
A formal mapping between OPC UA and the
Semantic Web

Rainer Schiekofer1,2, Stephan Grimm1, Maja Milicic Brandt1, and Michael Weyrich2
1Siemens AG 2University of Stuttgart

Abstract—The communication protocol OPC UA is one of the
most important IIoT enablers within the automation domain.
OPC UA not only aims to provide interoperability on the
transport layer, but also interoperability of the semantic layer
shall be addressed based on so-called Companion Specifications.
However, the lack of OPC UA formal semantics makes automatic
validation of OPC UA data models impossible. Another drawback
is the shortage of available tools for OPC UA, such as an
implementation of the query engine for the specified OPC UA
query language. In this paper we provide a formal translation
of OPC UA models to the Semantic Web standard OWL, thus
making OPC UA implicit semantics, that is described in the
documentation, explicit, by means of OWL axioms. Moreover,
we outline how this mapping can be used to offer validation
and querying of OPC UA data models based on already existing
Semantic Web technology.

Index Terms—OPC UA, OWL, Mapping, Query, Validation

I. INTRODUCTION

In the area of factory automation OPC Unified Architecture
(OPC UA) [1] is the new standard that is promised to lift
field device communication from low-level signal exchange
schemes onto a semantic level, contributing to the realiza-
tion of flexible manufacturing scenarios within the Industry
4.0 vision. OPC UA is a machine to machine communi-
cation protocol for industrial automation developed by the
OPC Foundation. However, despite all the improvements that
OPC UA brings over conventional device communication, it
still exhibits certain problems when it comes to capturing
the semantics of m2m communication structures: much of
the semantics of the OPC UA basic constructs is defined in
specification documents in an implicit way, only accessible to
the human implementor. Moreover, the relatively new OPC UA
specifications also lack implementation in available tools,
which now just start to emerge.

On the other hand, Semantic Web [2] technology is state-of-
the-art for representing and processing explicit semantics for
data models in information systems in general, and specifically
for the web. The standardized ontology languages RDF(S)
and OWL provide a representation framework for formulating
semantically rich knowledge graphs, while auxiliary standards
like SPARQL or REST provide means to communicate and
query such information. Being supported by an active research
community for some years now, it also offers an established set
of tools that support these standards. Hence, it appears to be
natural to investigate the use of the already matured Semantic
Web technology stack for the relatively new OPC UA standard

for capturing semantics more formally and for the reuse of
Semantic Web tools for tasks like querying or validation.

There are various uses cases in the automation world for
which this combination of Semantic Web technology and
OPC UA is promising. For accessing data from field devices
described by means of OPC UA information models, the OPC
foundation introduced OPC UA Query as a mechanism for
performing a filtered search for information in the device
server’s address space. But since OPC UA is still rather
new there is not yet an implementation of OPC UA Query
available. To fill this gap, the readily available SPARQL
language and tool stack could be used to query data from
OPC UA information models when bridged to an RDF-
based representation. Furthermore, validation of OPC UA
information models against the specification is critical for
producing high-quality data models that adhere to the OPC UA
specification. Current tools already implement some validation
checks covering certain aspects of the specification as part
of their modeling UIs, but a broader coverage for validation
could be reached by formulating OPC UA validity rules by
means of ontology languages in a declarative way and use
reasoning tools to automate and unify validation. In this way,
validation could even be extended to the inclusion of custom
rules that come from so-called Companion Specifications for
specific industries.

Under these circumstances, it is surprising that only a few
researchers tried to connect OPC UA to the Semantic Web so
far. For example, the authors of [3] describe an approach how
OPC UA can be integrated into a Linked Data environment.
However, the authors seem to define a new ontology for OPC
UA and also do not use most of the built-in OPC UA concepts
like the type concept. Another interesting approach with a
focus on the reversed mapping direction from OWL to OPC
UA is described in [4]. The problem with this approach is
that it does not define mappings for all OPC UA concepts like
ReferenceTypes. Because of that, this mapping cannot be used
to lift the rich semantics of OPC UA Companion Specifications
up into the Semantic Web, mainly due to the fact of the missing
concept transformations, which are heavily used in most of the
Companion Specifications. The authors of [5], [6] developed
a concept how OWL-S [7] can be introduced to OPC UA
Methods. Nevertheless, because this approach only covers the
Method-NodeClass of OPC UA and does not address the other
NodeClasses only about 5% of the Nodes defined by most
Companion Specifications can be covered.

