

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2018) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2018 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

51st CIRP Conference on Manufacturing Systems

Dynamic Co-Simulation of Internet-of-Things-Components using a Multi-

Agent-System

 Tobias Jung*, Payal Shah, Michael Weyrich

University of Stuttgart, Institute of Industrial Automation and Software Engineering, Pfaffenwaldring 47, 70550 Stuttgart, Germany

* Corresponding author. Tel.: +49-711-685-67299; fax: +49-711-685-67302 E-mail address: tobias.jung@ias.uni-stuttgart.de

Abstract

The heterogeneity and dynamic of IoT-systems pose new challenges for their simulation, which can be met by a modular co-simulation.

Therefore several existing co-simulation approaches are presented and evaluated. A new concept for a dynamic co-simulation of IoT-systems

utilizing a multi-agent-system is presented, wherein each IoT-component is simulated in a separate simulation tool. Each separate simulation is

represented by an agent, and therefore able to enter a running co-simulation dynamically during runtime, which allows for a “Plug-and-

Simulate” behavior. The connection between agents and simulation tools is realized by an interface concept. The presented concept is evaluated

by a prototypical implementation.

© 2018 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

 Keywords: Internet of Things; co-simulation; agent-based modelling; Digital Twin

1. Introduction

Traditionally simulation is used only during development

and virtual commissioning of production systems, but

recently, with the introduction of the Digital Twin, the use of

simulation during operation has gained importance and can be

used for decision-making support, system optimization and

predictive maintenance. With the introduction of cyber-

physical systems, components are able to communicate with

each other and thereby shape an Internet of Things (IoT)

system. Such systems consist of heterogeneous devices of

different domains, manufacturers, etc., which enter and leave

the system during runtime. The concept of “Plug-and-

Produce” was introduced to enable a seamless and effortless

operation in such systems. The challenges of dynamic and

heterogeneity also affect the simulation of such systems and

hence the Digital Twin. Therefore, a similar concept, like

“Plug-and-Simulate”, is needed for the Digital Twin.

Reference [1] researched 15 approaches to simulate IoT-

systems and concluded, that it will not be possible to simulate

an IoT-system with every relevant aspect in a single

simulation tool. Therefore a co-simulation is needed to

simulate heterogeneous IoT-systems. To realize “Plug-and-

Simulate” for dynamic, heterogeneous IoT-systems several

thesis have to be met:

T1: It has to be possible for models of IoT-components to

enter and leave the simulation during run-time, to simulate the

dynamic behaviour of IoT-systems, where components also

enter and leave during run-time [1].

T2: It also has to be possible to use various simulation tools

to model the IoT-components. IoT-systems consist of

heterogeneous components, which could be modelled with

different simulation tools, so that each relevant aspect of the

component can be considered [1].

T3: The simulation concept has to be applicable during

every phase of the life-cycle of a product or system.

Simulation will gain in importance and will be used during

every phase of the life-cycle [2].

T4: The simulation concept has to be domain independent.

With the introduction of IoT-technologies, systems are

connected across different domains, so in the simulation of an

IoT-system several domains have to be simulated.

http://www.sciencedirect.com/science/journal/22128271

2 Jung, Shah, Weyrich/ Procedia CIRP 00 (2018) 000–000

T5: It has to be possible to add intelligence and autonomy

on top of the models of the IoT-components. The Digital Twin

can be more than just an ultra-realistic simulation of a

component or a system, it can also be used for decision-

making support, system optimization and predictive

maintenance. Therefore the simulation concept also has to

take adding additional intelligence into account.

The rest of the paper is organized as follows: Section 2

introduces and compares existing co-simulation approaches

with regard to the mentioned requirements. Section 3 presents

a new concept for an agent-based co-simulation, for which a

prototypical implementation is given in Section 4. In Section 5

the presented concept is evaluated with regard to the

requirements and in the end a conclusion and an outlook is

given.

2. Existing co-simulation approaches

Domain-independent and domain-specific co-simulation

standards were researched as well as co-simulation

approaches, which use other technologies to couple

simulation tools.

