
REST based OPC UA for the IIoT
Rainer Schiekofer1,2, Andreas Scholz1, and Michael Weyrich2

1Siemens AG 2University of Stuttgart

Abstract—OPC UA is one of the most important communica-
tion protocols for Industry 4.0 applications in the automation
domain. However, to really reach the status of an Internet-
of-Things protocol, OPC UA also has to give some answers
to upcoming cross-domain questions. Only if OPC UA is able
to bridge the gap between several different domains, it will
be accepted as real Internet-of-Things protocol and therefore
supported even better by the APIs of the big IT players.

One technology which already interconnects nearly every
domain is the REST architecture. A lot of research already
focused on the combination of these two technologies. However,
in this paper we will show the first approach which covers all
OPC UA requirements and therefore enables also use cases like
server reconfiguration. We will also give some insights into our
concept, which was contributed to the OPC UA specification as
part of the V1.04 release.

I. INTRODUCTION

Today our society stands on the edge of a new era. As the
processing power and the connectivity of industrial embedded
devices increase more and more, a lot of new applications
become feasible. This phenomenon has different names in dif-
ferent domains, for example, SmartGrid, SmartHome, Internet-
of-Things and of course the nowadays term for the automation
domain, Industry 4.0. It is possible that these new properties of
industrial embedded devices will change our lives in a similar
way as the introduction of smartphones. The success of these
new applications depends mainly on the interoperability of the
transport layer, to enable different devices to communicate
with each other and on the interoperability on the semantic
layer, to enable different devices to understand the meaning
of the communication. Both of these requirements can be
considered enabler for typical Industry 4.0 scenarios.

One of the challenges for addressing interoperability on
the transport layer is the huge number of different protocols.
Nearly every domain has developed their own protocol to solve
similar problems. In the end, we have to answer the question,
if we really need a dedicated protocol for each domain, or if
we can use a single protocol to address most of the common
use cases. With that in mind, we started to look for the
most promising Internet-of-Things protocol of the automation
domain, which seems to be OPC UA [1], [2]. OPC UA [3]
does not only aim to solve the interoperability on the transport
layer, instead, also the interoperability on the semantic layer
shall be addressed by OPC UA, through the introduction of so-
called companion specifications. However, to reach the level
of a real Internet-of-Things protocol, OPC UA must be able
to reach out to other domains too.

A communication technology, which everybody already
knows and also is present in nearly every domain, is the REST
architecture [4]. REST is derived from the classic web, which
is already connected to each domain in one way or another.
The basic idea of this work is to extend OPC UA with REST
capabilities to finally reach the status of an Internet-of-Things
protocol. A lot of research was already done on this topic [5],
[6], [7], [8]. However, our proposal is the first proposal which
takes a certain property of OPC UA into account, which is
necessary to support reconfiguration scenarios in combination
with session-less clients. Without this feature a session-less
client is not able to use services like Read or Browse safely
in dynamic environments. Additionally, some parts of our
proposal were contributed to the OPC UA specification as part
of the V1.04 release.

II. BACKGROUND

In this Section, we give a short overview of the REST-
architecture and OPC UA.

A. Representational State Transfer

Representational State Transfer (REST) was introduced
by Fielding in [4]. In his work Fielding derives the REST
architectural style from the very successful web. In the end,
he formalized a couple of rules for his RESTful architecture:

Client-Server: Andrews et al. [9] defined a server as a
process which handles repeatedly requests from clients. From
that point of view, a client triggers actions on a server and
therefore can be considered the active part, while the server
is the passive part and reacts based on the client requests.

Cache: A cache is a component which is placed between
client and server and is able to serve previously cached
responses from the server for identical requests.

Uniform interface: Fielding et al. [4] stated out, that the
uniform interface is the central feature which distinguishes
REST from other network-based styles. The four defined
constraints for the REST interface are: the identification of
resources; manipulation of resources based on representations;
self-descriptive requests and responses; hypermedia as the
engine of application state (HATEOAS).

Layered system: Garlan et al. [10] defined layered systems
as hierarchically organized systems, were each layer provides
a service to the layer above and uses services from the layer
below.

Statelessness: Statelessness in the context of client-server
interaction means, that no session state is allowed. To be more
concrete, a client can not take advantage from previously
stored information at the server, like, for example, someXXX-X-XXXX-XXXX-X/XX/$31.00 c©2018 IEEE

language settings, instead, all necessary information to process
the request must be included in each message.

Nevertheless, even with the rules clearly stated out in his
PhD-thesis, a lot of so-called ”RESTful” APIs did not fulfill
the REST requirements in the eyes of Fielding [11]. One of the
core ideas from REST, hypermedia as the engine of application
state (HATEOAS), is often overlooked. In a nutshell, the basic
idea behind this concept is, that all necessary information
to interact with the service has to be part of the resource
representation.

B. OPC Unified Architecture

OPC UA [3] is an industrial standard which basically aims
to solve the two topmost problems of typical Industry 4.0
scenarios, which are interoperability on the transport and
semantic layer.

Interoperability on the transport layer is reached through
standardization of different transport protocols like OPC TCP
and HTTP(S) combined with various encodings like OPC
Binary, OPC XML, and OPC JSON. In the newest release
of OPC UA also the well-known publish-subscribe pattern
was introduced, which enables cloud connectivity based on
transport protocols like AMQP or MQTT. Additional to the
description how messages have to be sent over the wire, the
OPC Foundation also specified a couple of Service Sets, to
interact with the data model of OPC UA. Examples of such
services are the Read service, for accessing OPC UA informa-
tion, the Write service, for storing OPC UA information and
a couple of useful other services.