As the primary contribution of this paper, we present a

978-1-7281-2927-3/19/$31.00 ©2019 IEEE 33

cnc:CncChannelType

opc:DataItemType

cnc:ActGFunc

cnc:CncPositionVariableType

cnc:PosTcpBcsA

cnc:CncAxisType

<CncAxis>

cnc:CncChannelType

loc:localCncChannel

opc:Organizes

opc:DataItemType

opc:PropertyType

opc:ValuePrecision

opc:PropertyType

cnc:CncPositionVariableType

cnc:CncAxisType

opc:DataItemType

cnc:ActGFunc

cnc:CncPositionVariableType

cnc:PosTcpBcsA

cnc:CncAxisType

loc:X1

Object-Node

ObjectType-Node

Legend

Variable-Node

VariableType-Node

opc:HasComponent opc:HasTypeDefinition

opc:HasProperty

InstanceDeclarations

TypeModel Instances

InstanceDeclarations

opc:Organizes

opc:BaseVariableType

opc:HasSubtype

Fig. 1. An example OPC UA information model for CNC machines.

formal mapping between OPC UA information models and
the OWL/RDF(S) languages. This shows in particular how
any OPC UA-based model can be represented in RDF/OWL
as a basis for automated transformation. Furthermore, we
exemplify how this formal bridge between OPC UA and
RDF/OWL can support the two use cases of querying as well
as validating OPC UA information models. This is showing the
potential of using Semantic Web technology in the emerging
activities of building up semantic information models for
device communication in the domain of industrial automation.

II. BACKGROUND

In the next two sections, we will give a brief overview of
OWL and OPC UA.

A. Web Ontology Language

The Web Ontology Language (OWL) [8] is a W3C standard
that provides ontological constructs for knowledge represen-
tation. OWL is built on top of other W3C standards such as
RDF [9] and RDF(S) [10]. OWL semantics is grounded in
Description Logics [11], which are decidable fragments of the
first-order-logic.

The basic entities in OWL are the following: OWL individ-
uals denote objects (e.g., anna and john); OWL classes denote
classes of objects (e.g., Female, Person, Engineer); OWL
object properties relate objects to objects (e.g., relating a child
to its parent with hasChild); OWL data properties assign data
values to objects (e.g. relating a height to a person); and OWL
annotation properties to record ontology meta-information,

such as the author and creation date. Moreover, OWL provides
constructs for building complex class expressions, such as:
conjunction (Female and Engineer), disjunction (Engineer or
Doctor), existential restrictions (a class of Persons who have at
least one child), etc; property expressions (inverse, chains, etc).
OWL axioms, such as class subclass axioms (Female subClas-
sOf Person), class disjointness axioms (Female disjointWith
Male), class equivalence axioms (Person equivalent (Male
union Female)) are used to axiomatize the domain. Moreover,
there are property axioms which may specify property domain
and range, sub-property relationships, property equivalence
and disjointness, and relationships between property chains.
Finally, individual axioms make statements about individuals
(type assertions, property assertions, same individuals, differ-
ent individuals). OWL Reasoners [12], [13] can automatically
perform reasoning tasks such as checking consistency and
inferring implicit relationships.

Moreover, the W3C recommendation SHACL (Shapes Con-
straint Language) [14] specifies a constraint language over
RDF data; there is a number of available SHACL implemen-
tations [15]. RDF(S) datasets can be accessed via the W3C
standard protocol and query language SPARQL [16].

B. OPC UA

Open Platform Communication Unified Architecture (OPC
UA) [1] is one of the most promising industrial communication
standards for Industry 4.0 scenarios. OPC UA aims to solve
the two most important problems of typical IIoT scenarios,
which are interoperability on the transport and semantic layer.

34

TABLE I
CNCCHANNELTYPE DEFINITION (SEE ALSO [22]).

Attribute Value
Browse- CncChannelType
Name
IsAbstract False
References BrowseName DataType TypeDefinition MRule
Subtype of the CncComponentType
HasComp. ActGFunc String[] DataItemType Mand.
HasComp. PosTcpBcsA CncPosDT CncPosVarT Mand.
...
Organizes <CncAxis> CncAxisType OPlaceh.
NOTE: This row represents no Node in the AddressSpace. It is a placeholder
pointing out that instances of the ObjectType will have those Objects.

