SOFTWARE

TECHNOLOGY

Editor: Christof Ebert
Vector Consulting Services

christof.ebert@vector.com

Validation of Autonomous

Systems

Christof Ebert and Michael Weyrich

From the Editor

Autonomous systems are widely used. Yet, for lack of transparency, we are

increasingly suspicious of their decision making. Traditional validation, such

as functional testing and brute force, won't help, due to complexity and cost. To

achieve dependability and trust we need dedicated, intelligent validating tech-

niques that cover, for instance, dynamic changes and learning. Michael Weyrich

and I provide industry insights into validating autonomous systems. I look forward

to hearing from both readers and prospective authors about this article and the

technologies you want to know more about. —Christof Ebert

SOCIETY TODAY DEPENDS on
autonomous systems, such as intel-
ligent service systems, self-driving
trains, and remote surgeries.! The
ultimate validation of the Turing test
is that we often do not recognize au-
tonomous systems. This growing us-
age poses many challenges, such as
how to provide transparency, which
rules or learning patterns are applied
in a complex situation, and if these
rules are the right ones. Validation is
the key challenge, of which we will
provide an overview in this article.
With machine learning and con-
tinuous over-the-air upgrades and

Digital Object Identifier 10.1109/MS.2019.2921037
Date of publication: xxxxxx

updates, a core tenant of any qual-
ity strategy is continuous verifica-
tion and validation. Corrections and
changes must be deployed in a fluid
and continuous scheme, reliably over
the air. We will face future scenarios
where software-driven systems, and
maybe whole infrastructures, must
not be started if they do not include
all of the latest software upgrades.
Automobiles and manufacturing
processes that are safety-critical fall
into that category. Even more de-
manding are medical devices, which
must provide a hierarchical software
assurance because there is no room
for failure.

Autonomous systems have mul-
tiple complex interactions with the

2 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY

®

real world. They perceive and act
in the environment, based upon the
reflections of an intelligent control
system, and they have an increasing
impact on our lives as they imple-
ment and execute high-level tasks
without detailed programming and
without direct human control. Un-
like automated systems, which exe-
cute a carefully engineered sequence
of actions, they are self-governing
their course of action to indepen-
dently achieve their goals.

Figure 1 indicates the five steps
from automation to autonomy as
we know them from human learn-
ing, where we advance from novice
to expert. Those steps exemplify the
progress of a simple and “assisted

0740-7459/190©2019IEEE

SOFTWARE TECHNOLOGY

Aspects of
Cognition /

Automated Systems

Autonomous Systems

Action

Reflection

Perception

Assisted

Partially
Automated

Conditionally
Automated

Highly Fully
Automated Automated

FIGURE 1. The five steps from automation to autonomy.

behavior” from low-level sensing
and control toward “full cognitive
systems” with a very high degree
autonomy. Automated systems are
gradually enhanced to develop a
skilled behavior along with en-
hanced mission planning, and con-
trol and execution capabilities that
will eventually lead to the full cog-
nitive actions of an autonomous sys-
tem. It is expected that an intelligent
behavior can be identified by acquir-
ing knowledge and understanding,
which entails system functionalities
such as perception, reflection, and
action in terms of a cognition.

A completely autonomous car on
level 5 is supposed to drive with no
human intervention, even in dire situ-
ations. This implies that the car must
have intelligence on par with or bet-
ter than humans to handle not just
regular traffic scenarios but unex-
pected ones. Although several play-
ers, such as Google and Uber, are
granted permission to operate their
self-driving services, deadly inci-
dents put our faith in these cars to a
test.2 It is quite apparent that existing
validation measures aren’t enough.3

R ¥ nccd new test

methods that can envision fatal traf-

fic situations that humans haven’t
encountered yet. In addition, testing
cannot simply be isolated to the final
development stages. It must be part of
every phase in the product lifecycle. A
sensible engineering process must be
adopted in the development of auton-
omous cars that lays enough empha-
sis on testing and validation.

Unlike an automated system,
which cannot reflect on the conse-
quences of its actions and cannot
change a predefined sequence of ac-
tivities, an autonomous system is
meant to understand and decide how
to execute tasks based on its goals,
skills, and a learning experience.
While contemplating the deficiencies
of autonomous systems, we should
acknowledge that humans have nat-
ural limits, in terms of processing
speed, repeatability of tasks, handling

complexity, and so forth. In fact, in
aerospace, we already trust autono-
mous flying, and for automotive ap-
plications, automation is forecast to
reduce deadly accidents by 90%.4

Autonomous
systems can become an aid in the fu-
ture, in areas such as automated and
autonomous driving, flying, and pro-
duction robotics.

