SOFTWARE

TECHNOLOGY

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

Validation of
Autonomous Systems

Christof Ebert and Michael Weyrich

From the Editor

Autonomous systems are widely used. Yet, for lack of transparency, we are
increasingly suspicious of their decision making. Traditional validation, such
as functional testing and brute force, won't help, due to complexity and cost. To

achieve dependability and trust we need dedicated, intelligent validating tech-
niques that cover, for instance, dynamic changes and learning. Michael Weyrich
and I provide industry insights into validating autonomous systems. I look forward

to hearing from both readers and prospective authors about this article and the
technologies you want to know more about. —Christof Ebert

SOCIETY TODAY DEPENDS on
autonomous systems, such as intel-
ligent service systems, self-driving
trains, and remote surgeries.! The
ultimate validation of the Turing test
is that we often do not recognize au-
tonomous systems. This growing us-
age poses many challenges, such as
how to provide transparency, which
rules or learning patterns are applied
in a complex situation, and if these
rules are the right ones. Validation is
the key challenge, of which we will
provide an overview in this article.
With machine learning and con-
tinuous over-the-air upgrades and

Digital Object Identifier 10.1109/MS.2019.2921037
Date of publication: 20 August 2019

0740-7459/1902019IEEE

updates, a core tenant of any qual-
ity strategy is continuous verifica-
tion and validation. Corrections and
changes must be deployed in a fluid
and continuous scheme, reliably over
the air. We will face future scenarios
where software-driven systems, and
maybe whole infrastructures, must
not be started if they do not include
all of the latest software upgrades.
Automobiles and manufacturing
processes that are safety critical fall
into that category. Even more de-
manding are medical devices, which
must provide a hierarchical software
assurance because there is no room
for failure.

Autonomous systems have mul-
tiple complex interactions with the

real world. They perceive and act
in the environment, based upon the
reflections of an intelligent control
system, and they have an increasing
impact on our lives as they imple-
ment and execute high-level tasks
without detailed programming or
direct human control. Unlike auto-
mated systems, which execute a
carefully engineered sequence of ac-
tions, they are self-governing their
course of action to independently
achieve their goals.

Figure 1 indicates the five steps
from automation to autonomy as
we know them from human learn-
ing, where we advance from novice
to expert. Those steps exemplify the
progress of a simple and “assisted

SEPTEMBER/OCTOBER 2019 | IEEE SOFTWARE 15

SOFTWARE TECHNOLOGY

Aspects of

Automated Systems

Autonomous Systems

Cognition

Action

Reflection

Perception

Assisted

Partially
Automated

Conditionally
Automated

Highly
Automated

Fully
Automated

FIGURE 1. The five steps from automation to autonomy.

behavior” from low-level sensing
and control toward “full cognitive
systems” with a very high degree
autonomy. Automated systems are
gradually enhanced to develop a
skilled behavior along with en-
hanced mission planning and con-
trol and execution capabilities that
will eventually lead to the full cog-
nitive actions of an autonomous sys-
tem. It is expected that an intelligent
behavior can be identified by acquir-
ing knowledge and understanding,
which entails system functionalities
such as perception, reflection, and
action in terms of a cognition.

A completely autonomous car on
level 5 is supposed to drive with no
human intervention, even in dire situ-
ations. This implies that the car must
have intelligence on par with or bet-
ter than humans to handle not just
regular traffic scenarios but unex-
pected ones. Although several play-
ers, such as Google and Uber, are
granted permission to operate their
self-driving services, deadly incidents
put our faith in these cars to a test.2
It is quite apparent that existing vali-
dation measures aren’t enough.’ We

need new test methods that can en-
vision fatal traffic situations that
humans haven’t encountered vyet.
In addition, testing cannot simply
be isolated to the final development
stages. It must be part of every phase
in the product lifecycle. A sensible en-
gineering process must be adopted in
the development of autonomous cars
that lays enough emphasis on testing
and validation.