Interoperability on the transport layer can be achieved
through the standardization of different transport protocols like
OPC TCP and HTTP(S) in combination with different encod-
ings like OPC JSON, OPC Binary, or OPC XML. Recently
the OPC Foundation also offers a cloud-ready interface based
on the well-known publish-subscribe pattern, using transport
protocols like MQTT and AMQP. However, only standardizing
the messages for various transport protocols is not enough. The
second step to reach the goal of interoperability on the trans-
port layer is the standardization of interaction patterns with
the service. In OPC UA these interaction patterns are called
Services, which allow a client to access the graph-based data
model of OPC UA. Several services were defined to introspect
and manipulate the data model (e.g., the Read service, for
fetching data and the Write service for manipulating data).

Interoperability on the semantic layer can be reached
by the graph-based data model of OPC UA in combination
with Companion Specifications. In previous years most of the
Companion Specifications were mappings from other existing
standards to OPC UA like AutomationML, PLCOpen, ISA-
95, etc. [17]–[19]. All of these standards are generic and try
to solve the problem of semantic interoperability on an abstract
layer. Eventually, these standards can only be considered as
the first step towards semantic interoperability. For example,
standardizing the notion of a ”Thing” and a concept how
”Skills” of these ”Things” shall be exposed, does not solve the
issue of concrete Industry 4.0 applications like automatic skill-
matching. For such applications, the semantics of concrete
skills, like drilling or clamping, must also be standardized.
Because of that, there exists a great demand for standardized
detailed semantics for a given domain. This is exactly what is
addressed by the VDMA [20]. VDMA represents more than
3200 companies within the manufacturing domain and can,
therefore, be considered the largest industry association in
Europe. One goal of the VDMA is to standardize domain-
specific semantics for a huge part of the automation domain
(e.g., machine vision, robotics, powertrain, cnc machines,
etc.). Their semantics will be standardized within OPC UA
Companion Specifications [21], leading to a whole new level
of semantic interoperability in the automation domain.

III. ANALYSIS AND PROBLEM STATEMENT

As already mentioned in the previous sections, OPC UA
offers the capability to store very rich and standardized seman-

tics in OPC UA information models. However, despite several
public requests [23], there was no attempt to fully map the
OPC UA specification to a formal ontology language yet. For
our use cases of interest, validation and query of OPC UA
data models, one would greatly benefit from such a mapping,
as it would allow to apply relevant existing tools from the
OWL/RDF(S) ecosystem, rather than having to re-invent them
in the OPC UA world. The mapping we describe in Section
IV aims to be first such comprehensive mapping from OPC
UA to OWL. One essential requirement for this approach is
that OPC UA restrictions and semantics (implicit and explicit)
are transformed correctly to a formal ontology language like
OWL. Only if the concepts match on both sides, all benefits of
Semantic Web technology can be unleashed and used to solve
our use cases. In the following, we will start with a short
analysis of OPC UA semantics, revealing some of the issues
which are preventing a trivial mapping to OWL. The basic
building blocks of OPC UA are eight different types of Nodes
(categorized in so-called NodeClasses). An example of such a
NodeClass is the Object-Node, which can be used to represent
a ”Device”, while a Variable-Node could be a concrete value
(e.g., serial number) of the Device. The connection between
different Nodes is done by so-called References.

Figure 1 shows an example information model of OPC UA
based on [22]. The left side of the picture contains a small
fracture of a typical OPC UA TypeModel, which is provided
by the Companion Specifications. Several Type-Nodes are
defined, for example, a ”CncChannelType”, a ”CncAxisType”
and also a ”DataItemType”. These Types are defined with
special NodeClasses in OPC UA (e.g., ObjectType-Node and
VariableType-Node). Each Instance-Node (Figure 1 right side)
references its TypeDefinition with a special ReferenceType
named ”HasTypeDefinition”. While Type-Nodes (e.g., Vari-
ableType, ObjectType, etc.) can be subtyped and therefore
inherit semantics and restrictions from the supertype, the
same is not true for Instance-Nodes (e.g., Variable, Object).
However, surprisingly we can also find Instance-Nodes in
the TypeModel of OPC UA. These special Instance-Nodes
are also called InstanceDeclarations within OPC UA. An
InstanceDeclaration is a Node which is defined in the context
of a Type-Node and is used to model the sub-structure of a
Type. The sub-structure of the CncChannelType is depicted in
Table I. Each InstanceDeclaration is defined by several char-
acteristics. (1) The ReferenceType interconnects the defining
Type-Node with the InstanceDeclaration. It is also allowed
to use a subtype of the concrete ReferenceType. (2) The
expected NodeClass and BrowseName (a BrowseName is a
string with a NamespaceURI assigned to it, for example,
”http://opcfoundation.org/UA/CNC/” or in short ”cnc:”, as
NamespaceURI and ”CncChannelType” as string part), which
must be identical on each Instance-Node. (3) The DataType
(if applicable) and TypeDefinition (if applicable). Also in
this case subtypes are allowed. Finally, the corresponding
ModellingRule is assigned. OPC UA defines several Mod-
ellingRules and also allows to define new ModellingRules,
if necessary. The Mandatory-ModellingRule, for example, en-

35

OPC UA Base Information Model
(e.g., BaseVariableType, ServerType, EngineeringUnits, ...)