Interoperability on the semantic layer was addressed
by the graph-based data model of OPC UA. OPC UA in-
troduces a set of different Nodes (categorized in so-called
NodeClasses). For example, the Variable NodeClass could be
used to represent some sensor data (e.g., the actual temperature
value), while the Method NodeClass shall be used to represent
some functions of the sensor (e.g., calibrate). These different
Nodes can be interconnected with so-called References. Sev-
eral ReferenceTypes were specified by the OPC Foundation
(e.g., HasSubtype, HasComponent and HasProperty) to cover
a broad range of use cases. However, it is also allowed to
introduce new ReferenceTypes, if necessary. In the end, this
concept allows to model arbitrary information and therefore
could be used by different application domains (e.g., factory
automation, building automation, healthcare, mobility, ...) [8],
[12] to express domain-specific knowledge.

III. PROBLEM STATEMENT AND GOALS

Having identified OPC UA as the most promising protocol
for Internet-of-Things applications and the REST architecture
as a very interesting technology for cross-domain interaction,
in this Section, we further analyze the combination of both
technologies and after that take a closer look at the session
concept of OPC UA. Based on our findings, we then formulate
a number of requirements and discuss the basic approach how
we want to achieve them.

A. Analysis

As already explained in Section II-A REST has five manda-
tory rules. We will now take a closer look if all of these rules
are already fulfilled by OPC UA, or if some changes have to
be made in the OPC UA specification.

Client-Server: As stated out in Part 1 of the OPC UA
specification, the basic architecture of OPC UA is based on
the client-server pattern.

Cache: Support of caching in the classic web is typically
done by special response headers, which allow intermediary
servers to determine if the response could be served again for
an identical request. However, the typical OPC UA use case
is to serve data from field devices. This data often changes
on a millisecond base. Because of that, the OPC Foundation
came up with a different caching concept, compared to the
classic web. In OPC UA the client is able to specify a so-
called ”maxAge” parameter for the Read service. A server
now is able to serve a cached sensor value to the client, as
long as the timestamp of the latest cached value is in the
requested client range.

Uniform interface: Each OPC UA Node can be seen as a
resource. Node representations can be constructed in such a
way that the manipulation of resources could be done based on
the representation. Self-descriptive requests can be achieved
by introducing a way to express the kind of message (e.g.,
based on HTTP headers like the Content-Type header). The
HATEOAS requirement can be achieved through the mapping
of OPC UA References to the hypermedia concept of links.

Layered system: The typical application domain of OPC
UA consists of several layers, for example, ShopFloor-layer,
MES-layer, and ERP-layer. Because of that, the layered system
architecture is also part of the OPC UA architecture.

Statelessness: The last mandatory requirement of REST
cannot be fulfilled with OPC UA V1.03 and earlier because a
client always has to establish a session to access the informa-
tion model of an OPC UA server. This is even true for services
like Read or Browse. A session in OPC UA is used to store
some information, for example, the authorization information
and the requested locales. However, it is not enough to just
identify all information, which is stored at the client/server
during the session set up, it is also necessary to check what
kind of additional concepts in OPC UA depend on sessions.

B. OPC UA sessions

As identified in the previous section, the OPC UA session
concept is the final challenge which stands between OPC UA
and the REST architecture. A session has two major respon-
sibilities in OPC UA: first, storing some information on client
and server. Second, guaranteeing the consistency between the
client and server state. To identify all information which is
part of the first category, we have to check which kind of
information is transferred only once during the session set up,
for example, the locales. However, identifying all information
of the second category is a little bit more challenging. For that,
we have to analyze what kind of information is only guaran-
teed to be stable within a session. However, before we can

A B C D E F G H

Session-less client (2,1)

(2,1)

(2,1)
(3,1)

OPC UA Server

A B D C E F G H

Session-less client (2,1)

(3,1)

(3,1)
(2,1)

OPC UA Server

NamespaceArray NamespaceArray

red blue red blue

Namespaceindex (2)

Identifier (1)

Namespaceindex (3)

Identifier (1)

Figure 1. Consequences of a changed NamespaceArray during runtime, without further preparations.

address the second category, we have to introduce some OPC
UA concept first. The so-called NamespaceArray in OPC UA
contains an array of URIs. In a nutshell, the NamespaceArray
is some kind of lookup table, which is used to replace long
URIs trough small indices. Based on this concept, NodeIds and
ExpandedNodeIds only contain the corresponding index value,
also called NamespaceIndex in OPC UA, for the URI, instead
of a long URI. For example, the NodeId with NamespaceIndex
2 (see also Figure 1 left side) refers to the third element of
the NamespaceArray (e.g., ”http://opcfoundation.org/UA/DI”).
Part 5 defines the NamespaceArray as dynamic, which means,
that the content of this array can be changed during runtime
(see also Figure 1). NodeIds and ExpandedNodeIds are used
in most of the OPC UA services (e.g., Read / Write / Browse
/ ...) and because of that the content of the NamespaceArray
has to be cached during the start up phase by each client. Stale
client caches and the fact that changes of the NamespaceArray
during runtime are explicitly allowed, lead to the problem of
Figure 1. The example session-less client wants to display the
temperature based on the red Node, but fetches the value of the
blue Node, after the NamespaceArray was changed. Of course,
such a behavior can not be tolerated for any application.
Therefore Part 5 also restricts the way in which these arrays
can be altered. For example, a server is not allowed to change
these arrays in such a way during an active client session. If
a client has an open session, the server can only add some
new entries but is not allowed to alter existing entries. But of
course, such changes can be done during a reconfiguration,
or a reboot, if all sessions are terminated during the process.
If the session of a session-based client is terminated, also the
cached values for the Namespace- and the ServerArray are not
valid any longer and have to be re-fetched if a new session is
established. The problem here is of course, that a session-less
client cannot be sure if such a change happens during two
subsequent calls.