Unlike an automated system,
which cannot reflect on the conse-
quences of its actions and cannot
change a predefined sequence of ac-
tivities, an autonomous system is
meant to understand and decide how
to execute tasks based on its goals,
skills, and a learning experience.
While contemplating the deficiencies
of autonomous systems, we should ac-
knowledge that humans have natural
limits, in terms of processing speed,
repeatability of tasks, handling com-
plexity, and so forth. In fact, in aero-
space, we already trust autonomous
flying, and for automotive applica-
tions, automation is forecast to reduce
deadly accidents by 90%.% Autono-
mous systems can become an aid in

the future, in areas such as automated
and autonomous driving, flying, and
production robotics.

Validation of

Autonomous Systems
Autonomous systems provide effi-
ciency and safety as they relieve hu-
man operators from tedious manual
activities. For instance, the widespread
use of self-driving cars could eliminate
as much as 50% of a person’s daily
commuting time.* As exciting as this
may sound, the question “Can we trust
the autonomous systems?” will grow
for years to come. Public confidence
in autonomous systems depends heav-
ily on algorithmic transparency and
continuous validation.

Recently, we have seen several
dramatic accidents, such as an au-
tomated car misinterpreting a white
truck as a white cloud, and another
one overlooking pedestrians on a
road, thus, killing people. One spec-
tacular accident happened when an
automated vehicle continued along
while its driver had a heart attack
and could not supervise it. Within a
few seconds, the automated vehicle

16 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

killed a mother and child as it tried
to avoid colliding with a tree. Hit-
ting the tree might have killed the
driver, but innocent people in the
surrounding environment would
have been safe.

There are many open questions
about the validation of autonomous
systems: How do we define reliabil-
ity? How do we trace back decision
making and judge it after the fact?
How do we supervise these systems?
How do we define liability in the
event of failure?

Figure 2 provides an overview of
validation technologies for autono-
mous systems. We distinguish, hori-
zontally, the transparency of the
validation. Black box means that we
have no insight to the method and
coverage, while white box denotes
transparency. The vertical axis clas-
sifies the degree to which we can au-
tomate validation techniques and,
for instance, facilitate regression
strategies through software updates
and upgrades.

Let us look at traditional testing
techniques (see Figures 1 and 2) and
evaluate their behaviors. Table 1
provides the complete evaluation
of static and dynamic validation
technologies for autonomous sys-
tems. Negative requirements (such
as safety and cybersecurity) are
typically implied and not explicitly
stated in the system specifications.®
The following sections explain how
these methods are applied to vali-
date autonomous cars.

Fault Injection

Fault injection techniques make use
of external equipment to insert faults
into a target system’s hardware, with
or without direct contact. By hav-
ing direct contact, faults, such as
forced current addition, forced volt-
age variations, and so forth, can be

SOFTWARE TECHNOLOGY

atlo O e
B e-rorce age e
Automatic | Simulation Environments Real World e R g
With MIL, HIL, and SIL Rea enario
(o]
é ellige allaatio
g e.g 0g e
% e g and A = g
c
2) » Experiments and Empirical
5 » Function Test Test Strategies
K » Fault Injection » Simulation Environments
» Negative Requirements, With a MIL/SIL
With Misuse, Abuse, and |» Brute-Force Usage in the
Manual .)
Confuse Cases Real World, While Running
» FMEA and FTA for Safety Realistic Scenarios
» Simulation Environments |> Specific Quantity Requirements,
With a MIL, HIL, and SIL | &9-, Penetration
Testing and Usability

White Box

Validation Strategy

Black Box

FIGURE 2. The validation technologies for autonomous systems. FMEA: failure mode

and effects analysis; FTA: fault tree analysis; Al: artificial intelligence; MIL: model in the
loop; HIL: hardware in the loop; SIL: software in the loop.

injected to observe the behavior of
the system. Faults can be introduced
without making physical contact
by using methods such as heavy-
ion radiation, exposure to electro-
magnetic fields, and so on. Such
fault injections can cause bit flips,
hardware failure, and similar events
that are not tolerated in safety-criti-
cal systems.

Functionality-Based Testing

Functionality-based test methods
categorize the intelligence of a sys-
tem into three classes: 1) sensing, 2)
decision, and 3) action functional-
ities. The idea behind such methods
is that an autonomous vehicle should
be able to retrieve various function-
alities for a given task analogous
to human beings. For example, a
vehicle should be able to recognize
other cars and trucks, pedestri-
ans, and so forth for vision-based

functionality. Combinations of these
recognized objects can act as inputs
to decision functionality, and sev-
eral decisions can lead to actions.
Functionality-based testing breaks
down the scenarios into various op-
erational components that can be
tested individually.

