

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2018) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 18-20 July 2018, Gulf of
Naples, Italy

Synchronization of a “Plug-and-Simulate”-capable Co-Simulation of

Internet-of-Things-Components

 Tobias Jung*, Michael Weyrich

University of Stuttgart, Institute of Industrial Automation and Software Engineering,

Pfaffenwaldring 47, 70550 Stuttgart, Germany

* Corresponding author. Tel.: +49 711 685-67301; fax: +49 711 685-67302. E-mail address: ias@ias.uni-stuttgart.de

Abstract

Modern production systems are increasingly interconnected and flexible and therefore form Internet-of-Things-systems (IoT). Because of the

flexibility those systems are also dynamic, meaning the entering and leaving of components during runtime, and heterogeneous. For the

simulation of such systems, those challenges of dynamic and heterogeneity have to be met. Therefore the authors presented an agent-based co-

simulation concept, but an important aspect of a co-simulation is the synchronization of the used simulations, which hasn’t been considered yet.

In this contribution the challenges of synchronizing a co-simulation of IoT-systems are introduced and existing co-simulation synchronization

concepts examined with regard to their usability for simulating IoT-systems. Afterwards a synchronization concept is presented, which can be

used in the presented agent-based co-simulation concept.

© 2018 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing

Engineering.

 Keywords: Internet fo Things systems; co-simulation; agent-based modelling; synchronization; Digital Twin

1. Introduction

Due to the introduction of the Internet of Things

technology, automated systems in production and logistics get

more and more dynamic and heterogeneous. IoT-components

can enter or leave the system during runtime and through the

interconnection across different domains, like production,

logistics, etc., the components of IoT-system differ greatly. To

meet these challenges, which occur during every phase of a

life-cycle, new concepts, like “Plug-and-Play” during

operation are presented. For the simulation of such IoT-

systems also new concepts are needed to meet the challenges

of dynamic and heterogeneity. A possible approach is “Plug-

and-Simulate”.

Reference [1] investigates existing approaches and

concepts for the simulation of IoT-systems and evaluates them

with regard to their “Plug-and-Simulate”-capabilities. It is

concluded, that a novel co-simulation concept is needed. In

this concept each IoT-component is simulated in its own

simulation environment and each simulation is represented by

a software agent. The single simulation are therefore coupled

by the resulting agent system and can interact with each other

via agent communication, whereby the communication in the

real IoT-system is simulated. The representation by agents

enables the simulations to enter and leave the co-simulation

during runtime. As different simulation tools are used to meet

the challenge of heterogeneity, translators between the

simulation tools and their respective agents are needed, to

translate the messages of the simulation tools to the, by the

agents used, exchange format. This concept is shown in Fig. 1.

Currently only sequential or time-in depended scenarios

can be simulated with the presented concept. But if parallel

scenarios, which occur frequently in IoT-systems, have to be

simulated and when using different simulation tools, as done

in the presented concept, the problem of synchronizing the

different simulations arises. An example for a scenario, which

http://www.sciencedirect.com/science/journal/22128271

2 Jung, Weyrich/ Procedia CIRP 00 (2018) 000–000

needs synchronization, is the simulation of an IoT-based

warehouse, where forklifts, which are transporting goods, are

simulated. The simulation of a forklift is triggered by an

incoming good, which is then transported to a storage area.

During the transportation of the good the forklift gets a second

message by another forklift that it has to change its route, to

prevent collisions with other forklifts. If the simulation of the

first forklift is much faster than the simulation of the second

forklift, the second message is received, when the first forklift

has already reached its destination, whereas it should have be

received while driving. Such errors in co-simulation are called

causality errors. Hence the different simulation tools have to

be synchronized. All in all the question arises, how “Plug-and-

Simulate”-capable co-simulations can be synchronized.

Fig. 1. Multi-agent-based co-simulation.