C. Goals and challenges
In the following Section, we will give some insights into our

design goals and the reasons why we want to achieve them.
Efficient SessionlessInvoke: We have already discussed,

that OPC UA services which depend on NodeIds and there-

fore on the Namespace- and ServerArray, need some further
investigation. One goal here is to introduce some new efficient
service for session-less clients.

Uniform HTTP interface: For our approach we have
decided to use HTTP as the underlying protocol, mainly
because of huge client support (web browser / web server).
To be compliant to the REST-rules, we have to map OPC UA
to the uniform HTTP interface.

Batch support: Most OPC UA service sets already im-
plement batch support. This feature significantly reduces the
overhead for clients and servers, if more than one value should
be fetched (the typical industry use case).

URI templates [13] are used to offer the client a
recipe for URI construction. For example, the URI template
”https://host/{userName}{?password}” could be used to con-
struct the following URI: ”https://host/user?password=secret”,
where the ”userName” is ”user” and the ”password” is ”se-
cret”. Besides the usefulness of such a concept for RESTful
services, there is a lot of discussion out there whether URI
templates should be specified within some kind of document,
or should only be discoverable during runtime [14]. However,
there are several reasons, why we think harmonizing URI
templates across OPC UA servers has more benefits than
drawbacks. For example, most actual OPC UA applications
know exactly the NodeIds which they want to fetch from
the OPC UA server (e.g., the well-known NamespaceArray).
These NodeIds are sometimes deeply nested in the information
model. The classical hypermedia approach, with only a single
well-known entry-point, would require that several ”Browse”-
Calls had to be made, which would yield in a lot of overhead
and can be considered one of the major drawbacks of the
HATEOAS approach [15]. Another reason is, that a typical
ExpandedNodeId OPC UA structure, which is the only way
to link to server external Nodes, could not be used as link
relation to another server if we would not specify a common
URI template. Because of that, we think that the benefits
of harmonizing URI templates across servers outweigh the
drawbacks, in case of OPC UA, and are also applied in the
same way by a lot of very popular web services like Amazon’s
S3 [16], Google’s Gmail [17], Apple’s News API [18] and the

Twitter API [19].
Browser support: One of the greatest benefits of the classic

web is, that we do not have to install a special application
for each web-application any longer. Instead, we only have to
install one application, also known as a web browser, and can
use it for a lot of different applications like webmail, online
banking, shopping and a lot more. It is highly possible that
this is one of the main reasons, why nearly every device is
shipped with a web browser or a web server on board. This
is also the main reason, why our REST-binding should also
be compliant to a simple web browser, similar to the Amazon
S3 REST API [16]. In the end, this would enable the use case
to check a single OPC UA value without installing additional
applications on most devices. It would be also much easier to
download the device documentation directly from the device’s
OPC UA server by simply tipping in a URL into a standard
web browser.

Programming against the TypeDefinition is a concept in
OPC UA, which allows someone to find Nodes based on their
BrowsePath. This is, for example, the preferred way to identify
Instance-NodeIds, based on their complex TypeDefinitions.
For this use case the TranslateBrowsePathsToNodeIds service
was introduced by the OPC Foundation. In a nutshell, this
service allows you to chain several Browse requests in one
TranslateBrowsePathsToNodeIds request. If we also introduce
a common URI template for that service, it would even be pos-
sible to apply this concept, in combination with redirections,
across several servers.

Resolution of ExpandedNodeIds: The last goal is to
be able to resolve ExpandedNodeIds in a simple way. This
approach also depends on URI templates, because otherwise,
it would not be possible to construct a valid URL only based
on the actual available OPC UA structures.

IV. APPROACH

We will now focus on the most interesting parts of our map-
ping, including an efficient concept for introducing session-
less requests in OPC UA, followed by our HTTP mapping.
Additionally, we will show how RESTful batch requests can
be supported without URL size limitations and also give some
insights on how we achieve browser support. Last but not least,
we will present a concept for session-less subscriptions.

A. SessionlessInvoke

As already explained in Section III-A, OPC UA can not be
considered stateless, even for services like Read or Browse.
This is mainly because of the fact, that the Namespace- and
ServerArray are only guaranteed to be stable within a session.