Hardware in the Loop

Although simulation tries to encap-
sulate the real world as closely as
possible, inherent limitations invari-
ably create a void between the two.
Hardware in the loop (HIL) closes
this gap a little by using physical
components for certain aspects of
simulation. For example, a camera
model in a simulation technique
can be replaced by an actual cam-
era. The input to the camera can be
fed by means of a computer screen
where videos of various real-time
traffic conditions are played to

SEPTEMBER/OCTOBER 2019 | IEEE SOFTWARE 17

>
O
o)
-
o
Z
L
O
L
-
LU
<
S
-
LL
o)
)

panuuoy

$9sB9 aAlehau a|qissod
||e 1an09 A|liessadau
10U Op S8SBI 188} Al |
Kjleonewsa)sAs

dn18s 0} }nouIa

J0IneYaq
pue 8In}98}IydIe
waysAs Buikpiapun
Jo Buipueisiapun
9]919U09 B $aJinbay

HNOWHP

SI UOIIBZI[BI0] Nk
SHuI| 8WO0S

SSIW 0] 3 ‘SaeLlaul
10 Jaquinu abJe]

Swa)sAs a3adwoa

+ + a1BpI|eA 0] JUsIaILNSU|
selouapuadap
JusJedsueiyu|

SWa)sAs snowouoine
9]epI[eA 0} 8AISUBYa.dwo9
10U 8Je SYuBq 0LBUSIS
SOLIBUAIS

umouy| 1o} Ajuo sisa|
Jamod uoleindwod Jo
junowe able| e salinbay
abelanod

ybiy 1o} ‘@9.10) aynig

LG IETRIITE| LEETNIRETTE]

Sassauyeap

£111n93s WaysAs suaybuails e

sjuawaJinbal 59589

. [BUOIOUNJUOU SAZI[BWI0] o anebau
papIOAR 8Q 0} SOLIBUSIS [euonenys

. Buikuapi 10} pooy) e asnay

Sai}l|IqeJaulnA uaybuans
0} sJaubisap bulqeus
‘59SSaUYEaM Sas0dx] e

abelonod S199J9p

pue s198J9p [enpisal Jo P8199]9s Ma}

. 9]BWI1SA UB SOPINOL] o 29NpoU|
L]

S9SB0 1591

° uonelbayul Jusuodwiod s1s9] e ajeIauabay

sjuswalinbal suonelado

[euonauny aul e salepllep ¢ pajoedwl Jo)

uaye} S9SBJ 159]

UoI19. pue ‘Buijew uoisioap [euonauny

e ‘Buisuas :sjoadse |y e S1S9L e Jeaday
(]
(]

. (Kouaroje

Mo|)

. juawdojanap aIemyos SOLIBUAIS

pue aJempJiey $9|dnogaq e pajorduwl

. $1S09 UONBPI[BA S8INPaY e 1eaday

KBayens
uoissalbay

syibuang

NV
dH 19811y.y asudiaug
‘UOISIAJIHd “O1d ‘@InsIA

‘S400Q 68 ‘sjoo}
Sjuswalnbal yum paoesy
0 pue pajapow Aj39a11q

uoneAouU|
f1uno8g ‘WHOLS8q

“B°a ‘Buljapou 198)9p

- pUB JUSWUOJIAUS }S3]