OPC UA Meta Layer
(e.g., NodeClasses, Attributes, References, ...)

Device Vendor Information Model (Siemens)
(e.g., SimaticDeviceType, ...)

Companion Spec.
(e.g., TopologyElementType)

Machine Vendor Information Model
(e.g., CncMachineVendorDeviceType, ...)

Machine User Information Model
(e.g., ProcessType, FactoryElementType, ...)

Device / Asset Information Model with Process Data
(e.g., ProcessA, FactoryElementArea1, ProductionDeviceA ...)

O
P

C
 U

A
 In

fo
rm

at
io

n
 M

o
d

e
lin

g

In
fo

rm
at

io
n

 M
o

d
e

l E
xp

re
ss

iv
it

y

Companion Spec.
(e.g., StreamType, CncAxisType)

Query

Validation

Analytics

Validation

Analytics

Validation

Analytics

Validation

Meta-Layer

Base-Layer

Companion-
Layer

Extension-
Layer

Instance-
Layer

Fig. 2. Overview of OPC UA Information Modeling.

forces, that each Instance-Node of the CncChannelType must
reference a Node similar to the corresponding InstanceDec-
laration. Similar in this case means, the same NodeClass
and BrowseName combined with the same DataType and
TypeDefinition or a subtype (if applicable), referenced by the
defined ReferenceType or a subtype of it. Similarly, there
are Optional-ModellingRules, stating that InstanceDeclara-
tions are not compulsory on instance level. The Placeholder-
ModellingRule is used if the BrowseName of the Instance-
Node is not defined within the Companion Specification and
can be freely chosen for Instance-Nodes (only in combination
with Variables or Objects).

A typical Companion Specification also describes the se-
mantics of these InstanceDeclarations in textual form and in
machine-readable form (OPC UA NodeSet). In case of the
ActGFunc InstanceDeclaration from CncChannelType this is
done in the following way [22]: ActGFunc: ”Array of active
G functions; there can be several G functions active at a time
(modal and non-modal G functions).”;

As shown above, the semantics of such Companion Spec-
ifications is very rich and can be used for use cases like
monitoring applications, which are able to find the necessary
data-points automatically based on standardized semantics.
However, as also depicted in Figure 1, OPC UA has some
special modelling practices. For example, just consider the fact
that the semantics of the ActGFunc Instance-Node (right side
of Figure 1) is defined by the InstanceDeclaration (left side of
Figure 1), but the Instance-Node specifies the DataItemType as
its Type and not the InstanceDeclaration. While the connec-

tions between InstanceDeclarations and Instance-Nodes are
pretty obvious for each OPC UA expert, a typical Semantic
Web expert would probably not have guessed these implicit
connections. Note that, there is no other direct Reference be-
tween an InstanceDeclaration and an Instance-Node, the con-
nection is implicitly made through the identical BrowseName.
Of course, OPC UA defines further rules to ensure that this
concept always can be applied. For example, it is forbidden
to define two identical BrowseNames for InstanceDeclarations
in the context of the same Type. In contrast, a Semantic Web
expert would have probably expected a new VariableType,
which is a subtype of DataItemType and is referenced by the
HasTypeDefinition-ReferenceType of an Instance-Node. Ex-
actly such modelling artefacts have prevented a trivial mapping
from OPC UA to a formal language like OWL till now
because, for each OPC UA design pattern, the corresponding
concept and transformation rule must be identified.

Besides the concepts which already were mentioned above,
we identified several additional concepts to express semantics
in OPC UA: ReferenceTypes, DataTypes and some Attributes.
However, because of space-limitations, we will not go deeper
into details.

IV. OPC UA TO OWL

In this Section, we will give an insight into our mapping
from OPC UA to OWL. The full mapping will be contributed
later on directly to the OPC Foundation. In Table III we
outlined the most essential mapping rules for transforming
Variable-Nodes to OWL. The left side of Table III lists

36

0: Meta-L.

2: Companion-L.
1: Base-L.

Fig. 3. Protégé-View of the generated OWL ontology.