In Table I the service signature of the SessionlessInvoke
service is shown. The (+) marks our contributions to the
standardized service. There are two ways a client is able to use
SessionlessInvoke in OPC UA. One way is to specify the used
namespaceUris and serverUris for each call and the other way
is to set a so-called urisVersion in each call. The idea behind
the first approach is straightforward and will not be further
discussed here. However, the second approach needs some

Name Type Name Type
Request Response

(+) urisVersion VersionTime namespaceUris[] String
namespaceUris[] String serverUris[] String
serverUris[] String serviceId UInt32
(+) localeIds[] LocaleId body *
serviceId UInt32
body *

Table I
SESSIONLESSINVOKE SERVICE PARAMETERS [3].

further explanation. The basic idea behind the urisVersion is
to versionize the Namespace- and ServerArray. Every time
one of these arrays is changed, also the urisVersion must
be altered. The urisVersion is therefore introduced as new
Property of the OPC UA ServerObject. Of course, a server
has to ensure consistency between the UrisVersion Property
and the Namespace- and ServerArray. This, for example,
could be ensured by using the same semaphore. With that in
mind, the concept is also straightforward. At the beginning,
a client fetches the NamespaceArray, ServerArray and the
corresponding UrisVersion. After that, a client assigns the
NamespaceIndices based on the cached arrays and sets the
urisVersion field to the also cached UrisVersion value. An OPC
UA server now only has to check if the SessionlessInvoke
urisVersion field matches the local UrisVersion Property of
the server. If this is not the case because, for example, the
NamespaceArray was changed in the meantime, the server
discards the request and informs the client about the stale
cache values with a BAD VersionTimeInvalid StatusCode.
After that, a client has to refresh its cache and then is able
to retry the request. To ensure cache consistency on client-
side, the client should first fetch the UrisVersion Property in
a single request and after the response is received, try to fetch
both arrays. This is necessary because in general there is no
transaction context and also no sequential execution guarantee
between different items in a batch request. However, it might
be possible that some OPC UA servers support this feature
within a single batch request, but this should not be assumed
in general. Besides the above mentioned contributions, we also
contributed some more fixes to support SessionlessInvoke, like
the redefinition of the Method description: ”Each Method is
invoked within the context of an existing session” (OPC UA
Part 3 V1.03).

B. HTTP mapping

A big difference between our proposal and the actual re-
leased OPC UA specification is how SessionlessInvoke should
be mapped to the HTTP protocol. While the OPC Foundation
favors an HTTP RPC approach, in which every action is
mapped to the POST method, we will show another more
RESTful approach.

Table II shows the basic approach how some of the abstract
services from OPC UA can be mapped to HTTP. Of course,
it is not enough to only specify how OPC UA services should
be mapped to HTTP, instead, one of the main topics of each
REST-binding is the description of the resource representa-
tions. The services which are marked with (+) were introduced

HTTP OPC UA Representation
Method Service MIME-Type
GET Read app/opcua.Boolean+json

app/pdf
...

GET HistoryRead app/opcua.HistoryReadResult+json
PUT Write app/opcua.Boolean+json

app/pdf
...

PATCH HistoryUpdate app/opcua.HistoryUpdateResult+json
app/json-patch+json

GET Browse app/opcua.NodeRepresentation+json
GET BrowseNext app/opcua.NodeRepresentation+json
GET TranslateBrowse app/opcua.BrowsePathResult+json

PathsToNodeIds
GET (+) ResolvePath app/opcua.NodeRepresentation+json
POST Call app/opcua.CallRequest+json

app/opcua.CallResult+json
POST AddNode app/opcua.CallRequest+json

app/opcua.CallResult+json
DELETE DeleteNode app/opcua.StatusCode+json
PATCH (+) Modify app/json-patch+json

References app/opcua.ModifyRefsResponse+json
POST Query app/opcua.CallRequest+json

app/opcua.CallResult+json
GET QueryNext app/opcua.QueryNextResponse+json

Table II
HTTP MAPPING DETAILS (APP = APPLICATION).

in addition to the already existing services. However, these
services can be considered as an orchestration of OPC UA
services and because of that, the implementation effort is very
low.

C. Batch support

Most OPC UA services support batch requests. This feature
allows specifying more than one item per service request. The
main reason for this feature is to reduce the data on the wire
and the necessary processing overhead in client and server
applications. Classic REST APIs are often optimized to access
single resources. This is mainly because of the different use
cases. For example, it often makes no sense to request all web-
pages of a certain domain or all objects from a given Amazon
S3 bucket. Another reason is, that big web services are hosted
by a lot of servers, often with caches and load balancers in
front of them. Because of that, it would even make more sense
to break down batch requests into single requests and distribute
them to different servers. In contrast, a typical OPC UA server
runs on an embedded controller, which is often the only source
for the data. Having identified the necessity of batch requests,
we now propose several concepts, how batch requests can be
mapped to our RESTful OPC UA API:

1) Definition of some kind of batch-Node, which can be
configured through the client by adding special Refer-
ences.

2) Definition of a Method, similar to the classic OPC UA
Read service.

3) Definition of a special batch URL for receiving and pro-
cessing concatenate REST requests, similar as depicted
in Listing 1.

