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From the Editor

Autonomous systems are widely used. Yet, for lack of transparency, we are
increasingly suspicious of their decision making. Traditional validation, such
as functional testing and brute force, won't help, due to complexity and cost. To

achieve dependability and trust we need dedicated, intelligent validating tech-
niques that cover, for instance, dynamic changes and learning. Michael Weyrich
and I provide industry insights into validating autonomous systems. I look forward

to hearing from both readers and prospective authors about this article and the
technologies you want to know more about. —Christof Ebert

SOCIETY TODAY DEPENDS on
autonomous systems, such as intel-
ligent service systems, self-driving
trains, and remote surgeries.! The
ultimate validation of the Turing test
is that we often do not recognize au-
tonomous systems. This growing us-
age poses many challenges, such as
how to provide transparency, which
rules or learning patterns are applied
in a complex situation, and if these
rules are the right ones. Validation is
the key challenge, of which we will
provide an overview in this article.
With machine learning and con-
tinuous over-the-air upgrades and
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updates, a core tenant of any qual-
ity strategy is continuous verifica-
tion and validation. Corrections and
changes must be deployed in a fluid
and continuous scheme, reliably over
the air. We will face future scenarios
where software-driven systems, and
maybe whole infrastructures, must
not be started if they do not include
all of the latest software upgrades.
Automobiles and manufacturing
processes that are safety critical fall
into that category. Even more de-
manding are medical devices, which
must provide a hierarchical software
assurance because there is no room
for failure.

Autonomous systems have mul-
tiple complex interactions with the

real world. They perceive and act
in the environment, based upon the
reflections of an intelligent control
system, and they have an increasing
impact on our lives as they imple-
ment and execute high-level tasks
without detailed programming or
direct human control. Unlike auto-
mated systems, which execute a
carefully engineered sequence of ac-
tions, they are self-governing their
course of action to independently
achieve their goals.

Figure 1 indicates the five steps
from automation to autonomy as
we know them from human learn-
ing, where we advance from novice
to expert. Those steps exemplify the
progress of a simple and “assisted
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FIGURE 1. The five steps from automation to autonomy.

behavior” from low-level sensing
and control toward “full cognitive
systems” with a very high degree
autonomy. Automated systems are
gradually enhanced to develop a
skilled behavior along with en-
hanced mission planning and con-
trol and execution capabilities that
will eventually lead to the full cog-
nitive actions of an autonomous sys-
tem. It is expected that an intelligent
behavior can be identified by acquir-
ing knowledge and understanding,
which entails system functionalities
such as perception, reflection, and
action in terms of a cognition.

A completely autonomous car on
level 5 is supposed to drive with no
human intervention, even in dire situ-
ations. This implies that the car must
have intelligence on par with or bet-
ter than humans to handle not just
regular traffic scenarios but unex-
pected ones. Although several play-
ers, such as Google and Uber, are
granted permission to operate their
self-driving services, deadly incidents
put our faith in these cars to a test.2
It is quite apparent that existing vali-
dation measures aren’t enough.’ We

need new test methods that can en-
vision fatal traffic situations that
humans haven’t encountered vyet.
In addition, testing cannot simply
be isolated to the final development
stages. It must be part of every phase
in the product lifecycle. A sensible en-
gineering process must be adopted in
the development of autonomous cars
that lays enough emphasis on testing
and validation.

Unlike an automated system,
which cannot reflect on the conse-
quences of its actions and cannot
change a predefined sequence of ac-
tivities, an autonomous system is
meant to understand and decide how
to execute tasks based on its goals,
skills, and a learning experience.
While contemplating the deficiencies
of autonomous systems, we should ac-
knowledge that humans have natural
limits, in terms of processing speed,
repeatability of tasks, handling com-
plexity, and so forth. In fact, in aero-
space, we already trust autonomous
flying, and for automotive applica-
tions, automation is forecast to reduce
deadly accidents by 90%.% Autono-
mous systems can become an aid in

the future, in areas such as automated
and autonomous driving, flying, and
production robotics.