Therefore, at first in chapter 2, the basics of the

synchronization of co-simulations are presented, to make basic

decisions for the needed concept. Afterwards synchronization

concepts of existing co-simulation approaches and standards

are researched and evaluated with regard to their “Plug-and-

Simulate”-capabilities. In chapter 3 basic design decisions for

a synchronization of “Plug-and-Simulate”-capable co-

simulations are presented. Chapter 4 presents a concept for the

synchronization of the simulation tools in the presented agent-

based co-simulation concept. In the end, in chapter 5, a

description of a prototypical implementation is given, which

can be used for an evaluation of the presented concept.

2. Existing Synchronization Concepts for Co-Simulations

2.1. Advancing Time in Co-Simulations

Before synchronization in co-simulations can be realized it

has to be determined how the simulators advance their logical

time during the simulation. In [2], three possibilities of

advancing time in a simulation are presented:

 Event Driven Time Advancing: The simulation itself is a

discrete event simulation and the simulation steps are

divided into events. In the simulation those events are

executed one after another in the correct order. This order

is mostly derived from time stamps belonging to the

events.

 Time Stepped Time Advancing: The simulation itself can

be a continuous or a discrete event simulation and the

simulation is divided into time steps. Those time steps can

either have a fixed or flexible duration and all calculation

for a time step have to be finished by all simulations before

advancing to the next time step.

 Wall Clock Driven Time Advancing: The simulation itself

can be a continuous or a discrete event simulation. The

time advancement depends not only on the execution speed

of the simulation itself, but also on an external wall clock,

which runs continuously. Real time requirements can be

met with this time advancing method.

Depending on the used time advancing mechanisms the

synchronization of a co-simulation can be simplified. For

example if only “Wall Clock Driven Time Advancing” is

used, no time stamps are needed, but then the co-simulation is

not time efficient. If “Time Stepped Time Advancing” is used,

before advancing to the next time step, it must be guaranteed,

that all messages belonging to this time step were received. In

case of using “Event Driven Time Advancing” it has to be

guaranteed that no events of the past are received. Here the

problem can arise, that the durations and granularity of events

in different simulation tools can differ, which is why, different

guaranteeing methods have to be applied than when using

“Time Stepped Time Advancing”.

A simplification of the synchronization concept can only

be made, if it can be guaranteed, that one or more of the

presented time advancing methods will not be used in a co-

simulation. To meet the above mentioned heterogeneity of the

IoT-systems a huge variety of simulation tools will be

utilized, which is why, this cannot be guaranteed and all time

advancing mechanisms have to be considered for the

synchronization.

2.2. Conservative and Optimistic Synchronization

Traditionally synchronization methods are divided into

conservative and optimistic synchronization [3].

Conservative mechanisms guarantee, that no event is

processed out of turn, in case of discrete event simulation and

that no message is delayed or received too late in case of

continuous simulation. Therefore either, in case of continuous

simulations, a central instance regulates the advancement of

the simulations and only allows an advancement, when all

current messages are received and all current events are

processed or, in case of discrete event simulation, a

mechanism has to be implemented, that guarantees, that all

events are delivered in the correct order. Several mechanisms

and algorithms for a conservative synchronization exist and

can be classified into the methods “synchronous operation”,

“with dead-lock avoidance”, “deadlock detection and

recovery” and “conservative time windows” [4]. Common for

all those methods is, that every event and every message

requires a time stamp to guarantee the avoidance of causality

errors.