While the first two approaches look more natural to an OPC
UA client, the third one may look more familiar to typical web-

clients. However, the second approach should be the approach
with the lowest implementation effort. In the end, all three
approaches can be used to introduce batch capabilities in a
RESTful OPC UA API. For our prototype, we implemented
the second approach because this was, besides the lowest
implementation effort, also a chance to show some Method
NodeClass related concepts of our design.
[
{

” h r e f ” : ” / i =84/ BrowseName ” ,
” method ” : ” g e t ”

} ,
{

” h r e f ” : ” / i =2255/ Value ” ,
” que ry ” : {” t i m e s t a m p s T o R e t u r n ” : 2} ,
” method ” : ” g e t ”

}
]

Listing 1. OPC UA RESTful batch request (inspired by [20])

D. Browser support

One major reason to use HTTP was the chance to make OPC
UA compatible to a standard web browser, without forcing a
user to install additional plugins, or placing some gateway
server in front of the OPC UA server. This is, of course, no
requirement for a RESTful architecture, but might come in
handy for use cases like documentation download via a web
browser. It is also possible to use this feature for delivering
a full-featured OPC UA client based on JavaScript, to gain
full access to all features of OPC UA, without installing any
plugin (also known under the term code-on-demand).

To enable this feature in the first place, we have to take a
closer look at the specification of our Read service, which will
be used to fetch the Value Attribute. If a URL is tipped into
the browser an HTTP GET request is sent to the specified
URL. However, only mapping the Read service to HTTP
GET would not do the trick. A browser also interprets the
Content-Type HTTP header. If a browser does not know
the format, which is often the case for MIME-Types like
”application/opcua+uajson”, of course, nothing useful can be
displayed in the browser window. Because of that, we also
introduced a new optional Property for DataType-Nodes with
the BrowseName ”MIMEType”, containing a string value with
the MIME-Type (e.g., ”application/pdf”), which shall be used
as Content-Type HTTP header. But again, this is not enough
because some native OPC UA clients will only understand the
MIME-Type ”application/opcua+uabinary”. To also cover this
use case an OPC UA server shall interpret the accept header
of the request message. If a client specifies some well-known
OPC UA MIME-Type as the highest priority, the specified
type shall be used to encode the message body. If not, the
MIME-Type of the MIME-Type-Property shall be returned.
Based on the above rules an OPC UA server is now able to
deliver, for example, PDFs, which can be directly displayed in
the browser, without any additional OPC UA specific plugin.

Another useful optional feature is the possibility to en-
code all RequestHeader fields as HTTP query parameters. Of
course, it also makes sense to be able to encode the fields in

HTTP headers, like the OPC Foundation did for the HTTP
authorization header (see also OPC UA Part 6 for further
information). However, if somebody wants to share a link to an
OPC UA Node, it must also be possible to encode this token in
the URL, otherwise, there is no guarantee, that the value can
be fetched in each case. Just consider a simple dashboard web-
application, which only allows specifying a URL, but does not
allow to set any kind of header like [21].

E. Subscriptions

Services like RegisterNodes / AddSubscription and Ad-
dMonitoredItems are not possible with the currently released
SessionlessInvoke service from the OPC Foundation. This is
mainly because for these services an OPC UA server has to
keep some state. Nevertheless, this kind of state does not con-
flict with the stateless requirement of the REST architecture.
For example, the upload/deletion of a web-page, based on
some kind of REST API, also creates some new state on
the server. Our approach to solve this problem is to map
subscriptions into the information model of an OPC UA server.
A similar idea was already introduced by the OPC Founda-
tion in Part 14 for the PubSub configuration. However, one
problem still remains. Each Node in an OPC UA server must
have a unique NodeId. If Nodes are generated dynamically
during runtime, it has to be ensured, that previously assigned
NodeIds are not used again for another Node. However, for
session-less clients the NodeId must also be unique across
server crashes/restarts, because a session-less client might not
take notice of such an event. A possible solution for this
problem is the introduction of a so-called RuntimeNamespace.
All dynamically created NodeIds will be assigned to this
special Namespace. The Namespace-URI will be automatically
generated and has to be unique. If the Namespace is full, or
for example, a restart occurs, all dynamically generated Nodes
can be safely deleted by simply generating a new URI for
the RuntimeNamespace. This approach will ensure that each
NodeId for a dynamically generated Node is unique across
server crashes/restarts.

F. Conclusion

In this Section, we discussed our approach. Some of our
concepts were accepted by the OPC Foundation and now are
part of the newest release of the OPC UA specification. How-
ever, we also discussed the differences between both concepts
in the mapping to the HTTP protocol. While our approach uses
different HTTP methods and therefore is able to utilize the
semantics behind these methods (idempotence, safety, failure
handling, ...), the mapping of the OPC Foundation only uses
the POST method. Additional concepts, like the realization of
subscriptions, can be easily applied to the standardized pro-
posal too. Nevertheless, the most important feature, browser
support, is not really possible with the currently released
version of the OPC UA specification, because of the HTTP
mapping. In the end, our proposal would be able to add some
new useful features to OPC UA and could also be used to
reduce the complexity of OPC UA for web-developers.

V. PROTOTYPE

In this Section, we will give an overview of our prototype
and also show some of the implemented features.