OPC UA concepts. Note that most OPC UA concepts are
defined by more than one line in the Table (marked with
indents). The right side contains the OWL part of the mapping,
sub-structured in OWL entities and OWL axioms [24]. The
URI-schema is based on a RESTful OPC UA interface [25]
with additional restrictions. In combination with this RESTful
interface our mapping ensures that it will be possible to build
up a Linked Data [26] network automatically for OPC UA (in-
cluding Companion Specifications as well as vendor-specific
extensions).

OPC UA information models are built in a modular way
(see also Figure 2), where the OPC UA meta-model (Meta-
Layer) provides the basic building blocks for information
models, continuing with the OPC UA core information model
(Base-Layer), which is provided by the OPC Foundation itself,
followed by OPC UA companions (Companion-Layer), OEM-
specific schema extensions (Extension-Layer) of OPC UA
companions, and finally OPC UA instance models (Instance-
Layer) that describe configuration and data items of individual
devices based on schemas of the Base-Layer, Companion-
Layer and Extension-Layer. The mapping transforms OPC UA
information models by translation of the modules (levels Base-
Layer - Instance-Layer described above) into RDF/OWL on-
tologies that import each other in the same way the respective
OPC UA modules do. Once this transformation is performed,
the resulting RDF/OWL ontologies can be used for the purpose
of validation, querying, and analytics. Figure 2 also depicts the
typical OPC UA information model layers for each use case.

A Protégé view of an example result OWL ontology is
shown in Figure 3. The class hierarchy depicts the results
of transforming the basic concepts of Meta-Layer such as
Variable, VariableType, ObjectType, DataType; and the Base-
Layer and Companion-Layer (sub-concepts of the respective
Meta-Layer concepts, denoted with VarTand DataT in Table
III:). The lower right corner of Figure 3 shows the results for
transforming parts of the Mandatory VariableInstanceDecla-
ration restrictions. Notice that, in the transformation process
also object properties for the BrowseName and classes for
the InstanceDeclarations are generated (e.g., ”actPos” and
”cmdPos”). InstanceDeclarations with the ”CncPositionVa-
riableType” as Type are depicted in the lower left corner
(e.g., ”CncChannelType PostTcpBcsA”). Type-Attributes are
displayed at the upper right corner of Figure 3. Some of
the Type-Attributes are directly mapped to some well-known
annotation properties, for example, the OPC UA NodeId to
rdfs:isDefinedBy.

The mapping rules from Table III make use of OWL anno-
tations as appropriate, as many OPC UA Type-Attributes are
only used for describing the Type-Node and should not be in-
herited by the Instance-Node of this Type (e.g., DisplayName-
Attribute). The existence of such attributes cannot be validated
by OWL reasoners, but with alternatives such as SPARQL. On
the other hand, the instantiation rules of OPC UA and also the
subtyping concept of Types are captured by means of OWL
axioms and therefore can be validated with OWL reasoners.
We should mentions that, for using OWL reasoners to validate

37

1

1

1

Fig. 4. Failures in an information model (UaModeler-View).

OPC UA data models, a lot of additional axioms, such as
disjointness axioms, are introduced into the OWL ontology.
The technical report of this mapping has about 50 pages and
also contains, for example, the complete mapping of OPC UA
datatypes to OWL datatypes.

V. PROOF-OF-CONCEPT

In the following Section, we will discuss two practical use
cases to address some major challenges of OPC UA, which
could not be solved till now. The underlying OWL ontology of
our prototype is generated based on our transformation rules
and has the DL expressivity SROIQ(D).

A. Validation

OPC UA defines a lot of rules regarding the structure
of information models. However, currently there is no tool
available which is able to validate information models for OPC
UA. Most tools like SiOME [27] and UaModeler [28], only
support basic checks, such as ”All types are inherited by the
BaseTypes of OPC UA”, but at the end cannot be used to
ensure that the designed information model is fully compliant
to the OPC UA specification.

One example of an invalid OPC UA information model
is displayed in Figure 4. For our use case, we modelled
the following invalid statement: A Variable-Node which
uses the Organizes-ReferenceType to reference another Node
(OPC UA [1]: Allows the Organizes-ReferenceType to be
used only with the View-NodeClass or Object-NodeClass as
Source-Node.). Up to now, such failures cannot be detected
by any consistency-check of UaModeler or SiOME.