(upoy 08

pue sniug pue 913y se

4ons) s|00} [BLI0JBUIQIOD
‘Juawabeuew

0 1591 ‘S91INS 18]

uoneiauah

qn3s 10} SIUBWUOIIAUD

188} pajedlpa(

(MundHd pue

nunr ‘ejdwexs Joy) Sjoo}

1S81 UN YNM ‘uonoeilsqe

0 [euonauny .oy |00} Bullapojyl

URISald ‘SalIp

‘SpBORAON ‘WaIsAS | A

10399/ ‘IQVdSP ‘AV1LYIN

0 “B3 182349 |apo

salfojouyaal
pue 1io0ddns |00}

abeianoy

Rujigesn pue
‘funass ‘Aiajes
10} Ajleaiy1oads
‘onels

uonewnsa
10343 [enpisal
10} ‘0e1S

JlWeUAQ

suonouny
|le ‘olweuiq

Jlweukp
pue oiels

SJ1}s1i8)oe

"SUI9)SAS snourouolne 10j SaI60[0UYD8]} UOIIBPI[RA JO Uoljen[eAs ay] T o[del

S9SBI 9snju0d
pue ‘asnge
‘QSNSIW UM
‘sjuawaJinbal
anebay

uonaalul jine4

159}
uonelbayu|

189 UonaUN4

1IN pue

“1H “TIS yum
SJUBWUOJIAUD
uoneInWIs
pue Buijapoly

IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

18

>
O
o]
-
o
p
L
O
L
-
L
<
S
-
LL
o)
()

fouaioy)g | ssauaAnoayy

3|qe|IBAR S|00} pUB

spoyiaw Auew Jou ‘sl

1B ‘auldiosip buimoly e
Jamod

uoneindwod abie| SpeaN e

1UBLIUOIIAUS

159] paseq-|y dn

185 0} 10} YBIH

abelanod

|euonenyis Jusledsueliu| e
1uBpUNpAal 3JB

S9SBJ 159 AU JO 1SO|\|
abeIan0d Jeajoun
ahrI9A09 10} 110})0 UBIH

- +

Kajes pue Ajinoas
wa)sAs a19|dwoa ayepifea
01ju8lolnsul usyQ

uoljewone
1S9} 0U 10 8|}1| AIBp
BAISUBJUI JOGET e
abpajmouy uewny
uo Ajineay spuads(q e

aAISUIUI JOgRT
abpajmouy uewny

+ + uo Ajineay spuadaq e

$9sSauUyBa

S|ang|
U0I}9B.1}SqR [9PO\-/\ SS0J0B

SOLIBUaDS 188] BuLleyS e
Buibbe) pue jew.o} abelols

0LIBUSS SBZIPIBPURIS e
a.npadoid

1591 J0 1Ied Jofew Sajewony e
suopouny
[BUJS]UI PUR JUBLLUOIIAUD
[euJa]Xa 0} salouspuadap

SIapISU0J Aj[RonBWOINY e

Koualedsuely panosdwl] e

Buibbey pue 1ewLIo) abrI0)S
OLIBUBIS SBZIPIBPURIS e
abelanod
pue MalA aaIsuayaIdwo?) e
90UO 1B SWalSAs |8 Salepifep e
819948 Alybiy snyy
pUB PJIOM [B3] 011S8S0|) e

Sjuswalnbas
Ayjenb umouy syeaw wajsAs
auy1 1eyl buuinsus ul 8A198YT e
£111n28S 10} paysI|qeIsa (B e

NIEI S RINREL]

10 abuel apIM B SI19A0) e
S9SBJ 158

aU} awel) 0} JaISea AjaAe|aY e

Sa.n|ie} 99B}IBIUI Wa)SAS
995010} 0] S1aubiSap Sv|qeUT e

(9941 yore) A111N28S pue
K18yeS 10} PaySI|qRISa |13 ©

buansg

aseqelep
Kouapuadap
3y} wolj
S9SB9 159]
paleIauab
asnay

(Rousioyle
MOJ)
uonnaday

sjuauodwod
pajoeduwi
10} 18918y

uonouny
pabueyd 1o}
solbajelis
18818y}
1eaday

sjusuodwo9
pabueyd sy}
10} 18819y

A6ajens
uoissalbay

$8UIGNU S Yans
‘s19s e1ep uado ‘uo os pue
‘yJeds ayoedy ‘mojLiosua)
SB JoNs SYI0MalLRl)
Buiules|-auiyoep

adeNyd

‘1SISSY 93 ‘IayeNIe)
‘xijewouds) “6o ‘swalshs
10SUaS SNOLIBA W0}
$19660] B1RP YUM S3LIRII|
OLIBU3IS [BNJIB YIIM
fejdas pue Buipiodsy

uo 0s
pue ‘ebap ‘dvzZ dSYMO
‘suoisua)xa buizzny
Jlewoyne ‘ajdwexa 1oy
'$|00} }$8} pateaIpa(