2.1. Functional Mock-Up Interface (FMI)

The Functional Mock-Up Interface (FMI) provides beside

a standard for co-simulation the possibility to exchange

models between simulation tools [3]. A drawback of FMI is,

that the used simulation tools have to support FMI, therefore

it is not possible to include simulation tools in the co-

simulation, which do not support FMI [4]. Additionally the

communication is limited to discrete points in time, in

between the tools run independently of each other. A master-

algorithm coordinates the data exchange and synchronises the

slave-simulations, where FMI allows for variable time steps

between two synchronization steps. For a co-simulation each

simulation tool has to be represented by a Functional Mock-

up Unit (FMU), which implements the interface to the

simulation tool [3].

In literature many examples exist for an implementation of

a co-simulation with FMI, including [5], where the

capabilities of FMI are discussed. The discussion shows, that

the master-algorithm needs information of each slave-

simulation, before starting the simulation, which is why FMI

is not useful for a dynamic co-simulation with “Plug-and-

Simulate”-capabilities.

2.2. High Level Architecture (HLA)

High Level Architecture (HLA) is an architecture

developed by the United States Department of Defense for

distributed and parallel simulation [6]. A co-simulation with

HLA, called federation, consists of federates, the different

simulators, and the Run-Time-Infrastructure (RTI), a central

unit for coordinating the federates. In an Interface-

Specification the interfaces between the federates and the RTI

are defined and an Object-Model-Template specifies the

information, which can be exchanged between the federates.

Additionally a set of HLA-rules exist, which have to be met

by simulator for being HLA-conform. The RTI can be seen as

the simulation-master, responsible for the synchronisation of

the federates [7]. Even though HLA allows for a dynamic

entering of federates during run-time [8] for each federate a

new Federation Agreement has to be written, which is

domain- and use-case-specific. Several implementations of a

RTI exist, both commercial and freely useable [9].

2.3. Co-Simulation with OPC UA

OPC UA is a machine-to-machine communication standard

developed by the OPC-Foundation, which is service-oriented

and enables a transmission of process data and their machine-

readable description [10].

Reference [11] realises a co-simulation with OPC UA,

where each simulator is connected via an interface to a

generic adapter, which contains an OPC-UA-server and an

OPC-UA-client. This adapter communicates via OPC UA

with a central server, which also consists of an OPC-UA-

server and an OPC-UA-client. Each simulator has to register

itself at the central server and the first registered simulator the

simulation-master, the following simulators are simulation-

slaves. The master coordinates and synchronises the co-

simulation. If the master leaves the co-simulation, another

simulator takes over the role of the co-simulation-master.

2.4. Co-Simulation with OSGi

OSGi is a framework of the Open-Services-Gateway-

initiative, which enables a dynamic component system, based

on Java and was developed for the development of

application, which consist of dynamic combinable and

reusable components. To reduce complexity, in OSGi the

implementation of the components is encapsulated to other

components and the components interact via services with

each other [12]. The components are represented by so-called

Bundles, which can be loaded, removed, exchanged or

updated by the framework during run-time Those Bundles can

either be on a single computer or distributed over several

computers [13].

The dynamic exchanging of Bundles allows for a dynamic

co-simulation realized in [14]. Each simulation is represented

by a Bundle, which is connected via a simulator-coupler to the

simulation. The simulation-coupler utilizes OPC and also

enables a synchronisation and date exchange between the

simulations. It is also possible to integrate a model directly

into an OSGi-Bundle. An additional Bundle is required for

exchanging simulators during run-time, in which the states of

the removed simulators are saved, so that a re-entry of those

simulators is possible.

2.5. Domaine-specific approaches

Beside the presented domain-independent approaches

many domain-specific approaches exist. One of the more

 Jung, Shah, Weyrich/ Procedia CIRP 00 (2018) 000–000 3

common standards is CAPE-OPEN (Computer-Aided Process

Engineering) which is used to enable co-simulation in process

industry [15]. However it is not possible for simulation tools

to be coupled during run-time [8].

Besides CAPE-OPEN a huge variety of domain-specific

co-simulation standards and approaches exist, like EPOCHS

[16], Mosaik [17] and ADEVS [18], which are used for the

simulation of electric power grids. As all of those standards

and approaches are domain-specific, they do not meet the

requirement of a domain-independent co-simulation.

2.6. Comparison of the approaches

Table 1 gives a comparison of the co-simulation

approaches with regard to the requirements defined in Section

1. If a requirement is fully met by an approach, it is marked

with “+”, if it is only partially met it is marked with “0” and if

not met at all it is marked with “-“.