Validation of Autonomous
Systems

Autonomous systems provide effi-
ciency and safety as they relieve hu-
man operators from tedious manual
activities. For instance, widespread
use of self-driving cars could elimi-
nate as much as 50% of a person’s

daily commuting time.*

SEPTEMBER/OCTOBER 2019 | IEEE SOFTWARE 3

vcsce
Highlight

vcsce
Highlight

vcsce
Highlight

SOFTWARE TECHNOLOGY

Automatic

» Simulation Environments
With MIL, HIL, and SIL

atio 0 e
Brute-Force age e
Ra - R

a orld g
Ra o

a ario

ellige alidatio
e.g og e

e g ana A e g

» Function Test

Validation Handling

» Fault Injection

Confuse Cases

» Negative Requirements,
Manual With Misuse, Abuse, and

» FMEA and FTA for Safety

» Simulation Environments
With a MIL, HIL, and SIL

» Experiments and Empirical
Test Strategies

» Simulation Environments
With a MIL/SIL

» Brute-Force Usage in the
Real World, While Running
Realistic Scenarios

» Specific Quantity Requirements,
e.g., Penetration
Testing and Usability

White Box

Validation Strategy

Black Box

FIGURE 2. The validation technologies for autonomous systems. FMEA: failure mode

and effects analysis; FTA: fault tree analysis; Al: artificial intelligence; MIL: model in the
loop; HIL: hardware in the loop; SIL: software in the loop.

As exciting as this may sound, the
question “Can we trust the autono-
mous systems?” will grow for years
to come. Public confidence in auton-
omous systems depends heavily on
algorithmic transparency and con-
tinuous validation.

Recently, we have seen several
dramatic accidents, such as an au-
tomated car misinterpreting a white
truck as a white cloud, and another
one overlooking pedestrians on a
road, thus, killing people. One spec-
tacular accident happened when an
automated vehicle continued along
while its driver had a heart attack
and could not supervise it. Within
a few seconds, the automated ve-
hicle killed a mother and child as it
tried to avoid colliding with a tree.
Hitting the tree might have killed

the driver, but innocent people in
the surrounding environment would
have been safe.

There are many open questions
about the validation of autonomous
systems: How do we define reliabil-
ity? How do we trace back decision
making and judge it after the fact?
How do we supervise these systems?
How do we define liability in the
event of failure?

Figure 2 provides an overview of
validation technologies for autono-
mous systems. We distinguish, hor-
izontally, the transparency of the
validation. Black box means that we
have no insight to the method and
coverage, while white box denotes
transparency. The vertical axis clas-
sifies the degree to which we can au-
tomate validation techniques and,
for instance, facilitate regression
strategies through software updates
and upgrades.

Let us look at traditional testing
techniques (see Figures 1 and 2) and
evaluate their behaviors. Table 1
provides the complete evaluation
of static and dynamic validation
technologies for autonomous sys-
tems. Negative requirements (such
as safety and cybersecurity) are
typically implied and not explicitly
stated in the system specifications.”

@ (|- following sections ex-

plain how these methods are ap-

plied to validate autonomous cars.

Fault Injection

Fault injection techniques make use
of external equipment to insert faults
into a target system’s hardware, with
or without direct contact. By having
direct contact, faults, such as forced
current addition, forced voltage vari-
ations, and so forth, can be injected
to observe the behavior of the sys-
tem. Faults can be introduced with-
out making physical contact by using
methods such as heavy-ion radiation,
exposure to electromagnetic fields,
and so on. Such fault injections can
cause bit flips, hardware failure, and
similar events that are not tolerated
in safety-critical systems.