Validation of

Autonomous Systems
Autonomous systems provide effi-
ciency and safety as they relieve hu-
man operators from tedious manual
activities. For instance, the widespread
use of self-driving cars could eliminate
as much as 50% of a person’s daily
commuting time.* As exciting as this
may sound, the question “Can we trust
the autonomous systems?” will grow
for years to come. Public confidence
in autonomous systems depends heav-
ily on algorithmic transparency and
continuous validation.

Recently, we have seen several
dramatic accidents, such as an au-
tomated car misinterpreting a white
truck as a white cloud, and another
one overlooking pedestrians on a
road, thus, killing people. One spec-
tacular accident happened when an
automated vehicle continued along
while its driver had a heart attack
and could not supervise it. Within a
few seconds, the automated vehicle
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killed a mother and child as it tried
to avoid colliding with a tree. Hit-
ting the tree might have killed the
driver, but innocent people in the
surrounding environment would
have been safe.

There are many open questions
about the validation of autonomous
systems: How do we define reliabil-
ity? How do we trace back decision
making and judge it after the fact?
How do we supervise these systems?
How do we define liability in the
event of failure?

Figure 2 provides an overview of
validation technologies for autono-
mous systems. We distinguish, hori-
zontally, the transparency of the
validation. Black box means that we
have no insight to the method and
coverage, while white box denotes
transparency. The vertical axis clas-
sifies the degree to which we can au-
tomate validation techniques and,
for instance, facilitate regression
strategies through software updates
and upgrades.

Let us look at traditional testing
techniques (see Figures 1 and 2) and
evaluate their behaviors. Table 1
provides the complete evaluation
of static and dynamic validation
technologies for autonomous sys-
tems. Negative requirements (such
as safety and cybersecurity) are
typically implied and not explicitly
stated in the system specifications.®
The following sections explain how
these methods are applied to vali-
date autonomous cars.

Fault Injection

Fault injection techniques make use
of external equipment to insert faults
into a target system’s hardware, with
or without direct contact. By hav-
ing direct contact, faults, such as
forced current addition, forced volt-
age variations, and so forth, can be
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FIGURE 2. The validation technologies for autonomous systems. FMEA: failure mode

and effects analysis; FTA: fault tree analysis; Al: artificial intelligence; MIL: model in the
loop; HIL: hardware in the loop; SIL: software in the loop.

injected to observe the behavior of
the system. Faults can be introduced
without making physical contact
by using methods such as heavy-
ion radiation, exposure to electro-
magnetic fields, and so on. Such
fault injections can cause bit flips,
hardware failure, and similar events
that are not tolerated in safety-criti-
cal systems.

Functionality-Based Testing

Functionality-based test methods
categorize the intelligence of a sys-
tem into three classes: 1) sensing, 2)
decision, and 3) action functional-
ities. The idea behind such methods
is that an autonomous vehicle should
be able to retrieve various function-
alities for a given task analogous
to human beings. For example, a
vehicle should be able to recognize
other cars and trucks, pedestri-
ans, and so forth for vision-based

functionality. Combinations of these
recognized objects can act as inputs
to decision functionality, and sev-
eral decisions can lead to actions.
Functionality-based testing breaks
down the scenarios into various op-
erational components that can be
tested individually.

Hardware in the Loop

Although simulation tries to encap-
sulate the real world as closely as
possible, inherent limitations invari-
ably create a void between the two.
Hardware in the loop (HIL) closes
this gap a little by using physical
components for certain aspects of
simulation. For example, a camera
model in a simulation technique
can be replaced by an actual cam-
era. The input to the camera can be
fed by means of a computer screen
where videos of various real-time
traffic conditions are played to
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validate the behavior of car. A more
advanced technique has been pro-
posed for autonomous systems that
are tested by robots, for instance,
vehicle HIL, where the simulated
vehicles in traffic have been replaced
by moving robots. This has the ad-
vantage that, in addition to the cam-
era, radar and lidar hardware can be
tested using HIL.