Table 1. Comparison of the co-simulation approaches

Co-simulation approach T1 T2 T3 T4 T5

FMI - 0 + 0 -

HLA + - + 0 -

OPC UA + 0 + + 0

OSGi + 0 + + 0

Domain-specific 0 - + - -

As can be seen in Table 1, no approach fully realizes every

thesis. Only for HLA, OPC UA and OSGi it is possible to add

new models during run-time. With FMI, OPC UA and OSGi

it is possible to use different simulation tools, but for every

simulation tool an interface has to be implemented, with HLA

it is not possible to add new simulation tools during run-time,

as for a new simulation tool a new Federation Agreement has

to be written. For the domain-specific standards only domain-

specific simulation tools are useable. Every introduced

approach is usable during every phase of the life-cycle, but

only OPC UA and OSGi are completely domain-independent.

FMI and HLA support a huge variety but are not completely

domain-independent, as FMI is mainly used in automotive

and HLA in the military domain. No approach has the

capability to add intelligence on top of the models, especially

FMI, HLA and the domain-specific approaches, which are all

co-simulation standards, would need major modifications for

adding additional intelligence on top of the models. With

OPC UA and OSGi it would be possible to add intelligence on

top of the models but here also modifications of the concept

would be necessary.

3. Dynamic, agent-based Co-Simulation

As none of the presented co-simulation approaches realizes

more than 3 of the defined thesis, a new approach for a

dynamic co-simulation is needed.

3.1. Multi-agent-system

The concept of multi-agent-systems for coupling the

simulation tools was chosen, as software agents are capable of

entering and leaving a multi-agent-system during run-time,

are domain-independent, have no restrictions in any phase of

the life-cycle and have the capability of adding intelligence on

top of the models [19]. The concept of using agents to

represent simulations of IoT-components was already

presented in [1]. Each IoT-component is simulated in a

separate simulation, possibly also in different simulation

tools, and each simulation is connected to and represented by

an agent, see Fig. 1. By simulating each IoT-component in a

separate simulation and connecting them to agents, it is

possible to exchange the models during run-time, as the

agents are able to enter and leave the multi-agent-system

during run-time, just like the IoT-components enter and leave

the IoT-system. The interaction between the models are

forwarded by the agents via communication between the

agents. For example if the model of a heating unit requests the

temperature value of the model of a temperature sensor, the

agent connected to the model of the heating unit forwards this

request to every other agent, which forward the request to

their respective models. The models then decide themselves,

whether the received message is useful and then reply

respectively. To enable the connection between the agents and

their respective simulation tools a concept for an interface has

to be developed.

Fig. 1. Multi-agent-based co-simulation.

3.2. Interface between agents and simulation tools

To enable a connection between the agents and the

simulation tools an interface is required. In IoT-systems, the

components communicate with each other, and therefore the

models also have to communicate with each other. Hence, the

models have to be able to send messages to other models,

which has to be enabled by the interface. This part is named

communication interface and can be seen in Fig. 2.

Additionally IoT-components have a process-oriented

interaction, meaning, that besides communication, they also

can interact physically with each other. If a good requests a

forklift to be transported, it is an interaction by

communication and if the forklift transports the good, it is a

physical interaction, further called process-oriented

Agent-based communication

Interface 1

Agent 1

Model 1

Simulation 1

Interface n

Agent n

Model n

Simulation n

Interface n+1

Agent n+1

…

…

Model
n+1

Simulation n+1

4 Jung, Shah, Weyrich/ Procedia CIRP 00 (2018) 000–000

interaction. Therefore in addition to the communication

interface between agent and model, an interface for the

process-oriented interaction is required, see Fig. 2.

Another required interface between the agents and the

models is an interface for the synchronisation of the

simulations (Fig. 2.). Problems in the simulation of the whole

IoT-system can occur, if one simulation of an IoT-component

runs faster than another simulation of another component, as

messages are not delivered at the right time.

All of those interfaces have a connection to an agent and to

a model. The connections to the agents will always be the

same, as the agents do not differ, only the connection to the

models have to be implemented individually, as each

simulation tool has different interfaces. Therefore every

interface is divided into a generic part, which is connected to

the agent and is the same for every agent and a specific part,

which is connected to the simulation tool. The specific part

has to be developed for each simulation tool and can be used

for every model in the respective simulation tool, as can be

seen in Fig. 2.