Functionality-Based Testing

Functionality-based test methods
categorize the intelligence of a sys-
tem into three classes: 1) sensing
functionality, 2) decision function-
ality, and 3) action functionality.
The idea behind such methods is
that an autonomous vehicle should
be able to retrieve various function-
alities for a given task analogous
to human beings. For example, a

4q IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

®

vcsce
Highlight

vcsce
Highlight

>
O
o
-
O]
p
L
O
L
-
L
<
S
-
LL
o)
p

$9sed aAnehau 9)qissod
||e 18A09 A|LieSS328U

10U Op S3SBI §1S9) 8| e
Kjjeanewalshs

+ dn18s 01 }nolIA o

Jolneyaq
pue aInjosyyale
wa)sAs buiAuepun
Jo Buipue)siapun

+ 9]910U0J B Salinbay e

HNaIIp
SI UOI}eZI[BI0| }NeH e
SHUI| BWOS
SS|W 0] 3 :S8e)Iaul
+ 10 Jaquinu abie e

Swa)sAs sja|dwoa
+ 9]BpI|eA 0} JUBIDIINSU|

solouapuadap
1uaJedsueiu| e
Suwia)sAs snowouoine
a]epi[eA 0} aAISUaYa.dwo
10U 8J SYUB(OLIBUSIS e
SOLIBUSIS
umouy oy Ajuo s1se] e
Jomod uoeindwod Jo
junowe abJe| e salinbay e
abelanoo
0 ybiy Joj ‘9910} 81nIg e

SSaUaAI9aT $9SSaUNeaM

K11Inoas wasAs suayibusis
sjuawalinbal

[BUOROUNJUOU S8ZI[BLIIOS
PapIOAR 8 0} SOLIBUIS
Buifynuapi 1o} poon

SailjIqeJau[nA uayibuans
0} s1aubisap buljgeua
‘s9SSoUyeam $asodx3

abelanod
pue $198}ap [enpisal JO
9]BWIISa UB S8pIA0Id

uonelbayul Jusuodwiod s)sa|

Sjuswalinbal

[euonouny au} ||e selepljep
usye}

uon9R pue ‘Bunjew uoisioap
‘Buisuss :s308dse | |[e S}sa)

Juawdojanap asemijos
pue aempiey sajdnodaq
$1S09 UOIEPI[eA S39NPaY

Sase)
anebau
[euonenys
asnay

s10819p
Pa103|as Ma}
39npoI|

S9SBJ 159]
a)elausbay

suonesado
pajoedwi Jo}
S9SBJ 189)
[euonouny
1eaday

(Rouaionyie
Mmoj)
SOLIBU3OS
pajoedw
1eaday

KBajens
uoissalbay

WY
dH ‘19911y9.y asudiaug
‘U0ISIA3Yd ‘D1d ‘@INSIA

‘SH00Q “6°8 ‘sjo0}
SjuswalInbal yum page.y
0 pue pajapow Apoaaig

uoeAouU|
fn2es ‘WHO LS8
*6°9 Buljapow 19848p
- puB JUSWUOJIAUS 183]

(Uloy 0s

pue ‘snJjg pue H13y se

14ons) $]00} [BLI0}RUIQIOD
‘uawabeuew

0 1S9) ‘sayns 1sa|

uoneJlaush

Qn}$ 10} SIUBWIUOIAUD

1s8) pajealpsQ

(undHd pue

nunr ‘ajdwexa Joy) |00}

189} JIUN UM ‘uoioelSqe

0 [euonauny oy |00} fuijapoly

uBISald ‘SalIp

‘S1IRYRAON ‘Wa1SAS |\

10398\ “JOVdSP ‘v T1LYIN

0 ‘68 199892 |9poI\
abelanoy salbojouysay
pue Joddns j00L

S9SBJ 9snjuod
Ayjigesn pue pue ‘asnge
‘finoas ‘Ayajes ‘asnsiwW yum
10} Ajjeaiyoads ‘suawalinbal
‘onels anebaN

uonewnNsa
1998p [enpisal

1o} ‘oe}s uopos(ur }ne4

188}

olweuiq uoneibayu|
suonouny

|6 ‘ojweuiq 1S9} uojjound

TIIN pue

“1H S yim

SJUBLIUOIIAUD

olweuAp uoe[nwIs

pue Jnels pue Buljapoj

PoysiN

"SuIe)sAs snourouoine I0j Sa160[0UYD8]} UOTBPI[RA JO Uoneneas syl ' o[JeLl

| IEEE SOFTWARE

SEPTEMBER/OCTOBER 2019

>
O
O
-
o
p
L
O
L
=
L
<
=
=
LL
o)
)