Optimistic synchronization algorithms allow causality

errors and have the ability to detect them. For the detection of

causality errors timestamps can also be used, but also other

ways to detect them exist. If a causality error in a simulation

was detected, the simulation has to be rolled back, meaning

that all preceding simulation results have to be undone until

Agent-based communication

Translator 1

Agent 1

Model 1

Simulation 1

Translator n

Agent n

Model n

Simulation n

Translator n+1

Agent n+1

…

…

Model
n+1

Simulation n+1

 Author name / Procedia CIRP 00 (2018) 000–000 3

the causality error is resolved. Before the occurrence of a

causality error the simulations of a co-simulation are not

synchronized and run therefore independently of each other

and are only synchronized in case of a causality error. For

realizing an optimistic synchronization, all previous inputs of

the simulation have to be saved, as they are needed again in

case of a roll back. Additionally a mechanism to call back

previous outputs has to be installed, as in case of a causality

error those outputs can also be wrong. One of the best known

optimistic synchronization algorithms is the “Time Wrap

algorithm” by Jefferson [5].

A benefit of the optimistic synchronization mechanisms is,

that the simulation time can be greatly reduced, as the

individual simulations can all run in their own time and do not

have to wait regularly for slower simulation. In the best case

scenario even the shortest possible execution time for the co-

simulation can be achieved. However, the resource utilization

is higher than with conservative synchronization methods

because not all calculated results are useable.

Because of the reduction of the execution time an

optimistic synchronization is desirable, but there also much

higher requirements on the simulation tools, as they have to

be able to store input as well as output values and have to be

able to roll back the simulation time. In case of conservative

synchronization, the simulation tools only need the ability to

pause its simulation at discrete points in time or between

discrete events. Therefore the useable synchronization

methods highly depends on the used simulation tools.

2.3. Synchronization in Functional Mock-up Interface (FMI)

According to [6] FMI is not capable of “Plug-and-

Simulate”. Nevertheless, it is a popular co-simulation concept

used in the automotive sector and therefore its

synchronization concept was investigated, whether some

aspects can be adapted to the presented agent-based co-

simulation concept.

In FMI two possibilities for co-simulation exist. One

possibility is the coupling of subsystem models where the

individual simulations (simulation slaves) are encapsulated in

so called Function Mock-up Units (FMUs), which then are

integrated into a single simulation tool acting as the

simulation master. Here the FMUs contain both the model and

a solver that is able to execute the model. The other

possibility is tool coupling, where the models are executed in

their native simulation tools, acting as simulation slaves,

which are coupled via FMI wrappers to the simulation tool

acting as the simulation master [7].

The simulation master is responsible for both the data

exchange between the simulations and the synchronization of

the simulations. The most commonly used synchronization

methods in FMI are conservative methods, more specifically

“synchronous operation”-methods, meaning in case of FMI

the data exchange between the simulations happens at discrete

points in time. These discrete points are called communication

points and all simulation slaves stop their simulation at each

communication point. Then the simulation master collects all

outputs of the simulation slaves and distributes them to the

corresponding simulation slaves as inputs. At each

communication point the simulation master also provides the

current simulation time to each simulation and the size of the

next simulation step, meaning the time until the next

communication point. These step sizes can either be constant

or can vary for each simulation step [8].

If a conservative synchronization method is used for a

“Plug-and-Simulate” co-simulation, the synchronization

concept of FMI can be used, but the simulation tools, used for

the co-simulation, have to meet some requirements. All of

them have to able to stop their simulations at fixed points in

time and therefore must be able to have a continuous flow of

simulation time, or, if they do not provide a continuous flow

of simulation time, they have to be able to subdivide events,

which take longer than the set simulation step size. If the

concept is extended by the possibility, that not all of the

simulation tools have to be stopped at every communication

point, but that some only participate at some communications

points, the number of useable tools would increase. The main

drawback of this concept is its time efficiency, as all of the

simulations have to wait at each communication for the

slowest simulation to be finished.

2.4. Synchronization in High Level Architecture (HLA)

HLA is in principle capable of “Plug-and-Simulate” [6],

even though only known models and simulation tools can be

integrated during runtime. A typical HLA co-simulation

consists of the simulations, called federates, a Run Time

Infrastructure (RTI), as well as several specifications. The

RTI is coordinating the data exchange and synchronization of

the co-simulation and is comparable to a simulation master,

but is not a simulation itself. Those specifications are needed

to connect the federates to RTI and to enable a data exchange

[9].