Fig. 2. Agent-simulation-tool-interface.

3.3. Reduction of message traffic

So far, we have seen that each model is able to

communicate with every other model in the system via agents.

However, this is quite inefficient in a sense that there would

be a lot of unnecessary messages being sent. In reality, not all

models would want to interact with every other model in the

system. Therefore, instead of sending messages to all the

models, if we could send the message to group of relevant

models then we can significantly reduce the message traffic in

the agent system. The concept of model type identification

was thus developed. A generic way to group the models (IoT-

components simulated) is to group them by the

communication protocols the IoT-components and therefore

the models support. For example, all the models

communicating via “Bluetooth” or “Wi-Fi” communication

protocol will belong to one group. Models will now send

messages only to other models of the same type (in the same

group) and not every other model present in the system. The

communication interface forwards the message it receives

from the model to the agent, but the agent doesn’t receive any

information as to which communication protocol this message

belongs to and thus cannot decide which type of agents it

should search in order to forward the message. To solve this

problem the agent, on its creation, needs to create as many

communication interfaces as the number of communication

protocols the model supports. Thus, the agent then creates

multiple generic and specific components, as seen in grey in

Fig. 3.

However just grouping of agents will not help much in the

worst case scenarios, where a message sent by a model was

received by many models but was useful for only one or none

of them. After getting a message to be forwarded to other

agents, the sender agent does not semantically analyse the

message and it has no knowledge about the usefulness of the

message to the recipient agent. However, it can learn that

from the recipient agent. The idea is that the sender agent

learns which type of message is not useful for which recipient

agent. The recipient agent can get this information from its

model. Therefore, if the receiver agent gives a feedback to the

sender agent which types of messages were not useful for it,

the sender agent won’t send them to it anymore, further

helping in reducing the message traffic in the agent system.

For this a back-channel is needed in the interface, as can be

seen in grey in Fig. 3.

Fig. 3. Message reduction.

4. Prototype Description

This section explains the scenario considered for the

prototype and then the implementation details of the

prototype.

4.1. Scenario

A smart warehouse scenario was implemented to

demonstrate the concept in which the goods, storage rack,

sensors and the forklift communicate with one another and

take decisions for the storage of the goods. The warehouse has

a storage rack which has a temperature sensor installed on it

to measure its temperature. This is because only a predefined

temperature range is suitable for the storage of goods.

When the goods enter the warehouse, they send a request

to the storage rack if they can be stored. Upon getting the

request the storage rack gets the current temperature value

from the sensor and checks if the value is suitable for the

good storage. If yes, then it sends a signal to the forklift to

place the goods in it otherwise it tells the goods to wait. After

placing the goods in the rack, the forklift sends an

acknowledgement signal to the goods which meant that the

storage is completed.

Agent

Simulation Tool

Communication
Interface

Generic Part

Communication
Interface

Specific Part

Process-oriented
Interface

Generic Part

Process-oriented
Interface

Specific Part

Synchronisation
Interface

Generic Part

Synchronisation
Interface

Specific Part

Agent

Simulation Tool

Communication
Interface
Bluetooth

Generic Part

Communication
Interface
Bluetooth

Specific Part

Synchronisation
Interface

Back-channel

Communication
Interface WiFi
Generic Part

Communication
Interface WiFi
Specific Part

Process-
oriented
Interface

 Jung, Shah, Weyrich/ Procedia CIRP 00 (2018) 000–000 5

The temperature sensor and the storage rack communicated

with each other using Bluetooth while the goods, storage rack

and the forklift communicated over WIFI.

4.2. Implementation

Simulation tools namely, MATLAB Simulink and

OpenModelica were used to simulate the scenario explained

above. Goods and storage rack were simulated in

OpenModelica and temperature sensor and forklift were

modelled in MATLAB Simulink. Jadex, an agent framework,

was used for facilitating dynamic co-simulation of the

developed models. For the user to select the models and plug

or unplug them at run-time a graphical user interface (GUI)

was developed in the prototype. User could select the

simulation tool and the model to be connected to plug it.

On plugging-in the model, a BDI agent is created for that

model. The agent in turn creates communication interface(s)

as well as a back-channel for the model. If the input of a

model was not acceptable, an exception would be thrown by

the model which is handled by the back-channel of that

model. The specific component of the communication

interface and the back-channel then establish a connection

with the simulation tool (i.e. the model).