‘010 ‘Jabewl

[ewlidy | ‘Jue|d663 ‘d1a
1J0SeIRd SB 4ans ‘s|00}
159} 91}1938ds JuawiIadx3

A1eiq asnal pue
‘suonoelisqe Juauoduwiod
‘S198USyI0M YN

saibojouysay
pue 1ioddns j00)

JUBLIUOIIAUS
pue uonenys
uo Buipuadap
U01199]3S pue

uoneiaush
1591 lWeUAQ

abelanod
[euonenys
Burinsus 1o}
‘OlWeUAQ

sjuawalnbal
Kyenb Joy
Kjjeanyoads
‘OlweuAg

'0}9 ‘|ewlay}
‘gouewlopiad
‘}S8] peo| 10}
uoielaush
1s9] [eodw3

SwalsAs
[eoni9-A1ajes
1o} Ajleaiy0ads
‘onje1s

S911S119)9e

‘(‘Ju0d) swvlsAs snourouoine 10} S8160[OUYDS]} UOIIepI[eA Jo uorjenjeas ayjl, ‘1 o[qel

Bunsel |y
pue aAubod
‘9oue)sul Jo}
‘uonepiea
juabijaiy|

SOLIBUBIS
ansifeal
Buruunt apiym
ploMm [eal
3y} u1 abesn
9010}-91n.g

Buizzny
pue Bunsal
uoneyauad

‘aoue)sul
10} ‘s1s8]
sjuswalinbal

Kyjenb

ay10adg

solba]el)s 159)
[eaudwsa pue
sjuswiiadx3

\/E|
pue 34

19

SEPTEMBER/OCTOBER 2019 | IEEE SOFTWARE

SOFTWARE TECHNOLOGY

validate the behavior of car. A more
advanced technique has been pro-
posed for autonomous systems that
are tested by robots, for instance,
vehicle HIL, where the simulated
vehicles in traffic have been replaced
by moving robots. This has the ad-
vantage that, in addition to the cam-
era, radar and lidar hardware can be
tested using HIL.

Vehicle in the Loop

Human interaction can have a drastic
influence on the behavior of partially
automated cars. The methods speci-
fied earlier fail to account for this
reality. In vehicle-in-the-loop simula-
tions, real cars are used, though in a
safe environment. A driver is shown
simulated feeds of the external envi-
ronment to capture his interaction
with the car. The car travels across
a ground devoid of obstacles, simu-
lating inertial effects and simulta-
neously responding to the external
feed. The greatest advantage to this
method is safety: Since there are no
real obstructions involved, no harm
will be incurred by the test drivers,
even if they encounter danger-
ous situations.

Simulators

Simulators are closed, indoor cubi-
cles that act as substitutes for physi-
cal systems. They can replicate the
behavior of any system by using
hardware and a software model.
The behavior of a driver can be cap-
tured by immersing him a replicated
external environment. Since simu-
lators employ hydraulic actuators
and electric motors, the inertial ef-
fects they generate feel nearly the
same as the real-life version. They
are used for robots in industrial
automation, surgery planning in
medicine, and railway and auto-
motive applications.

20 IEEE SOFTWARE

Brute Force

Nothing can come closer to the real
world than the real world itself. This
is perhaps the final validation phase,
where a completely ready system is
physically driven onto roads with
actual traffic. The sensor data are
recorded and logged to capture be-
havior in critical situations. They
are analyzed to accommodate and
fine-tune the system according to ev-
eryday scenarios. The challenge in
this stage, however, lies in the sheer
amount of test data that are gener-
ated. A stereo video camera, alone,
generates 100 GB of data for every
kilometer driven. In such situations,
big data analysis becomes ex-
tremely important.

Intelligent Validation Techniques
Intelligent validation techniques tend
to automate the complete testing
process or certain aspects of testing.
This eliminates the potential errors
associated with manual derivations
of test cases, since humans may fail
to recognize and think about certain
scenarios. It also eradicates the enor-
mous amount of time that needs to
be invested to obtain the test cases.
The “Intelligent Testing” section
summarizes some approaches that
attempt to derive such valida-
tion techniques.