For HLA both conservative (time step advancement and

event-based advancement) and optimistic synchronization

methods exist. To participate in the synchronization, federates

have to send Time Stamp Order (TSO) messages, which

contain the time stamp when the message was sent.

Additionally those messages can contain a Lookahead value,

which is the time in which a federate will not send any TSO

messages, starting from the time the last TSO message was

send. By sending a Lookahead value it can be guaranteed, that

no other messages will be sent in a certain amount of time and

the other federates can advance their time for that time period.

If a federate has a time-based advancement, it has to make a

Time Advance Request at the RTI, which is only granted,

after the RTI has checked, whether the conditions for a time

advancement are met. For event-based advancement it works

in a similar way, only that a “Next Message Request” has to

be made to the RTI. If an optimistic approach is used,

Message Retraction methods have to be applied. When a

federate receives a message with a lower logical time than its

own simulation time, it has to send Request Retraction

message to the other federates to retract the wrongly send

messages. However, the detection of causality errors has to be

handled by the federates themselves [10].

All in all, synchronization methods used for HLA co-

simulations vary, depending on the used RTI and simulation

4 Jung, Weyrich/ Procedia CIRP 00 (2018) 000–000

tools, but most of the available synchronization methods are

“Plug-and-Simulate” capable. Those methods all have their

own benefits and drawbacks, mostly similar ones as

previously mentioned.

2.5. Synchronization of further Co-Simulation Approaches

Additionally to FMI and HLA other co-simulation

approaches, which are to some degree capable of “Plug-and-

Simulate”, were researched. In [11] OPC UA was utilized for

co-simulation. Here each simulation is connected via an

interface to a generic adapter consisting of an OPC UA server

and an OPC UA client. The different simulations can

communicate with each other via an aggregating server.

Whereas [12] uses OSGi to couple different simulation, by

integrating each participating simulation into an OSGi-Bundle

to enable a communicate between the simulations via the

OSGi framework. However, for those approaches, no

information about the used synchronization concept were

available.

3. Synchronization of “Plug-and-Simulate” capable Co-

Simulations

In principle, both FMI and HLA synchronization methods,

as well as the above mentioned conservative and optimistic

methods can be used for “Plug-and-Simulate”-capable Co-

Simulations. But they can only be used without restriction, if

all used simulation tools support those methods, which leads

to a small number of useable tools, as many simulation tools

have huge limitations regarding the possibilities to influence

the simulation time during runtime.

For many simulation tools it is difficult to pause a

simulation during runtime or to execute a simulation in

discrete time steps with variable step sizes. Most simulation

tools are not capable of rolling back a simulation. Therefore

the synchronization method with the least requirements to the

simulation tools, the conservative method with “synchronous

operation”, is most suited, although an optimistic approach

would be desirable in regards to the overall simulation time.

This results in a synchronization method for “Plug-and-

Simulate”-capable co-simulations, where every simulation is

paused after each time step. Those time steps have to be

variable. If the time steps are not variable, there is always the

possibility that the current time step size cannot be executed

by a new simulation tool that enters the co-simulation.

This approach still leaves open the possibility to extend the

synchronization by rollback mechanisms, if the rollback is

handled by the simulation tools themselves or by their

representing agents, although not all simulations will be able

to participate in rollback.

It is still possible that during one time step several

messages are send and it cannot be guaranteed by the agent

system that those are received in the correct order. Therefore

the time steps have to be sufficiently small, so that it is either

not possible, that several messages can be send and received

during a single time step, or so that it does not matter in which

order the messages are received during a time step, as it can

be assumed, that they were received at the same time. As for

many scenarios neither of those two options is practicable, a

message exchange between the simulations is only allowed at

the end of each time step, which also requires sufficiently

small time steps.

