automated diagnosis and a 

reconfiguration with the available functions. Therefore, it can reduce the maintenance time and 
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assure the availability of partial subsystems. This helps the customers to save a great deal of time 

and money, as well as improving or assuring a high degree of trust in the industrial automation 

system. 

In this conception, faults are handled according to their being known or new. Known faults and 

the corresponding available functions can be simply identified with the fault identifier. For new 

faults, fault locations can be diagnosed initially with the help of historical data and various fault 

models as well as process models. By means of various models, features are extracted from the 

historical data. The server system utilizes symptom knowledge to compare them with the extracted 

features to assess the fault location, i.e. defective components. Afterwards, with help of the system 

knowledge, the server system searches for the fault impact within the function tree via the depth-

first-search approach to identify affected and unaffected functions. By means of the same search 

approach, the unaffected functions can be evaluated with the requirement tree to identify available 

functions. Corresponding available functions and their relationship with tasks, which are provided 

by industrial automation systems, and the availability of ongoing tasks, can be further evaluated. 

Finally, reconfiguration commands for available functions and available tasks are generated for 

industrial automation systems. This new fault, with its diagnosis symptoms and available 

functions, is then stored in the database as fault knowledge. The fault knowledge, except for the 

available functions, is also updated in the local fault knowledge, making it possible for the existing 

fault diagnosis system to detect this fault when it appears.  

In order to adapt the specific requirement of system knowledge, a system model and its 

formalization have been proposed to represent an industrial automation system. A system model 

consists of three major parts: a component model to describe the physical structure, a function 

model to describe the logical structure, and a requirement model to represent all quality 

requirements. These three models can be mapped with each other. Furthermore, the system model 

has been formalized with eight matrices and a multitude of rules for functions and requirements 

to perform automatic reasoning. With the help of rules and matrices, a fault impact can be 

identified in the perspective of available functions.  

A structure of a unified interface has been defined to adapt the quick development and different 

communication interfaces of industrial automation systems. The communication between local 

systems and server can be realized through the internet. With the defined data format, it allows 

quick exchange of large quantities of data. By means of the defined communication interface, the 

two-tank system, the coffee maker, and the high-bay warehouse can complete data exchange with 

the dynamic fault handling and reconfiguration system. Moreover, the diagnosis process and the 

maintenance process are very complex, including: dealing with empirical process data, identifying 

major features, etc. These activities are much cost and time intensive, as well as requiring very 

professional knowledge and tools. With the help of the proposed dynamic fault handling and 

reconfiguration concept, the user can be greatly supported, and the complexity can be very 

successfully controlled. 
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The proposed concept of the dynamic fault handling and reconfiguration for industrial automation 

systems provides the following benefits: 

 Initially, the cooperation with existing fault diagnosis system and automatic fault impact 

analysis, based on the system model, can control the complexity of the fault diagnosis for the 

user.  

 And then, when a fault appears in industrial automation systems, the downtime of an industrial 

automation system can be reduced by running the still available functions.  

 Then, known faults can be processed directly by accessing the fault knowledge base. This 

helps the user to save time and money.  

 Finally, new faults can be automatically analyzed by means of the established system model. 

This provides the still available functions as the analysis result.  

With the identified available functions, the industrial automation system can be reconfigured to 

provide the still available services for the user, so the availability of an industrial automation 

system can be improved. Hence, all these are propitious for improving and enhancing the users’ 

trust degree in the industrial automation systems. 

7.2 Limitations of the Concept 

The proposed conception of dynamic fault handling and reconfiguration is a novel approach for 

handling faults in industrial automation systems. But this conception has some limitations, too. In 

order to not only achieve the above design decisions efficiently and correctly, but also to fit the 

actual situations of an industrial automation system, three conditions enclosed this research: the 

targeted industrial automation system have to have integrated an existing fault diagnosis system; 

the industrial automation system has to be a component-based system; and each function has to 

be able to be individually activated. 

 Existing fault diagnosis system in the industrial automation system: A fault diagnosis system 

should be integrated in the industrial automation system. It can realize real-time monitoring 

of the industrial automation system, detecting as well as diagnosing faults that have appeared. 

Moreover, the fault diagnosis system ought to recode real-time monitoring data for a certain 

period of time as historical data. This can provide a basis for further fault handling of the 

server system. In addition, the integrated fault diagnosis system can complete the fault 

diagnosis for a new fault according to the specific symptoms provided by the dynamic fault 

handling and reconfiguration system. 

 Component-based industrial automation system: The industrial automation system should be 

a component-based system. Each component can be specified with its hardware and software 

to complete a specific function. In this case, the industrial automation system can be analyzed 
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and represented with the proposed system model. Furthermore, each function ought to be able 

to be activated and deactivated with a specific command. This allows for an automatic 

reconfiguration by activating commands.  