fouaroyy3

3[qe|IBAR S|00} pUB
spoyiew Auew jou ‘s

1.y} ‘auldiosip buimoly e
Jamod

uonendwod abie| SpaaN e
JUBWIUOIIAUD
189] paseq-|y dn

188 0} IOJa UYBIH o

abelanod
[euonenyis Jusledsueliu| e
juepunpal ale
S9SBJ 1S8] 8U1 JO1SO e
abrIan09 Jes|ouf e
abeJIan09 10} 1100 UBIH e

f1ajes pue Ajinoas
woaysAs a19|dwod ajepljea
O}jusiinsul uslyo e

uonewoINe
1581 0U I0 83} A1) o
9AISUSJUI 10CBT e
abpajmouy uewny
uo Ajineay spuadaq e

aAISUBLUI J0GRT
abpajmouy uewny

+ + uo Ajineay spuadeq e

SS9UBAI8YT $9sSauUNea|\

S|ang|

UOI}OB.1ISCR [9PO\-A SS0J0B

S01IBUBIS 189 BuLieys

Buibbey pue 1euLioy abeiols

OLIBUBIS SOZIPJBPURIS
ainpadsoid

1591 JO Jied Jofew sajewolny e

suonouny

[BUJB]UI PUB JUBWIUOIIAUD

[eu.a)xa 0} sa1ouapuadap

$J9pISU0 AjealeWoINy

Koualedsuel; panosdw| e

Buibbey pue jeuLio) abeiols
01JeUdIS SOZIPJBPURIS e
abelanod
pue MalA aAIsuayaidwo)
99U0 1 SWa)SAS ||e sajepifep
aAj994y8 Alybiy snuy
pUB PJIOM [B31 01 1S8S0|) e

sjuawalinbal
Ruenb umouy s1eaw wayshs
au} 1ey1 Buinsua ul 810843
£111n98S 10} pays!|qeISe ||

Swa)sAs [e11199]9

10 8BURI BPIM B I8N0
59580 159)

3] awely 0] Jaisea A|jaAne|ay

Sa.n|ie} age}Iaiul WalsAs
995910} 0] $19UbISAP S9|qRUT o
(9311 orye) A111N28S puR
fyajes 1o} paysi|qeiss (|9

syibuans

aseqelep
Kouapuadap
ay} woly
S95B) 159]
pajeiaush
asnay

(Rousronye
MO))
uonnaday

sjuauodwod
pajordwi
10415919y

uonouny
pabueyo 1o}
solfbaje.ls
1s8) 8}
1eaday

sjuauodwod
pabueyo ay}
10118919y

A6aje.s
uoissalbay

0

0

abelano

S9U9ISNU S Yans
‘s19s e1ep uad ‘uo 0s pue
‘“Yeds ayoedy ‘MojyI0Sus|
SB JONS SYJOMaLLBL}
Bujurea|-auiyaen

adeNy9

‘1sIsSy g3 ‘IaxeIe)
‘Xijewouds) 69 ‘swalshs
10SUSS SNOLIBA WO}
sIabbo| eyep yym ssuriql|
01Jeudas [enjoe yym
fejdai pue Buipioosy

uo 0s
pue ‘e6aA ‘dyZ dSYMO
‘suoisua)xa buizzny
oljewone ‘ajduwexs 1o}
‘S|00} 159} PajeaIpaq

*019 ‘Iobew!

[ewuay | ‘weidb63 ‘d1a
1J0SBIR{ SB 4Ins ‘s|00}

189} 9119ads Juswiiadx3y

K1eiqi asnai pue
‘suonoeJIsqe Juauodwos
‘s19aysyiom 34

saibojouyaa}
pue poddns joo)

1UBLILOJIAUD
pue uonenys
uo Buipuadap
uon93[8s pue

uonelauab
1591 9lWRUA(Q

abeianod
[euonenys
Bulnsus 10}
‘OlweuAq

sjuawalinbal
Ayrenb Joy
Ajjeanoads
‘OIWeUAQ

"019 ‘lewJay}
‘gouewlopiad
‘1591 peo| 10}
uone.auab
1891 [RouIdw3

Swalshs
|eanio-Aajes
10J Ajleaiyoads
‘onels

sonsLIalaRIRY)