The size of the time steps depends on the simulated

scenario and therefore has to be set for each co-simulation. To

simplify the use of “Plug-and-Simulate”, the smallest possible

time step for the co-simulation will be chosen by default when

a new simulation enters the co-simulation. The smallest

possible time step is the least common multiple of the

smallest possible time steps of each simulation.

4. Synchronization of an agent-based co-simulation

4.1. Multi-Agent System for Co-Simulation

As, because of the above mentioned reasons, a

conservative synchronization method without rollback

mechanisms was chosen, a central instance is needed to

coordinate the synchronization. Therefore an additional

“Clock Agent” besides the agent representing the simulations

is introduced. During a co-simulation, each simulation

executes a time step and then reports to its representing agent,

that the simulation step is finished. Each agent sends, upon

receiving this report by its simulation, a message to the

“Clock Agent”, that the current simulation step is finished.

When all agents have reported, that their current simulation

step is finished, the “Clock Agent” sends a message to each

representing agent to start the next simulation step. The

concept with the added “Clock Agent” (grey) can be seen in

Fig. 2.

Fig. 2. Synchronized, multi-agent-based co-simulation.

Instead of using an additional agent it is also possible to

use an external clock, running in a parallel system to the agent

system. A benefit of such a parallel system is, that such a

system can meet real time requirements, in contrast to an

agent system, where real time cannot be guaranteed, as agent

system are not always deterministic. Therefore such an

external clock can provide a much more exact time stamp,

which is especially needed for “Wall Clock Driven Time

Advancing”. But such a parallel system increases the

complexity of the interface of the simulation tools, as an

interface to both the agent system and the clock system is

needed. And if no real components are included in the

simulation systems, as in Hardware-in-the-Loop simulations,

and the time steps are sufficiently small, the time provided by

Agent-based communication

Simulation 1

Translator 1

Agent 1

Simulation n

Translator n

Agent n

Clock Agent

…

…

 Author name / Procedia CIRP 00 (2018) 000–000 5

a “Clock Agent” is exact enough. Therefore the concept of the

“Clock Agent” was chosen.

Another problem arises, when a “passive” simulation

participates in the co-simulation. “Passive” means that a

simulation is in an idle state, unless it is triggered to generate

a reply. An example would be the simulation of a temperature

sensor, which only measures the temperature, when a

measurement request was posed and is otherwise idle. Such a

simulation will not keep track of its simulation time, while it

is in its idle state. Therefore, it cannot reply to the “Clock

Agent” that it has finished the current time step. In those

cases, the agent will reply directly to the “Clock Agent”, that

its simulation has finished, when the message to start the next

simulation step arrives and while the simulation is in its idle

state. For this an agent always assumes, that upon receiving a

message the simulation will switch to an active state and will

remain there until the reply has been generated. Therefore the

reply message has to contain, in addition to the actual reply,

the information, whether the simulation has switched to idle

after sending the reply or not, so the agent knows whether to

wait or to send an immediate reply after receiving the next

message to start the next simulation step.

Therefore, in addition to the “Clock Agent”, the agents

representing the simulations have to be extended by the reply

mechanisms and the ability to identify, whether a simulation

is idle.

4.2. Interface between Agents and Simulation Tools

For forwarding the synchronization messages, the agents

need an interface to the simulation tool. This interface is in

parallel to the already existing translator interface, responsible

for the forwarding of the messages of the IoT-system.

The translator interface is divided into a generic and a tool

specific part. The generic part is connected to an agent and is

the same for all simulations to increase reusability. The

specific part is connected to a simulation tool and has to be

adapted for each simulation tool, as each simulation tool has

its own specific interface to interact with other programs. This

concept is adapted for the synchronization interface, dividing

the synchronization interface also into a generic and a specific

part.