This connection had to be handled differently for

MATLAB Simulink and OpenModelica. Since MATLAB

Simulink allows for only one connection per instance we had

to:

 Run one instance of Simulink per model.

 Include the functionality of back-channel also in the

specific component of the communication interface

establishing the connection with the model and generic

component of the communication interface.

On the other hand, OpenModelica allows for multiple

connections per instance. We were able to:

 Run a single instance of OpenModelica for all the models

simulated in it.

 Have separate connection for specific component of the

communication interface and the back-channel for each

model simulated in OpenModelica.

On unplugging the model all the related components were

destroyed. Agents can be created and destructed dynamically

using the component management service, a central service

offered by Jadex platform.

Jadex uses service component architecture. Therefore, the

agents interact with one another using Services. Agents

‘provide’ and ‘require’ services. The provided service

interface and the required service interface are used to make

service calls i.e. to communicate with one another. In the

prototype agents provided (and required) services based on

the communication type the model supports to have model

type identification in the system as described in Section 3.3

For example, if temperature sensor supports the Bluetooth

communication protocol then its agent would provide and

require ’Bluetooth’ service. So whenever an agent providing

‘Bluetooth’ service wants to send a message, it will search for

agents in the system providing ‘Bluetooth’ service and send

them the message.

If a model supports multiple communication protocols,

then its agent would provide (and require) multiple services.

In case of MATLAB Simulink, since it permits only one

connection per instance, we can have multiple generic

communication interface and one specific communication

interface.

All the agents in the system also provided a common

service used to give feedback. To realize the reduction in

message traffic as discussed in section 3.3, the recipient agent

would use this service provided by the sender agent to give

feedback about the messages which are not useful. Also, note

that no feedback is given when the messages are useful,

because that is simply going to add on the message traffic

which we are trying to reduce.

The processing and use of the feedback is implemented in

a simple way in the first version of our prototype. The

feedback i.e. the message and the agent name to which the

message was not useful is maintained in a list at the sender

agent. The list will gradually grow as the agent learns from

feedback by agents it has previously contacted. These

messages stored in the list will serve as message patterns

rejected by the agents. Before it sends a message to another

agent, it will check in the list if such a message pattern exists

for the receiver agent. If yes, then it will not send the message

and proceed to check for the next relevant agent, else it will

send. When such a message pattern is present in the list, it

means that the sender agent has already gotten a feedback

saying that such a message pattern is not useful for the

receiver agent under consideration. The pattern matching of

the message to be sent and the messages maintained by the

agent in the list is done by checking the Levenshtein distance

between the two strings. If the Levenshtein distance between

the two strings is less, then the two strings under

consideration are of the similar pattern as one of the rejected

strings, else the string (message) to be sent is of a different

pattern than them.

The way in which the message is passed and fetched from

the simulation tool differs in case of MATLAB Simulink and

OpenModelica. The specific communication interface handles

those differences. For example, one can pass and fetch

messages from MATLAB Simulink using MATLAB

commands (to fetch the output, one can poll the output port).

While for OpenModelica, polling is not possible, as the

outputs are written to a text file which then has to be read

from the specific communication interface. Also, a MATLAB

Simulink instance can be shared and accessed from Java using

the com.mathworks.engine java class. Whereas for

OpenModelica, whenever the application starts, a CORBA

server is started and the specific communication interface

being the java client can connect to the server using the

omc_java_api library.

6 Jung, Shah, Weyrich/ Procedia CIRP 00 (2018) 000–000

5. Evaluation

Fig. 4 shows a screenshot of the prototype. The models of

the temperature sensor and the forklift were executed in

MATLAB Simulink, the models of the goods and the storage

rack in OpenModelica and all of the models were connected

via the multi-agent-system. The prototype, was tested to make

sure the presented concept realizes all the defined thesis.

 T1: We were able to plug and unplug models during run-

time.

 T2: We used MATLAB Simulink and OpenModelica to

implement the models and therefore different simulation

tools.

 T3 and T4: As the presented concept is neither domain-

specific (it is also possible to simulate different domains

than logistic scenarios) nor life-phase-specific (it is

possible to simulate a system during all phases of the

lifecycle), both requirements are met.