‘("Ju0)) sSwalsAs snourouojne 10j SSIBo[oUYDS} UOIIepI[eA JO uonenieas ayl ‘1 a[de.lL

Bunsel |y
pue aniubod
‘gouelsul 1o}
‘uonepijen
UEE]

SOLIBUBIS
ajisiesl
Buiuuna ajym
plom [eal
3y} ul abesn
8910}-91n.g

Buizzny
pue Bunsey
uonesuad

‘aouelsul
10} ‘s1s9]
sjuawalinbal

Auenb

a1j198ds

saifiajelis s8]
[eauidwsa pue
sjuswadx3

V14
pue y3in4

L]]|

| WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

IEEE SOFTWARE

6

vehicle should be able to recognize
other cars and trucks, pedestrians,
and so forth, for vision-based func-
tionality. Combinations of these
recognized objects can act as inputs
to decision functionality, and sev-
eral decisions can lead to actions.
Functionality-based testing breaks
down the scenarios into various op-
erational components that can be
tested individually.

Hardware in the Loop

Although simulation tries to encapsu-
late the real world as closely as pos-
sible, inherent limitations invariably
create a void between the two. Hard-
ware in the loop (HIL) closes this gap
a little by using physical components
for certain aspects of simulation. For
example, a camera model in a simu-
lation technique can be replaced
by an actual camera. The input to
the camera can be fed by means of
a computer screen where videos of
various real-time traffic conditions
are played to validate the behavior
of car. A more advanced technique
has been proposed for autonomous
systems that are tested by robots,
for instance, vehicle HIL, where the
simulated vehicles in traffic have been
replaced by moving robots. This has
the advantage that, in addition to the
camera, radar and lidar hardware
can be tested using HIL.

Vehicle in the Loop

Human interaction can have a dras-
tic influence on the behavior of par-
tially automated cars. The methods
specified earlier fail to account for
this reality. In vehicle-in-the-loop
simulations, real cars are used,
though in a safe environment. A
driver is shown simulated feeds of
the external environment to cap-
ture his interaction with the car. The
car travels across a ground devoid

SOFTWARE TECHNOLOGY

of obstacles, simulating inertial ef-
fects and simultaneously respond-
ing to the external feed. The greatest
advantage to this method is safety:
Since there are no real obstructions
involved, no harm will be incurred
by the test drivers, even if they en-
counter dangerous situations.

Simulators

Simulators are closed, indoor cubi-
cles that act as substitutes for physi-
cal systems. They can replicate the
behavior of any system by using
hardware and a software model. The
behavior of a driver can be captured
by immersing him a replicated exter-
nal environment. Since simulators
employ hydraulic actuators and elec-
tric motors, the inertial effects they
generate feel nearly the same as the
real-life version. They are used for
robots in industrial automation, and
surgery planning in medicine, and
railway and automotive applications.

Brute Force

Nothing can come closer to the real
world than the real world itself. This
is perhaps the final validation phase,
where a completely ready system is
physically driven onto roads with
actual traffic. The sensor data are
recorded and logged to capture be-
havior in critical situations. They
are analyzed to accommodate and
fine-tune the system according to ev-
eryday scenarios. The challenge in
this stage, however, lies in the sheer
amount of test data that are gener-
ated. A stereo video camera, alone,
generates 100 GB of data for every
kilometer driven. In such situations,
big data analysis becomes extremely
important.

Intelligent Validation Techniques
Intelligent validation techniques tend
to automate the complete testing

process or certain aspects of testing.
This eliminates the potential errors
associated with manual derivations
of test cases, since humans may fail
to recognize and think about certain
scenarios. It also eradicates the enor-
mous amount of time that needs to
be invested to obtain the test cases.
The “Intelligent Testing” section
summarizes some approaches that
attempt to derive such validation
techniques.

Truly transparent validation
methods and processes assume the
utmost relevance and will be chal-
lenged by the progress of technology
through the five steps toward auton-
omous behavior that are sketched in
Figure 1. Although they are still rele-
vant, traditional validation methods
aren’t enough to completely test the
growing complexity of autonomous
cars. Machine learning, with situ-
ational adaptations and software up-
dates and upgrades, demands novel
regression strategies. Figure 2 pro-
vides a map of the different testing
techniques.