We will now show how OPC UA information models
can be validated based on our OPC UA to OWL mapping
in combination with existing reasoner technology. Figure 5
depicts how the problem of Figure 4 can be addressed. This
restriction can be modelled easily through the usage of OWL
domain and range restrictions in combination with the disjoint
concept and some further concepts, which are a part of our
mapping. Nevertheless, not each rule in OPC UA can be
checked easily with only OWL reasoners. This is mainly
due to the fact that OWL reasoning uses the so-called open-
world assumption (OWA). For example, a mandatory OPC

Fig. 5. Validation of OPC UA restrictions with HermiT [12] (Protégé-View).

UA property which is not present in the current graph is
automatically considered as absent in OPC UA. In contrast,
an OWL reasoner would not raise an exception if a mandatory
property is missing, because there is no violation under OWA.
Naturally, it is possible to introduce so-called closure axioms
into the ontology, which can be used to add the fact that the
mandatory property is not modelled anywhere else. Based on
this axiom, the reasoner would now raise an exception, which
is exactly the behaviour which is expected for our validation
use case. Nevertheless, such rules can be checked much more
efficiently with SPARQL or SHACL.

In conclusion, we showed that validation of OPC UA
information models using OWL reasoners is feasible, but some
further research is necessary regarding some special rules in
OPC UA. We also notified the OPC Foundation about an
inconsistency within the core OPC UA specification (Base-
Layer) we detected. In addition, we also identified rules which
cannot be checked because of missing support in the underly-
ing reasoners. For example, OPC UA defines a ReferenceType
restriction of ”non-looping” hierarchies. This restriction could
be easily modelled through irreflexive and transitive object
properties. Nevertheless, most reasoners do not support the
combination of these two object property characteristics.

B. Query

The OPC Foundation specified a query language for ac-
cessing the information model of OPC UA. Nevertheless, due
to the high complexity, nobody has implemented OPC UA
Query until now for a publicly available product. We will
now explain in greater detail how the presented mapping can
be used to formulate OPC UA queries in SPARQL. As an
example, which is well-known in the OPC UA universe, we
chose Example B.2.4 from OPC UA Part 4. An OPC UA
Query can be partitioned in two steps: First, specifying a so-
called Content-Filter, which is used to apply certain filters;

38

Operator
Element

Attribute
Element

RelatedTo

RelatedToPersonType HasPet

AnimalType ScheduleType HasSchedule

Fig. 6. OPC UA Part 4 Annex B Figure B.5 - Example B.2.4 Filter [1].

second, defining a so-called NodeTypeDescription for selecting
the data which shall be returned.

The Content-Filter of Example B.2.4 can be formulated in
the following way: Find all Instances of PersonType, where
the Instances are connected to an Instance of AnimalType
with a HasPet ReferenceType. In addition, the AnimalType
Instance must be connected to a ScheduleType Instance with
a HasSchedule ReferenceType. These conditions can also be
represented in an OPC UA specific graphical notation, which
is depicted in Figure 6.

The NodeTypeDescription of Example B.2.4 can be formu-
lated in the following way: Return the LastName Property
of the PersonType Instance and the Name Property of the
corresponding AnimalType Instance and the Period Property
of the ScheduleType Instance (see also Table II).

Annex B of OPC UA Part 4 also specifies an example
information model and the results which should be returned for
that query executed against this information model. Based on
our mapping, it is possible to transform OPC UA information
models into RDF-graphs, which can be loaded into already
existing SPARQL-endpoints. We will now take a closer look
at Example B.2.4 from the OPC UA specification and its
transformation into SPARQL using our OWL ontology (see
also Figure 7). For our prototype we used Apache Fuseki [29]
from the Jena Semantic Web framework.

Line 1-2 of Figure 7 shows how OPC UA NamespaceURIs
of the OPC UA NamespaceArray can be used as SPARQL-
prefix. Line 3 defines the Namespace for our OPC UA meta-
model in OWL. The OPC UA Content-Filter is modelled
in SPARQL based on simple triple statements (Line 7-9).
Note that more complex filters are also no problem for
SPARQL. For example, a ”greater than” comparison can be
easily modelled in SPARQL with the following statement:
FILTER(?value > 10). Based on Line 5 in combination
with the Lines 11-13, the NodeTypeDescription is expressed

TABLE II
OPC UA PART 4 TABLE B.3 - NODETYPEDESCRIPTION [1].

Type- Include QueryDataDescription
DefinitionNode Subtypes Relative Path Att.
PersonType FALSE ”.12:LastName” value

”<12:HasPet>12:AnimalType value
.12:Name”
”<12:HasPet>12:AnimalType value
<12:HasSchedule>12:Schedule-
Type.12:Period”

Fig. 7. Example B.2.4 of OPC UA Part 4 in SPARQL (Apache Fuseki).

in SPARQL. The lower part of Figure 7 displays the results
which were returned from Apache Fuseki after executing the
query against the information model of OPC UA Part 4 Annex
B. Not surprisingly the results exactly match the results which
shall be returned for the given query.