Vehicle in the Loop

Human interaction can have a drastic
influence on the behavior of partially
automated cars. The methods speci-
fied earlier fail to account for this
reality. In vehicle-in-the-loop simula-
tions, real cars are used, though in a
safe environment. A driver is shown
simulated feeds of the external envi-
ronment to capture his interaction
with the car. The car travels across
a ground devoid of obstacles, simu-
lating inertial effects and simulta-
neously responding to the external
feed. The greatest advantage to this
method is safety: Since there are no
real obstructions involved, no harm
will be incurred by the test drivers,
even if they encounter danger-
ous situations.

Simulators

Simulators are closed, indoor cubi-
cles that act as substitutes for physi-
cal systems. They can replicate the
behavior of any system by using
hardware and a software model.
The behavior of a driver can be cap-
tured by immersing him a replicated
external environment. Since simu-
lators employ hydraulic actuators
and electric motors, the inertial ef-
fects they generate feel nearly the
same as the real-life version. They
are used for robots in industrial
automation, surgery planning in
medicine, and railway and auto-
motive applications.

20 IEEE SOFTWARE

Brute Force

Nothing can come closer to the real
world than the real world itself. This
is perhaps the final validation phase,
where a completely ready system is
physically driven onto roads with
actual traffic. The sensor data are
recorded and logged to capture be-
havior in critical situations. They
are analyzed to accommodate and
fine-tune the system according to ev-
eryday scenarios. The challenge in
this stage, however, lies in the sheer
amount of test data that are gener-
ated. A stereo video camera, alone,
generates 100 GB of data for every
kilometer driven. In such situations,
big data analysis becomes ex-
tremely important.

Intelligent Validation Techniques
Intelligent validation techniques tend
to automate the complete testing
process or certain aspects of testing.
This eliminates the potential errors
associated with manual derivations
of test cases, since humans may fail
to recognize and think about certain
scenarios. It also eradicates the enor-
mous amount of time that needs to
be invested to obtain the test cases.
The “Intelligent Testing” section
summarizes some approaches that
attempt to derive such valida-
tion techniques.

Truly transparent validation
methods and processes assume the
utmost relevance and will be chal-
lenged by the progress of technology
through the five steps toward au-
tonomous behavior that are sketched
in Figure 1. Although they are still
relevant, traditional validation meth-
ods aren’t enough to completely test
the growing complexity of autono-
mous cars. Machine learning, with
situational adaptations and software
updates and upgrades, demands
novel regression strategies. Figure 2

provides a map of the different test-
ing techniques.

Intelligent Testing

With AI and machine learning, we
need to satisfy algorithmic trans-
parency. For instance, what are the
rules, in a neural network that is
obviously no longer algorithmically
tangible, to determine who gets a
credit or how an autonomous vehicle
might react with several hazards at
the same time? Classic traceability
and regression testing will certainly
not work. Future verification and
validation methods and tools will in-
clude more intelligence based on big
data exploits, business information,
and the processes’ ability to learn
about and improve software quality
in a dynamic way.*

A key question concerns which
way Al can support the process
of validation. Obviously, there are
many Al approaches, ranging from
rule-based systems, fuzzy logic,®
and Bayesian nets to the multiple
neural network approaches to deep
learning. However, the process of
validating an autonomous system
is multilayered and rich in detail.
Various levels of validation testing
can be distinguished, such as the
systems level, the components, and
the modules.