Intelligent Testing
With AI and machine learning, we
need to satisfy algorithmic trans-
parency. For instance, what are the
rules, in a neural network that is
obviously no longer algorithmically
tangible, to determine who gets a
credit or how an autonomous vehicle
might react with several hazards at
the same time? Classic traceability
and regression testing will certainly
not work. Future verification and
validation methods and tools will in-
clude more intelligence based on big
data exploits, business information,
and the processes’ ability to learn
about and improve software quality
in a dynamic way.*

A key question concerns which
way Al can support the process

SEPTEMBER/OCTOBER 2019 | IEEE SOFTWARE 7

SOFTWARE TECHNOLOGY

Autonomous System |

Functional
Change

SOA Networking

| Intelligent Testing |

Model Database

Spec | Spec |
Component | Component |

Spec | Spec |
/ Component | Component
/’ Spec | Spec |
yd Component | Component |
4
4 7

Al-Based Testing

1. Develop a Component
Model and
Dependency Model

2. Develop a Dynamic
Test Strategy

3. Identify Changes

Dependency Model

4. Compose Relevant
Submodels for
Regression

5. Automatically

Analyze Change
Impacts

6. Automatically Select
Test Cases for
Minimum Effort and
Necessary Coverage

ey

<<block
101083 MotorA GmbH2_ Typl_vi_110108.5l

FIGURE 3. Intelligent testing for autonomous systems. SOA: service-oriented architecture. P: process; PS: production sensor; WP:

work package.

of validation. Obviously, there are
many Al approaches, ranging from
rule-based systems, fuzzy logic,®
and Bayesian nets to the multiple
neural network approaches to deep
learning. However, the process of
validating an autonomous system
is multilayered and rich in detail.

Various levels of validation testing
can be distinguished, such as the
systems level, the components, and
the modules.

The potential for intelligent test-
ing is manifold. On a system level,
there are questions about which
test cases must be executed and to

what extent. This means that intel-
ligent validation is required to help
with the selection and even the cre-
ation of test cases. A first step in
that direction would be an assistance
functionality that helped to iden-
tify priorities in an existing set of
cases. As a result, a validation expert

8 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

®

®

COGNITIVE TESTING FOR AUTONOMOUS SYSTEMS

In our industrial projects, we often face the challenge of
how systems can be validated, and safety assured, when
they undergo a change during operation. Updates over the
air are commonly used for functional modifications of soft-
ware-based automated systems. Be they in manufacturing,
automotive applications, or intelligent building, automated
systems are mostly component based; they consist of mul-
tiple control units that are distributed. Each unit is in a cer-
tain location and has a specific functionality that it provides
to the overall system.

Unwanted behavior and basic functional errors might
occur somewhere in a distributed system because of an
alteration elsewhere. How can such a system be safe-
guarded when changes in its components occur during
runtime? How can safety and security certifications be
maintained after a software modification happens within a
single module?

A test certification requires an understanding of the ef-
fect of a change that is triggered somewhere in a software
module and has impacts elsewhere. How can this inter-
action be deduced and the consequences for all modules
be verified without testing the whole system again from

would be able to test faster and with
a better coverage of situationally
relevant scenarios. On the level of
a component or module,” testing it
is also required to identify relevant
cases. This can range from a simple
support mechanism for how to feed
a system with adequate inputs and
checks on the outputs, to complex
algorithms that automatically cre-
ate test cases based on code or a user
interface. Figure 3 provides an over-
view of intelligent testing as we ramp
up for autonomous systems. Unlike
brute force, intelligent testing con-
siders the white-box and black-box
dependencies and, thus, balances
efficiency and effectiveness. See
“Cognitive Testing for Autonomous
Systems” for a concrete case study.

scratch? The method presented here applies an artificial
intelligence (Al) that can ascertain the consequences of an
individual change in all the control units.

From our industry experience, we recommend a
three-step approach to assess the impacts of software
updates and upgrades (see Figure 3). First, the alteration
in the system needs to be identified in terms of its origin
in a module and its localization in the network. Second,
a logical model of the overall system is composed to
understand the impact on other modules. However, this
model is distributed and needs to be automatically pro-
cessed from the multiple submodules of the components
that are available.

Third, a process of functional verification is required
to check how the change is propagated and what it
means with respect to potential malfunctions in the dis-
tributed system. This Al can be used to test and safe-
guard following a stepwise procedure for testing. It only
requires the specification of the control models and their
intended interaction with the other modules, upon which
the overall functionality can be deduced and test certifi-
cates can be obtained on request.