A. Overview

Our prototype is based on the Java OPC UA stack imple-
mentation of the OPC Foundation. The following features were
implemented:
• Read and Write service (including batch support)
• Browse and BrowseNext service
• TranslateBrowsePathsToNodeIds service
• Call service
• SessionlessInvoke Base (NamespaceUris)
• SessionlessInvoke Optimized (UrisVersion)
• (+) MIME-Type handling
• (+) Content negotiation
• (+) ResolvePath (Redirections)
• (+) ExternalReferences
Most of the services are well-known to the OPC UA

community, but it should not be a surprise that the access
pattern is sometimes quite different to a standard OPC UA
server. For example, to collect all necessary information
for a NodeRepresentation, more than one OPC UA service
must be invoked. The services which are marked with a
(+) will now be explained in greater detail. Under the term
MIME-Type handling we address the feature, that arbitrary
files can be served with the correct MIME-Type, based on
the MIME-Type-DataType-Property (see also Section IV-D).
Content negotiation is the standard way in the web for
a client to request a certain representation of a resource.
To be more concrete, a client is able to specify the en-
coding, for example, ”application/opcua+uajson” or ”applica-
tion/opcua+uabinary”. ResolvePath was introduced to offer a
more comfortable way for the OPC UA concept programming
against the TypeDefinition. Just consider the following URL
”<host>/Objects/0:Server/NamespaceArray”. Resolving the
URL would lead to a redirect to the URL ”<host>/1/i=2255”,
based on the first entry of the TranslateBrowsePathsToNodeIds
service response. However, not every Node can be addressed
by this concept, because the BrowsePath is not unique (see
also OPC UA Part 3 for further details). ExternalReferences
can be derived from ExpandedNodeIds, if certain additional
restrictions hold. For example, a server-URI has to be a valid
URL to the REST endpoint of the OPC UA server.

B. Features

As already mentioned in Section II, for a RESTful OPC
UA server it is necessary to define resources and their rep-
resentations. In IV-B several representations were introduced.
Because of space limitations, we will only focus on the ”ap-
plication/opcua.NodeRepresentation+json” representation (see
Listing 2). The basic structure of this representation consists of
three parts: attributes, references and forms. In the attributes
section all Attributes of a given Node are summarized, while
the reference section offers all References of the Node. How-
ever, the form section might not be expected by an OPC UA

user. One of the preconditions of a RESTful API is, that a
client should be able to explore all service functions without
additional documentation [11]. If one remembers the basic
concept behind REST (Section II-A), we not only have to
display somehow that there are additional resources, for exam-
ple, the ”StaticVariableFolder” resource, instead, we also have
to provide the client with the knowledge how to access them.
This is done by introducing a new field in the OPC UA NodeId
structure with the name ”href”. The value of the ”href” field
is a valid URL to the target Node of the ReferenceDescription
structure. The href field ”<host>/2/s=1:Boolean” references
the string NodeId ”Boolean” based on NamespaceIndex ”1”
and the SessionlessInvoke urisVersion ”2”. Notice, that this
additional field does not force OPC UA architects to add ad-
ditional information to already existing OPC UA information
models, instead, it can be easily generated automatically out of
existing information. But expressing all possibilities with links
would add a large amount of data to each representation. For
that reason, the form section is introduced. In this section, it
is possible to express standard functions of the service based
on URI templates [13]. In the forms section of Listing 2
an example for a possible Read URI template is given. For
performance reasons, this section can also be suppressed
through special filter settings.
{

” a t t r i b u t e s ” : {
” NodeIdValue ” : {

” NodeId ” : {
” namespace ” : 1 , [. . .]
” h r e f ” : ”<hos t > /1/ s =1 : Boolean ”
} , [. . .]

} , [. . .]
” Value ” : {

” h r e f ” : ”<hos t > /1/ s =1 : Boolean / Value ” , [. . .]
}
} ,
” r e f e r e n c e s S t a t u s C o d e ” : 0 ,
” r e f e r e n c e s ” : {

” (! i = 0 : 4 7) s =1: S t a t i c V a r i a b l e s F o l d e r ” : {
” nodeId ” : { [. . .]

” h r e f ” : ”<hos t > /1/ s =1 : S t a t i c V a r i a b l e s F o l d e r ”
} , [. . .] } , [. . .]

} ,
” forms ” : {

” D e f a u l t R e a d ” : { [. . .]
” h r e f ” : ”<hos t > /1/ s =1 : Boolean /{ a t t r i b u t e N a m e}

{? o p c u a A u t h e n t i c a t i o n T o k e n }” ,
” method ” : ”GET” ,
” u r i T e m p l a t e ” : t r u e ,
” j sonschema ” : {

” t y p e ” : ” o b j e c t ” ,
” p r o p e r t i e s ” : {

” a t t r i b u t e N a m e ” : {
” t y p e ” : ” s t r i n g ” ,
” d e s c r i p t i o n ” : ” The a t t r i b u t e name ” ,
”enum ” : [” NodeId ” , . . .]
} , [. . .]

} ,
” r e q u i r e d ” : [” a t t r i b u t e N a m e ”]

}
} , [. . .]

}
}

Listing 2. Example NodeRepresentation (simplified)

A typical graphical OPC UA Client, like UAExpert [22],
often offers some kind of template if the OPC UA Call
service is invoked by the user. This template is based on well-
known OPC UA properties, which are part of each Method-

Node. However, a typical web-client is not aware of these
OPC UA specific conventions. Because of that, the form
section also provides some additional information if OPC UA
Method-Nodes are involved. The most important part of such
a representation is depicted in Listing 3. The representation
provides all necessary information, including the target URL,
the HTTP method, and the expected Content-Type. The section
requestSchema and responseSchema provides a URL to the
corresponding schema description for the request/response
Content-Type. Our Prototype uses JSON schema [23] for this
purpose, which is well-known in the web and also offers client-
side validation. However, based on HTTP content negotiation
it is also possible to serve other schema descriptions.
{

” h r e f ” : ”<hos t > /1/ s =1 : A t t r i b u t e S e r v i c e S e t ” ,
” method ” : ”POST” ,
[. . .] ,
” a c c e p t s ” : [” a p p l i c a t i o n / opcua . C a l l R e q u e s t + j s o n ”] ,
” r eques tSchema ” : {

” h r e f ” : ”<hos t > /1/ s =1 : Read / RequestSchema ”
} ,
” responseSchema ” : {

” h r e f ” : ”<hos t > /1/ s =1 : Read / ResponseSchema ”
}

}

Listing 3. Representation of Methods in the form section.