The generic part receives the messages from the “Clock

Agent” to start the next simulation step and forwards it to the

specific part. It also reports to the “Clock Agent”, that the

current simulation step was completed. The specific part will

start or resume the simulation for each new simulation step

and therefore needs a connection to the simulation tool. It will

also receive the information when the simulation finished the

simulation of the time step, either by getting notified by the

simulation tool, if possible, or by regularly checking the

simulation, whether the time step is finished. The specific part

differs for each simulation tool, but can be reused for different

models and scenarios in the same simulation tool. The

specific part also has to manage the setting of the time steps.

As the step size can always change, when a new simulation

enters the co-simulation. Then, the step size has to be sent

together with the message, which starts the next time step.

The extended concept of the interface between agents and

simulations, including the translator and the synchronization

interface, can be seen in Fig. 3.

Additionally an interface is needed to add the information

to messages exchanged between the simulations, whether the

simulation is idle or active. This interface needs both a

connection to the specific translator, as it has to extract the

information about the idle state from the reply of the

simulation to the former request and needs additionally a

connection to the specific synchronization interface, to which

it has to pass this information (Fig. 3). After extracting the

information about the idle state of the simulation, the interface

deletes this part of the message, as it should not be passed to

the other simulations, because they cannot utilize this part of

the message. The information about the idle state will be

passed to the generic part of the synchronization interface and

to the agent of the simulation, where it will be stored, so the

agent can always reply to the message by the “Clock Agent”

to start the next time step.

Fig. 3. Interface between Simulation Agents and Simulation Tools.

5. Prototypical Implementation

Currently the concept is not completely implemented, the

synchronization interface is only partly implemented and the

“Clock Agent” is not realized yet. The models and the agent

system on the other hand exist already and the “Plug-and-

Simulate”-capabilities can be shown with this prototype.

5.1. Scenario and chosen Tools

For the prototype a scenario of an IoT based temperature

and humidity controlling system was chosen, consisting of

models of a temperature sensor, a humidity sensor, a heating

unit and a humidity controller. The heating unit and the

humidity controller request the values of their respective

sensor and start heating or respectively increasing the

humidity, when the values fall under a certain threshold.

Additionally to the models of the IoT components a model of

the environment is needed, as the heating unit and the

humidity controller can also interact via the environment with

the sensors, by heating or changing the humidity. To simulate

those interactions, “physical messages” are sent to and from

the environment model. For example, if the heating unit is

heating, it tells the environment, that it is currently heating

with 20 kW. If the heating unit is turned off again, it sends a

message to the environment, that it stopped heating. In case

Simulation

Generic Translator

Agent

Generic Synchronization
Interface

Specific Translator Specific Synchronization
Interface

Idle Interface

6 Jung, Weyrich/ Procedia CIRP 00 (2018) 000–000

that the heating unit and the humidity controller are turned

off, the environment model decreases continuously the

temperature and the humidity.

The sensor models are discrete models, which are idle most

of the time, unless a measurement was requested. The models

of the heating unit and the humidity controller are idle, when

turned off, but continuously simulating when turned on and

the environment model is a continuous model all of the time.

Therefore, both continuous and idle models are included in

the scenario. A synchronization is needed between the

environment model and the models of the heating unit and the

humidity controller, when turned on. This is necessary

because those models are continuously running and without a

synchronization the point in time, when the heating unit and

the humidity controller are turned off again could be missed

by the environment model. Additionally “idle messages” have

to be sent by the sensor models and the models of the heating

unit and the humidity controller.

The models of the environment and the sensors are done in

MATLAB/Simulink and the models of the heating unit and

the humidity controller are done in OpenModelica.

The agent system itself was implemented based on Jadex, a

Java based framework for developing multi agent systems.

5.2. Interface between Agents and Simulation Tools

To implement the synchronization interface, especially the

specific part, knowledge about the used simulation tools is

needed, basically, how the simulation time of the simulations

can be influenced during runtime.