In conclusion, we showed how OPC UA information models
can be filtered and navigated using SPARQL in combination
with a suitable OPC UA to OWL mapping. Furthermore, the
same query formulated in OPC UA Query based on the OPC
UA C++ SDK of Unified Automation needs about 100 lines
of code (see also [30]), which is much more effort for users
than our SPARQL-based query of Figure 7.

VI. SUMMARY AND OUTLOOK

In this paper, we showed how Semantic Web technology
can be used to solve some big challenges of OPC UA data
models. First, we analysed how semantics is expressed within
OPC UA data models and identified common pitfalls, which
prevent a trivial extraction of the semantics. After that, we
gave some insights into our OPC UA to OWL mapping and
explained parts of the mapping by means of an example (This
work will be contributed to a new OPC UA working group
which will focus on this research). Finally, we outlined how
this mapping can be used to validate and query OPC UA based
data models.

Nevertheless, there are still some open challenges which
have to be addressed. For example, OPC UA Query was de-
signed to be used in production environments with thousands
of updates per millisecond. This places a huge load on the
triple store of the SPARQL query engine and also on the
underlying controllers. At the moment we are investigating
concepts to improve the performance based on classifying
OPC UA data models in static and dynamic data.

39

TABLE III
OPC UA TO OWL TRANFORMATION RULES (NOT COMPLETE). NOTATION M:E → M(E).

OPC UA OWL
Element E Mapping m(E): OWL Entity Mapping m(E): OWL Axiom
Meta-Model Basic Concepts
Variable-Meta-Concept owl:Class Variable SubClassOf(Variable m(Base))

NodeClass-Attribute has-value class expression SubClassOf(Variable DataHasValue(ia:nodeClass 2))
VarT owl:Class VarT SubClassOf(VarT m(VariableType))

DataType-Attribute subclass axiom SubClassOf(VarT m(DataT))
ValueRank-Attribute subclass axiom SubClassOf(VarT m(VR))

DataT owl:Class DataT SubClassOf(DataT m(DataType))
VR owl:Class VR SubClassOf(VR m(ValueRankHelper))
RefT owl:ObjectProperty RefT SubObjectPropertyOf(RefT m(opcua:topObjectProperty))

SourceNode-Restriction (textual) domain object property axiom ObjectPropertyDomain(RefT ”<SourceNode>”)
TargetNode-Restriction (textual) range object property axiom ObjectPropertyRange(RefT ”<TargetNode>”)
Symmetric-Attribute symmetric object property axiom SymmetricObjectProperty(RefT)

VID owl:Class VID SubClassOf(VID m(Variable))
HasTypeDefinition-Reference subclass axiom SubClassOf(VID m(VarT))
DataType-Attribute subclass axiom SubClassOf(VID m(DataT))
ValueRank-Attribute subclass axiom SubClassOf(VID m(VR))

BN owl:ObjectProperty BN SubObjectPropertyOf(BN m(opcua:topObjectProperty))
IA owl:DataProperty IA SubDataPropertyOf(IA owl:topDataProperty)
TA owl:AnnotationProperty TA AnnotationProperty(TA)
Instance-Model Basic Concepts
VarI owl:NamedIndividual VarI ClassAssertion(m(Variable) VarI)

VID (if applicable) class assertion ClassAssertion(m(VID) VarI)
Meta-Model Relations
VarT1 HasSubtype VarT2 subclass axiom SubClassOf(m(VarT2) m(VarT1))
DataT1 HasSubtype DataT2 subclass axiom SubClassOf(m(DataT2) m(DataT1))
RefT1 HasSubtype RefT2 object subproperty axiom SubObjectPropertyOf(m(RefT2) m(RefT1))
Mandatory-VID existential class expression SubClassOf(m(VarT1) ObjectSomeValuesFrom(m(RefT1) m(VID1)))
VarT1 RefT1 VID1

BN-Concept of VID1 owl:ObjectProperty IDOP1 SubObjectPropertyOf(IDOP1 m(BN))
Implicit-Concept has-value class expression SubClassOf(m(VID1) DataHasValue(ia:browseName ”<BrowseNameValue>”)))
Implicit-Concept functional object property axiom FunctionalObjectProperty(IDOP1)
Implicit-Concept irreflexive object property axiom IrreflexiveObjectProperty(IDOP1)
Implicit-Concept existential class expression SubClassOf(m(VarT1) ObjectSomeValuesFrom(IDOP1 m(VID1)))