CHRISTOF EBERT is the managing director of Vector Consulting
Services. He is on the /EEE Software editorial board and teaches
at the University of Stuttgart, Germany, and the Sorbonne in Paris.
Contact him at christof.ebert@vector.com.

MICHAEL WEYRICH is the director of the Institute of Industrial
Automation and Software Engineering at the University of Stuttgart,
Germany. Contact him at michael.weyrich@ias.uni-stuttgart.de.

SEPTEMBER/OCTOBER 2019 | IEEE SOFTWARE

SOFTWARE TECHNOLOGY

SOFTWARE TECHNOLOGY

Perspectives
Verification and validation depend
on many factors. Every organiza-
tion implements its own methodol-
ogy and development environment,
based on a combination of several
of the tools presented in this article.
It is important not only to deploy
tools but to build the necessary veri-
fication and validation competences.
Too often we see solid tool chains
but no tangible test strategies. To
mitigate these purely human risks,
software must increasingly be capa-
ble of detecting its own defects and
failure points. Various intelligent
methods and tools will evolve that
can assist with smart validation of
autonomous systems. However, even
with the support of the smartest in-
telligent algorithms, the question re-
mains how to build the public’s trust
that autonomous systems can be
validated while considering ethical
dilemmas, such as the accident when
the mother and child were killed.
With the growing concern of us-
ers and policy makers about the
impact of autonomous systems on
our lives and society, software en-
gineers must ensure that autonomy

10 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

acts better than humans. Clearly, we
are not talking about few percent-
age points. To build trust, we need
a level of quality at least one order
of magnitude higher than human-
operated systems. It is, above all,
a question of validation to achieve
trust. Alan Turing, who was one of
the first to consider Al in real life,
remarked wisely: “We can only see a
short distance ahead, but we can see
plenty there that needs to be done.”
This remains true for a rather long
transition period, and intelligent
validation will play a pivotal role. @

References

1. M. Weyrich and C. Ebert, “Refer-
ence architectures for the Internet of
Things,” IEEE Softw., vol. 33, no. 1,
pp. 112-116, Jan.—Feb. 2016.

2. M. Santori and D. A. Hall. (2016).
Tackling the test challenge of next
generation ADAS vehicle architec-
ture. National Instruments. Austin,
TX. [Online]. Available: http:/
download.ni.com/evaluation/
automotive/Next_Generation_ADAS _
Vehicle_Architectures.pdf

3. M. Rodriguez, M. Piattini, and
C. Ebert, “Software verification and

®

validation technologies and tools,”
IEEE Softw., vol. 36, no. 2, pp.
13-24, Mar. 2019.

. P. Gao, .H.-W. Kaas, D. Mohr, and D.

Wee, (2016, Jan.) Automotive revolu-
tion: Perspective towards 2030. McK-
insey & Co., New York. [Online].
Available: https://www.mckinsey.
com/~/media/mckinsey/industries
/high%20tech/our%20insights
/disruptive%20trends%20that%20
will%20transform%20the%20
auto%?20industry/auto%202030%20
report%20jan%202016.ashx

. Road vehicles—Safety of the in-

dented functionality, International
Organization for Standardization,
21448, 2019.

. C. Ebert, “Rule-based fuzzy clas-

sification for software quality
control,” Fuzzy Sets Syst., vol. 63,
no. 3, pp. 349-358, May 1994. doi:
10.1016/0165-0114(94)90221-6.

. A. Zeller and M. Weyrich, “Com-

position of modular models for
verification of distributed automation
systems,” in Proc. 28th Int. Conf.
Flexible Automation and Intelligent
Manufacturing (FAIM2018), Colum-
bus, OH, 2018, pp. 870-877.

®

SOFTWARE TECHNOLOGY

Public confidence in autonomous
systems depends heavily on
algorithmic transparency and

continuous validation.

Although they are still relevant,
traditional validation methods
aren’t enough to completely
test the growing complexity of
autonomous cars.

Software must increasingly be
capable of detecting its own defects
and failure points.

To build trust, we need a level
of quality at least one order
of magnitude higher than
human-operated systems.

SEPTEMBER/OCTOBER 2019 | IEEE SOFTWARE

1