Truly transparent validation
methods and processes assume the
utmost relevance and will be chal-
lenged by the progress of technology
through the five steps toward au-
tonomous behavior that are sketched
in Figure 1. Although they are still
relevant, traditional validation meth-
ods aren’t enough to completely test
the growing complexity of autono-
mous cars. Machine learning, with
situational adaptations and software
updates and upgrades, demands
novel regression strategies. Figure 2

provides a map of the different test-
ing techniques.

Intelligent Testing

With AI and machine learning, we
need to satisfy algorithmic trans-
parency. For instance, what are the
rules, in a neural network that is
obviously no longer algorithmically
tangible, to determine who gets a
credit or how an autonomous vehicle
might react with several hazards at
the same time? Classic traceability
and regression testing will certainly
not work. Future verification and
validation methods and tools will in-
clude more intelligence based on big
data exploits, business information,
and the processes’ ability to learn
about and improve software quality
in a dynamic way.*

A key question concerns which
way Al can support the process
of validation. Obviously, there are
many Al approaches, ranging from
rule-based systems, fuzzy logic,®
and Bayesian nets to the multiple
neural network approaches to deep
learning. However, the process of
validating an autonomous system
is multilayered and rich in detail.
Various levels of validation testing
can be distinguished, such as the
systems level, the components, and
the modules.

The potential for intelligent test-
ing is manifold. On a system level,
there are questions about which test
cases must be executed and to what
extent. This means that intelligent
validation is required to help with
the selection and even the creation
of test cases. A first step in that
direction would be an assistance
functionality that helped to identify
priorities in an existing set of cases.
As a result, a validation expert
would be able to test faster and with
a better coverage of situationally

WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

relevant scenarios. On the level of
a component or module,” testing it
is also required to identify relevant
cases. This can range from a sim-
ple support mechanism for how to
feed a system with adequate inputs
and checks on the outputs, to com-
plex algorithms that automatically

SOFTWARE TECHNOLOGY

create test cases based on code or
a user interface. Figure 3 provides
an overview of intelligent test-
ing as we ramp up for autonomous
systems. Unlike brute force, intel-
ligent testing considers the white-
box and black-box dependencies
and, thus, balances efficiency and

effectiveness. See “Cognitive Test-
ing for Autonomous Systems” for a
concrete case study.

Perspectives

Verification and validation depend on
many factors. Every organization im-
plements its own methodology and

Functional

Model Database

Component Component

Component Component

Component

- —
0000 ® - & ®
—_————— = = = A
. ® 00 ® s

o e e

FIGURE 3. Intelligent testing for autonomous systems. SOA: service-oriented architecture; P: process; PS: production sensor;

WP: work package.

SEPTEMBER/OCTOBER 2019

IEEE SOFTWARE 21

SOFTWARE TECHNOLOGY

22

COGNITIVE TESTING FOR AUTONOMOUS SYSTEMS

In our industrial projects, we often face the challenge of
how systems can be validated, and safety assured, when
they undergo a change during operation. Updates over the
air are commonly used for functional modifications of soft-
ware-based automated systems. Be they in manufacturing,
automotive applications, or intelligent building, automated
systems are mostly component based; they consist of mul-
tiple control units that are distributed. Each unit is in a cer-
tain location and has a specific functionality that it provides
to the overall system.

Unwanted behavior and basic functional errors might
occur somewhere in a distributed system because of an
alteration elsewhere. How can such a system be safe-
guarded when changes in its components occur during
runtime? How can safety and security certifications be
maintained after a software modification happens within a
single module?

A test certification requires an understanding of the ef-
fect of a change that is triggered somewhere in a software
module and has impacts elsewhere. How can this inter-
action be deduced and the consequences for all modules
be verified without testing the whole system again from

scratch? The method presented here applies an artificial
intelligence (Al) that can ascertain the consequences of an
individual change in all the control units.