MATLAB/Simulink has in principle the possibility to run a

simulation step by step and the interval of the steps can be

adjusted. But this possibility primarily only exists for the user

interface and not for command lines, which is needed to run

and pause the simulation via the specific part of the

synchronization interface. Though, if MATLAB/Simulink is

executed in debug mode, it is possible to run the simulation

step by step. To vary the step size, an additional command has

to be used.

OpenModelica itself offers no possibility to run a

simulation step by step. But as OpenModelica can be used as

a simulation slave in a FMI co-simulation, the interface

provided by FMI can be used to run and pause the simulation.

6. Summary and Outlook

This contribution extends an already existing agent-based

co-simulation concept, which is capable of “Plug-and-

Simulate”, by a concept for the synchronization of the

different participating simulations. For this the following

aspects were described:

 At first, the need for the synchronization of simulations in

co-simulations was shown.

 Afterwards, the basic concepts and methods of

synchronizing simulations, like conservative and optimistic

methods, were researched and evaluated, with regard to

their performance and their usability for “Plug-and-

Simulate”

 Then already existing co-simulation concepts and

approaches were researched and afterwards evaluated,

especially with regard to their capability to employ “Plug-

and-Simulate”.

 Afterwards, those concepts were adapted for synchronizing

an agent-based co-simulation and the concept of “idle

messages” was introduced.

 In the end a description of a scenario for evaluating the

presented concept and a prototypical implementation,

which is already partly realized, was given.

The next step will be to finish the realization of the

prototypical implementation to evaluate the concept

presented. Afterwards the concept will be extended by more

sophisticated synchronization methods to improve the overall

simulation time of the co-simulation.

References

[1] T. Jung, N. Jazdi, and M. Weyrich, “A survey on dynamic simulation

of automation systems and components in the Internet of Things,” in

2017 22nd IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA), 2017, pp. 1–4.

[2] R. M. Fujimoto, “Time Management in The High Level Architecture,”

Simulation, vol. 71, no. 6, pp. 388–400, Aug. 1998.

[3] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,

vol. 33, no. 10, pp. 30–53, 1990.

[4] S. Jafer, Q. Liu, and G. Wainer, “Synchronization methods in parallel

and distributed discrete-event simulation,” Simul. Model. Pract.

Theory, vol. 30, pp. 54–73, Jan. 2013.

[5] D. R. Jefferson and D. R., “Virtual time,” ACM Trans. Program. Lang.

Syst., vol. 7, no. 3, pp. 404–425, Jul. 1985.

[6] M. Oppelt, G. Wolf, and L. Urbas, “Capability-analysis of co-

simulation approaches for process industries,” in ETFA’2014, 2014,

pp. 1–4.

[7] et alt T. Blochwitz, “The Functional Mockup Interface for Tool

Independent Exchange of Simulation Models,” in The 8th Modelica

Conference, 2011, pp. 105–114.

[8] Modelica Association Project “FMI,” “Functional Mock-up Interface

for Model Exchange and Co-Simulation,” no. 07006, pp. 1–120, 2013.

[9] “IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA)-- Framework and Rules.” IEEE, Piscataway, NJ,

USA, 2010.

[10] O. Topçu, Ed., Guide to distributed simulation with HLA. Cham,

Switzerland: Springer, 2017.

[11] S. Hensel, M. Graube, L. Urbas, T. Heinzerling, and M. Oppelt, “Co-

simulation with OPC UA,” Proceedings, 2016 IEEE 14th International

Conference on Industrial Informatics (INDIN.Palais des Congrès du

Futuroscope, Futuroscope - Poitiers, France, 19-21 July, 2016. IEEE,

Piscataway, NJ, p. 20–25 TS–CrossRef, 2016.

[12] M. Oppelt, O. Drumm, B. Lutz, and A. G. Gerrit Wolf Siemens,

“Approach for integrated simulation based on plant engineering data,”

in 2013 IEEE 18th Conference on Emerging Technologies & Factory

Automation (ETFA), 2013, pp. 1–4.