Instance-Model Relations
VarI1 RefT1 VarI2 positive object property assertion ObjectPropertyAssertion(m(RefT1) m(VarI1) m(VarI2))
IA of VarI1 positive data property assertion DataPropertyAssertion(m(IA) m(VarI1) ”<AttributeValue>”)
NOTE: VarI = Instance-Variable, VarT = VariableType, RefT = ReferenceType, DataT = DataType, VID = VariableInstanceDeclaration
IDOP = InstanceDeclarationObjectProperty, IA = Instance-Attributes, TA = Type-Attributes, BN = BrowseName-Concept, VR = ValueRank-Attribute

REFERENCES

[1] “Iec 62541: Opc unified architecture,” Standard, 2015.
[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scien-

tific American, 2001.
[3] M. Graube, L. Urbas, and J. Hladik, “Integrating industrial middleware

in linked data collaboration networks,” in IEEE Emerging Technologies
and Factory Automation, 2016.

[4] A. Bunte, O. Niggemann, and B. Stein, “Integrating owl ontologies
for smart services into automationml and opc ua,” in IEEE Emerging
Technologies and Factory Automation, 2018.

[5] B. Katti, C. Plociennik, M. Schweitzer, and M. Ruskowski, “Sa-opc-
ua: Introducing semantics to opc-ua application methods,” in IEEE
International Conference on Automation Science and Engineering, 2018.

[6] B. Katti, C. Plociennik, and M. Schweitzer, “Semopc-ua: Introducing
semantics to opc-ua application specific methods,” IFAC-PapersOnLine,
vol. 51, no. 11, 2018, iFAC Symposium on Information Control Prob-
lems in Manufacturing.

[7] “Owl-s: Semantic markup for web services,” https://www.w3.org/
Submission/OWL-S/, 2018.

[8] “Owl 2,” https://www.w3.org/TR/owl2-primer/, 2018.
[9] “Rdf,” https://www.w3.org/TR/rdf11-new/, 2018.

[10] “Rdf schema,” https://www.w3.org/TR/rdf-schema/, 2018.
[11] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-

Schneider, The Description Logic Handbook: Theory, Implementation
and Applications, 2003.

[12] “Hermit owl reasoner,” http://www.hermit-reasoner.com/, 2018.
[13] “Fact++ reasoner,” http://owl.cs.manchester.ac.uk/tools/fact/, 2018.
[14] “Shacl - shapes constraint language,” https://www.w3.org/TR/shacl/,

2018.

[15] “Shacl implementations,” https://w3c.github.io/data-shapes/
data-shapes-test-suite/, 2018.

[16] “Sparql,” https://www.w3.org/TR/sparql11-overview/, 2018.
[17] “Automationml opc ua information model - companion specification

release 1.00,” Standard, 2016.
[18] “Plcopen opc ua information model - iec 61131-3 - companion specifi-

cation release 1.00,” Standard, 2010.
[19] “Isa-95 common object model - companion specification release 1.00,”

Standard, 2013.
[20] “Vdma - members,” http://www.vdma.org/en/mitglieder, 2018.
[21] “Opc ua companion specifications,” https://opcfoundation.org/

markets-collaboration/, 2018.
[22] “Vdw opc ua information model for cnc systems - companion specifi-

cation release 1.00,” Standard, 2017.
[23] “Existings verions of opc ua ontology or vocabulary?”

https://www.researchgate.net/post/Existing versions of OPC UA
Ontology or Vocabulary, 2018.

[24] “Owl 2 structural specification and functional-style syntax,” https://www.
w3.org/TR/owl2-syntax/, 2018.

[25] R. Schiekofer, A. Scholz, and M. Weyrich, “Rest based opc ua for the
iiot,” in IEEE Emerging Technologies and Factory Automation, 2018.

[26] “Linked data,” https://www.w3.org/standards/techs/linkeddata, 2018.
[27] “Siome - siemens opc ua modeling editor,” https://support.industry.

siemens.com/cs/ww/en/view/109755133, 2018.
[28] “Uamodeler,” https://www.unified-automation.com/products/

development-tools/uamodeler.html, 2018.
[29] “Apache jena fuseki sparql server,” https://jena.apache.org/

documentation/fuseki2/, 2018.
[30] T. Goldschmidt and W. Mahnke, “An internal domain-specific language

for constructing opc ua queries and event filters,” in European Confer-
ence on Modelling Foundations and Applications, 2012.

40

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