From our industry experience, we recommend a
three-step approach to assess the impacts of software
updates and upgrades (see Figure 3). First, the alteration
in the system needs to be identified in terms of its origin
in a module and its localization in the network. Second,
a logical model of the overall system is composed to
understand the impact on other modules. However, this
model is distributed and needs to be automatically pro-
cessed from the multiple submodules of the components
that are available.

Third, a process of functional verification is required
to check how the change is propagated and what it
means with respect to potential malfunctions in the dis-
tributed system. This Al can be used to test and safe-
guard following a stepwise procedure for testing. It only
requires the specification of the control models and their
intended interaction with the other modules, upon which
the overall functionality can be deduced and test certifi-
cates can be obtained on request.

IEEE SOFTWARE

CHRISTOF EBERT is the managing director of Vector Consulting
Services. He is on the /EEE Software editorial board and teaches
at the University of Stuttgart, Germany, and the Sorbonne in Paris.
Contact him at christof.ebert@vector.com.

MICHAEL WEYRICH is the director of the Institute of Industrial
Automation and Software Engineering at the University of Stuttgart,
Germany. Contact him at michael.weyrich@ias.uni-stuttgart.de.

development environment, based
on a combination of several of the
tools presented in this article. It is
important not only to deploy tools
but to build the necessary verifi-
cation and validation competences.
Too often we see solid tool chains
but no tangible test strategies. To
mitigate these purely human risks,
software must increasingly be ca-
pable of detecting its own defects
and failure points. Various intelli-
gent methods and tools will evolve
that can assist with smart valida-
tion of autonomous systems. How-
ever, even with the support of the
smartest intelligent algorithms,
the question remains how to build
the public’s trust that autonomous
systems can be validated while

WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

considering ethical dilemmas, such
as the accident when the mother
and child were killed.

With the growing concern of us-
ers and policy makers about the im-
pact of autonomous systems on our
lives and society, software engineers
must ensure that autonomy acts bet-
ter than humans. Clearly, we are not
talking about few percentage points.
To build trust, we need a level of
quality at least one order of mag-
nitude higher than human-operated
systems. It is, above all, a question
of validation to achieve trust. Alan
Turing, who was one of the first to
consider Al in real life, remarked
wisely, “We can only see a short dis-
tance ahead, but we can see plenty
there that needs to be done.” This
remains true for a rather long tran-
sition period, and intelligent valida-
tion will play a pivotal role. @

SOFTWARE TECHNOLOGY

References

1. M. Weyrich and C. Ebert, “Refer-
ence architectures for the Internet of
Things,” IEEE Softw., vol. 33, no. 1,
pp. 112-116, Jan.—Feb. 2016.

2. M. Santori and D. A. Hall. (2016).
Tackling the test challenge of next
generation ADAS vehicle architec-
ture. National Instruments. Austin,
TX. [Online]. Available: http://
download.ni.com/evaluation
/automotive/Next_Generation_ADAS_
Vehicle_Architectures.pdf

3. M. Rodriguez, M. Piattini, and
C. Ebert, “Software verification and
validation technologies and tools,”
IEEE Softw., vol. 36, no. 2, pp.
13-24, Mar. 2019.

4. P. Gao, .H.-W. Kaas, D. Mohr, and D.
Wee, (2016, Jan.) Automotive revolu-
tion: Perspective towards 2030. McK-
insey & Co., New York. [Online].
Available: https://www.mckinsey

.com/~/media/mckinsey/industries
/high%?20tech/our%?20insights
/disruptive%20trends%20that%20
will%20transform%20the%20
auto%20industry/auto%202030%20
report%20jan%202016.ashx

. Road vehicles—Safety of the in-

dented functionality, International
Organization for Standardization,
21448, 2019.

. C. Ebert, “Rule-based fuzzy clas-

sification for software quality
control,” Fuzzy Sets Syst., vol. 63,
no. 3, pp. 349-358, May 1994. doi:
10.1016/0165-0114(94)90221-6.

. A. Zeller and M. Weyrich,

“Composition of modular models
for verification of distributed
automation systems,” in Proc.

28th Int. Conf. Flexible Automa-
tion and Intelligent Manufacturing
(FAIM2018), Columbus, OH, 2018,
pp. 870-877.

SEPTEMBER/OCTOBER 2019

IEEE SOFTWARE 23