The next example focuses on the pagination of OPC UA.
A lot of services in OPC UA may return a large amount of
data and because of that, many *Next services were introduced
by the OPC Foundation. On the web, the typical pagination
paradigm is to offer some URL, which returns the next
results (HATEOAS). Our prototype also supports this kind of
paradigm. If not all results are part of the response, an addi-
tional continuationPoint field is present (see also Listing 4). If
a client sends a GET request to the specified URL, the next
part of the result is returned. A nice property of this paradigm
is the fact, that we do not have to introduce multiple *Next
services (e.g., BrowseNext, QueryNext, ...), instead we only
have to add this field to the corresponding representation.
” c o n t i n u a t i o n P o i n t ” : {

” c o n t i n u a t i o n P o i n t I d ” : ”AQed ” ,
” h r e f ” : ”<hos t > /1/ i =85? c o n t i n u a t i o n P o i n t =AQed”

}

Listing 4. *Next services powered by HATEOAS.

VI. RELATED WORK

Below, we discuss related work, which also proposes some
kind of RESTful OPC UA interface.

RESTful Industrial Communication [5]: The authors also
introduced a RESTful OPC UA architecture. However, because
the authors have not shown any solution for the dynamic
Namespace- and ServerArray problem, we think that some
additional restrictions must be placed on a server which uses
this concept (e.g., the Namespace- and ServerArray cannot be
changed). In contrast, our concept can be used by any OPC
UA server, without introducing additional restrictions. Besides
the points mentioned above, also one feature for a RESTful
architecture, HATEOAS, is not part of the concept.

OPC UA over CoAP [6]: This draft is also working on
an OPC UA REST interface. However, the approach seems
to build on the findings of [5], which were already discussed
above. Because of that, the same restrictions should apply.

Industrial Middleware [7]: This paper discusses a linked
data architecture for OPC UA, also leveraging an OPC UA
REST API. The concept also uses the HATEOAS concept for
interconnecting different Nodes. In the end, the authors seem
to use a similar concept as the authors of [5], for introducing
statelessness in OPC UA, and therefore the same restrictions
should apply.

Protocol interoperability of OPC UA [8]: Also, this
proposal is inspired by [5] and therefore the same restrictions
should apply. However, this concept only maps 7 services
from OPC UA to a REST API, while our concept even has a
proposal for subscriptions. In addition, we are also not sure if
a certain criterion for a REST API is covered, HATEOAS.

HyperUA [24]: HyperUA offers a very nice web-based
interface. The problem of OPC UA, that each service which
uses the Namespace- and ServerArray needs an active session,
is solved by still creating sessions and encode all necessary
information into the URLs. While this approach also includes
the HATEOAS paradigm and therefore offers a RESTful
feeling, finally, each client still has to create a session and
therefore the service cannot fully leverage all benefits of REST.

dataFEED OPC Suite [25]: The dataFEED OPC Suite
introduces a so-called REST client API. After taking a closer
look at the documentation and at the evaluation version of
the software framework, we identified that the REST API is
some kind of data push API. Basically one can define so-called
”Actions”, which will be invoked by user-defined conditions
and after that send a message to a user-defined REST endpoint.
In the end, we came to the conclusion, that the dataFEED OPC
Suite REST API has other goals than our API.

KEPServerEX [26]: Kepware published an IoT-Gateway
plugin for their OPC UA software framework KEPServerEX.
This plugin also offers a REST interface to access OPC
UA data. The basic concept behind this REST API is three
predefined URLs, which allow someone to execute some kind
of read, write and browse service. However, these services
only have the name in common with the corresponding OPC
UA services and therefore are completely disjoint with our
approach. For example, the browse service returns all ”tags”,
which are configured for the given REST server interface and
not the References of OPC UA Nodes.

VII. SUMMARY AND OUTLOOK

In this paper we analyzed why OPC UA cannot be con-
sidered stateless, even for trivial services like Read, Write
and Browse. After having identified the challenges, which
prevent us from introducing stateless requests into OPC UA,
we discussed an efficient way how this problem could be
solved and contributed parts of our concept to the newest
release of the OPC UA specification (V1.04). In addition, we
presented our approach how the REST architecture can be
mapped to OPC UA and also gave some insights into our

design decisions and goals. Last but not least, we presented
our RESTful OPC UA prototype, to show the feasibility of
our concept and several benefits of our architecture, as for
example the ability so serve PDFs to a standard web browser.

In Section IV-E we outlined our concept for session-less
subscriptions. However, because our SDK did not offer an
implementation for subscriptions, we were not able to include
the concept in our prototype. Because of that, we switched to
the C++ SDK of Unified Automation and started to implement
the missing feature.

REFERENCES

[1] “Reference architectural model industrie 4.0,”
https://opcconnect.opcfoundation.org/2015/06/
opc-ua-in-the-reference-architecture-model-rami-4-0/, 2018.