7.3 Future Work 

In this research, a conception was developed to maintain industrial automation systems for 

manufacturers via reconfiguring industrial automation systems with available functions in the case 

of the appearance of a fault. For future work, three perspectives can be considered.  

Tool-support for formalization of system knowledge: As described in Chapter 4, a specific system 

model to describe an industrial automation system was presented. However, in practice, such a 

system model does not yet exist in the development phase. To complete such a system model, a 

great deal of time will be required and it cannot adapt to today’s rapid research and development 

of industrial automation systems. Hence, a tool to formulate the existing graphical system model, 

such as UML and SysML, can be developed to generate the existing graphical system model in 

the proposed system model, even transferring the system model into system knowledge.  

Web-based assistance for maintenance service: In the process of fault removing, if there is no 

replacement, the maintenance staff should return with replacements to remove faults. In this case, 

web-based assistance can be considered, which can realize the communication between 

maintenance staff with the dynamic fault handling and reconfiguration system remotely. The 

server can provide advice for a replacement, i.e., detect the fault location through the server system 

for the maintenance staff to improve effectiveness. Furthermore, maintenance staff can provide 

the exact fault location through a manual fault diagnosis, this allows the dynamic fault handling 

and reconfiguration system to reconfigure the industrial automation system with the exact fault 

location and provide more available functions before the fault is removed.  
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Appendix A 

Table of the category of student works 

Concerning investigation works  

Automatic recognition and performance of the per-classified reconfiguration 

possibilities in automation systems 

FA2887 

Investigation of the possibility of Reconfiguration and Building a 3D-Simulator 

for the IAS High-bay warehouse 

FA2799 

Conception and realization of an application to handle new faults in automation 

systems 

FA2887 

Survey and Analysis of Problem-Management-Technologies SA2732 

  

Concerning conception test works  

Conception and realization of a software for identification and classification of 

unknown faults of automated systems 

FA2828 

Development of a concept based on ontology for the fault-handling and 

reconfiguration 

FA2796 

Development of a concept to formalize the knowledge for the reconfiguration of 

automated systems 

SA2783 

Development of a concept to analyze problems in a problem management system FA2740 

Development for a software for determination of fault effects in industrial 

automation systems 

MA2735 

Development of a concept of fault diagnosis based on error detection and 

localization for industrial automation systems 

MA2720 

Concept of diagnosing problems from existing automation systems FA2695 

Concerning system development works  

Development of a remote system for fault handling and reconfiguration for the 

IAS-Bottling plan 

MA2800 

Realization of fault handling and reconfiguration for the IAS high-bay warehouse MA2801 



 

 

Development of a software prototype for a remote fault handling and 

reconfiguration system of the IAS coffee maker 

MT2782 

Porting and extension of the remote fault handling and reconfiguration system for 

the IAS coffee maker 

SA2861 

Design and realization of a web-based maintenance software and the 

corresponding user-interface 

MA2834 

Development of a universal problem management system for variant automated 

system 

BA2737 

Development of an interface of an automated system and a problem management 

system 

FA2722 

Development of a smartphone application for a problem management system SA 2721 

Development of a simulator of the IAS bottling plant BA2719 

Development of a problem-management system for the IAS bottling plant FA2717 

Development of a function-oriented concept for the agent-based problem 

management system of a high-bay warehouse 

MA2665 

Development of an agent-based concept to identify unaffected functions in case 

of a module failure 

BA2664 

Development of a simulation to check the appropriate agent knowledge in the 

agent-based problem management system 

BA2629 

Extension and improvement of an user interface for the dynamic fault handling 

and reconfiguration system 

MA2913 

Concerning further improvement and application works  

Application possibilities of the dynamic fault handling and reconfiguration of 

cyber-physical systems 

MA2912 

Design and development of a tool for formalizing the system knowledge MA2914 

Conception and design of fault localization software to estimate the possible fault 

locations 

MA2930 

 



 

 

Appendix B 

Table of the content of the fault handling database 

Table KType Description 

Symptom_ES SMK Listing all symptoms for the entire system 

Symptom_SS SMK Listing all symptoms for each subsystem (the number of this type table 

is equal to the number of subsystems) 

Fault  FK Listing all occurred faults 

Fault_Statistic FK Listing all processed faults with the info from defective industrial 

automation system 

Reconfiguration FK Listing all reconfiguration commands for all processed faults 

Matrix_CF SSK Depicting the relationship between components and functions 

Matrix_CS SSK Depicting the relationship within a component model 

Matrix_FF SSK Depicting the relationship between functions 

Matrix_FR SSK Depicting the relationship between functions and requirements 

Matrix_RR SSK Depicting the relationship between requirements 

Matrix_CR SSK Depicting the relationship between components and requirements 

Matrix_Redund SSK  Depicting the relationship between redundant entities, e.g. functions 

Component SSK Listing all attributes for each component 

Function SSK Listing all attributes for each function 

Requirement SSK Listing all attributes for each requirement 

Contact  SSK Listing contact information regarding various maintenance staff 
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