The potential for intelligent test-
ing is manifold. On a system level,
there are questions about which test
cases must be executed and to what
extent. This means that intelligent
validation is required to help with
the selection and even the creation
of test cases. A first step in that
direction would be an assistance
functionality that helped to identify
priorities in an existing set of cases.
As a result, a validation expert
would be able to test faster and with
a better coverage of situationally

WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE



relevant scenarios. On the level of
a component or module,” testing it
is also required to identify relevant
cases. This can range from a sim-
ple support mechanism for how to
feed a system with adequate inputs
and checks on the outputs, to com-
plex algorithms that automatically

SOFTWARE TECHNOLOGY

create test cases based on code or
a user interface. Figure 3 provides
an overview of intelligent test-
ing as we ramp up for autonomous
systems. Unlike brute force, intel-
ligent testing considers the white-
box and black-box dependencies
and, thus, balances efficiency and

effectiveness. See “Cognitive Test-
ing for Autonomous Systems” for a
concrete case study.

Perspectives

Verification and validation depend on
many factors. Every organization im-
plements its own methodology and

Functional

Model Database

Component Component

Component Component

Component

- —
0000 ® - & ®
—_————— = = = A
. ® 00 ® s

o e e

FIGURE 3. Intelligent testing for autonomous systems. SOA: service-oriented architecture; P: process; PS: production sensor;

WP: work package.
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COGNITIVE TESTING FOR AUTONOMOUS SYSTEMS

In our industrial projects, we often face the challenge of
how systems can be validated, and safety assured, when
they undergo a change during operation. Updates over the
air are commonly used for functional modifications of soft-
ware-based automated systems. Be they in manufacturing,
automotive applications, or intelligent building, automated
systems are mostly component based; they consist of mul-
tiple control units that are distributed. Each unit is in a cer-
tain location and has a specific functionality that it provides
to the overall system.

Unwanted behavior and basic functional errors might
occur somewhere in a distributed system because of an
alteration elsewhere. How can such a system be safe-
guarded when changes in its components occur during
runtime? How can safety and security certifications be
maintained after a software modification happens within a
single module?

A test certification requires an understanding of the ef-
fect of a change that is triggered somewhere in a software
module and has impacts elsewhere. How can this inter-
action be deduced and the consequences for all modules
be verified without testing the whole system again from

scratch? The method presented here applies an artificial
intelligence (Al) that can ascertain the consequences of an
individual change in all the control units.

From our industry experience, we recommend a
three-step approach to assess the impacts of software
updates and upgrades (see Figure 3). First, the alteration
in the system needs to be identified in terms of its origin
in a module and its localization in the network. Second,
a logical model of the overall system is composed to
understand the impact on other modules. However, this
model is distributed and needs to be automatically pro-
cessed from the multiple submodules of the components
that are available.

Third, a process of functional verification is required
to check how the change is propagated and what it
means with respect to potential malfunctions in the dis-
tributed system. This Al can be used to test and safe-
guard following a stepwise procedure for testing. It only
requires the specification of the control models and their
intended interaction with the other modules, upon which
the overall functionality can be deduced and test certifi-
cates can be obtained on request.
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development environment, based
on a combination of several of the
tools presented in this article. It is
important not only to deploy tools
but to build the necessary verifi-
cation and validation competences.
Too often we see solid tool chains
but no tangible test strategies. To
mitigate these purely human risks,
software must increasingly be ca-
pable of detecting its own defects
and failure points. Various intelli-
gent methods and tools will evolve
that can assist with smart valida-
tion of autonomous systems. How-
ever, even with the support of the
smartest intelligent algorithms,
the question remains how to build
the public’s trust that autonomous
systems can be validated while

WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE



considering ethical dilemmas, such
as the accident when the mother
and child were killed.

With the growing concern of us-
ers and policy makers about the im-
pact of autonomous systems on our
lives and society, software engineers
must ensure that autonomy acts bet-
ter than humans. Clearly, we are not
talking about few percentage points.
To build trust, we need a level of
quality at least one order of mag-
nitude higher than human-operated
systems. It is, above all, a question
of validation to achieve trust. Alan
Turing, who was one of the first to
consider Al in real life, remarked
wisely, “We can only see a short dis-
tance ahead, but we can see plenty
there that needs to be done.” This
remains true for a rather long tran-
sition period, and intelligent valida-
tion will play a pivotal role. @
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