[2] Y. Li, S. Hu, W. Tao, and B. Li, “Research on the industrial network
architecture of northbound interface,” in Chinese Automation Congress,
2017.

[3] “Iec 62541: Opc unified architecture,” Standard, 2010.
[4] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, 2000.
[5] S. Gruener, J. Pfrommer, and F. Palm, “Restful industrial communication

with opc ua,” IEEE Transactions on Industrial Informatics, vol. 12, no. 5,
2016.

[6] P. Wang, C. Pu, H. Wang, J. Wu, Y. Yang, L. Shao, and J. Hou, “OPC
UA Message Transmission Method over CoAP,” IETF, Internet-Draft
draft-wang-core-opcua-transmission-03, 2018, work in Progress.

[7] M. Graube, L. Urbas, and J. Hladik, “Integrating industrial middleware
in linked data collaboration networks,” in IEEE Emerging Technologies
and Factory Automation, 2016.

[8] H. Derhamy, J. Rnnholm, J. Delsing, J. Eliasson, and J. van Deventer,
“Protocol interoperability of opc ua in service oriented architectures,”
in IEEE Industrial Informatics, 2017.

[9] G. R. Andrews, “Paradigms for process interaction in distributed pro-
grams,” ACM Computing Surveys, vol. 23, no. 1, 1991.

[10] D. Garlan and M. Shaw, “An introduction to software architecture,” Tech.
Rep., 1994.

[11] R. T. Fielding, “Rest apis must be hypertext-driven,” http://roy.gbiv.com/
untangled/2008/rest-apis-must-be-hypertext-driven, 2008.

[12] J. Miranda, J. Cabral, S. Banerjee, D. Grossmann, C. F. Pedersen,
and S. R. Wagner, “Analysis of opc unified architecture for healthcare
applications,” in IEEE Emerging Technologies and Factory Automation,
2017.

[13] R. T. Fielding, M. Nottingham, D. Orchard, J. Gregorio, and M. Hadley,
“Uri template,” RFC 6570, 2012.

[14] M. Nottingham, “Uri design and ownership,” RFC 7320, 2014.
[15] “Github replaces rest with graphql,” https://githubengineering.com/

the-github-graphql-api/, 2018.
[16] “Amazon s3,” https://docs.aws.amazon.com/AmazonS3/latest/API/

Welcome.html, 2018.
[17] “Google gmail,” https://developers.google.com/gmail/api/v1/reference/,

2018.
[18] “Apple news api,” https://developer.apple.com/library/content/

documentation/General/Conceptual/News API Ref/index.html#//
apple ref/doc/uid/TP40015409-CH2-SW1, 2018.

[19] “Twitter api,” https://developer.twitter.com/en/docs/api-reference-index,
2018.

[20] “Rest api multiple-request chaining,” https://github.com/mikestowe/
REST-API-Multiple-Request-Chaining, 2016.

[21] “Dash web application,” https://www.thedash.com/, 2018.
[22] “Unified automation: Uaexpert,” https://www.unified-automation.com/

de/produkte/entwicklerwerkzeuge/uaexpert.html, 2018.
[23] A. Wright and H. Andrews, “JSON Schema: A Media Type for De-

scribing JSON Documents,” IETF, Internet-Draft draft-handrews-json-
schema-00, 2017, work in Progress.

[24] “Projexsys: Hyperua,” http://projexsys.com/hyperua/, 2018.
[25] “Softing: datafeed opc suite,” https://industrial.softing.com/en/products/

software-connectivity/opc-suite-servers-and-middleware.html, 2018.
[26] “Kepware: Kepserverex,” https://www.kepware.com/en-us/products/

kepserverex/, 2018.

https://opcconnect.opcfoundation.org/2015/06/opc-ua-in-the-reference-architecture-model-rami-4-0/
https://opcconnect.opcfoundation.org/2015/06/opc-ua-in-the-reference-architecture-model-rami-4-0/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://githubengineering.com/the-github-graphql-api/
https://githubengineering.com/the-github-graphql-api/
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://developers.google.com/gmail/api/v1/reference/
https://developer.apple.com/library/content/documentation/General/Conceptual/News_API_Ref/index.html#//apple_ref/doc/uid/TP40015409-CH2-SW1
https://developer.apple.com/library/content/documentation/General/Conceptual/News_API_Ref/index.html#//apple_ref/doc/uid/TP40015409-CH2-SW1
https://developer.apple.com/library/content/documentation/General/Conceptual/News_API_Ref/index.html#//apple_ref/doc/uid/TP40015409-CH2-SW1
https://developer.twitter.com/en/docs/api-reference-index
https://github.com/mikestowe/REST-API-Multiple-Request-Chaining
https://github.com/mikestowe/REST-API-Multiple-Request-Chaining
https://www.thedash.com/
https://www.unified-automation.com/de/produkte/entwicklerwerkzeuge/uaexpert.html
https://www.unified-automation.com/de/produkte/entwicklerwerkzeuge/uaexpert.html
http://projexsys.com/hyperua/
https://industrial.softing.com/en/products/software-connectivity/opc-suite-servers-and-middleware.html
https://industrial.softing.com/en/products/software-connectivity/opc-suite-servers-and-middleware.html
https://www.kepware.com/en-us/products/kepserverex/
https://www.kepware.com/en-us/products/kepserverex/