 T5: We presented the reduction of message traffic by

recognizing patterns in the send messages and therefore

added intelligence on top of the models.

Thus, the prototype has satisfactorily attempted to solve

the challenges of heterogeneity and dynamicity in the

simulation of IoT systems.

Fig. 4. Prototype with MATLAB and OpenModelica

6. Conclusion and Future Work

The presented concept of a dynamic co-simulation of IoT-

systems utilizing a multi-agent-system allows for an entering

and leaving of heterogeneous simulation tools. By using the

capabilities of the software agents it is possible to add

intelligence to the models of the IoT-components, shown at

the example of message traffic reduction. As the reduction of

messages is only an optimization of the simulation and not of

the simulated system, a task for future work will be, to add

intelligence to the agents, which benefits the simulated

system, such as support for self-configuration of the

components. The concept of the message reduction itself also

can be optimized, as it could be possible, that through changes

in the system a rejected message type gets relevant for the

receiving model again. The concept of the synchronization

and the process oriented interaction of the models also has to

be detailed and implemented.

References

[1] Jung, T.; Jazdi, N.; Weyrich, M.: A Survey on Dynamic Simulation of

Automation Systems and Components in the Internet of Things. 22nd

IEEE ETFA, Limassol, Cyprus, 2017.

[2] Mathias Oppelt, Mike Barth, and Leon Urbas. 2015. The Role of

Simulation within the Life-Cycle of a Process Plant - Results of a global

online survey, 2015.

[3] Blockwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist,

H., Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H.,

and Viel, A. 2012. Functional Mockup Interface 2.0: The Standard for

Tool independent Exchange of Simulation Models. In Linköping

Electronic Conference Proceedings. Linköping University Electronic

Press, 173–184.

[4] Bertsch, C., Ahle, E., and Schulmeister, U. 2014. The Functional Mockup

Interface - seen from an industrial perspective. In Linköping Electronic

Conference Proceedings. Linköping University Electronic Press, 27–33.

[5] Bastian, J., Clauß, C., Wolf, S., and Schneider, P. 2011. Master for Co-

Simulation Using FMI. In . Linköping Electronic Conference

Proceedings. Linköping University Electronic Press, 115–120.

[6] Fujimoto, R. M. op. 2000. Parallel and distributed simulation systems.

Wiley series on parallel and distributed computing. John Wiley & Sons.

[7] 2010. IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA)-- Framework and Rules. IEEE, Piscataway, NJ, USA.

[8] Oppelt, M., Wolf, G., and Urbas, L. 2014. Capability-analysis of co-

simulation approach-es for process industries. In ETFA'2014. 19th IEEE

ETFA : September 16-19, 2014 : Barcelona, Spain. IEEE,

[9] Möller, B. 2012. The HLA Tutorial: A practical guide for developing

distributed simulations, 2012.

[10] OPC Foundation. 2008. OPC-UA Specification.

[11] Hensel, S., Graube, M., Urbas, L., Heinzerling, T., and Oppelt, M. 2016.

Co-simulation with OPC UA. In Proceedings, 2016 IEEE 14th INDIN.

Palais des Congrès du Futuroscope, Futuroscope - Poitiers, France, 19-21

July, 2016. IEEE, Piscataway, NJ, 20–25.

[12] The OSGi Alliance. 2014. OSGi Core.

[13] McAffer, J., VanderLei, P., and Archer, S. J. op. 2010. OSGi and

Equinox. Creating highly modular Java systems. The eclipse series.

Addison-Wesley, Upper Saddle River.

[14] Oppelt, M., Drumm, O., Lutz, B., and Gerrit Wolf Siemens, A. G. 2013.

Approach for in-tegrated simulation based on plant engineering data. In

ETFA 2013. September 10-13, 2013, Cagliari, Italy. IEEE, Piscataway.

[15] Peshev, D. and Livingston, A. G. 2013. OSN Designer, a tool for

predicting organic solvent nanofiltration technology performance using

Aspen One, MATLAB and CAPE OPEN. Chemical Engineering Science.

[16] Hopkinson, K., Wang, X., Giovanini, R., Thorp, J., Birman, K., and

Coury, D. 2006. EPOCHS. A Platform for Agent-Based Electric Power

and Communication Simulation Built From Commercial Off-the-Shelf

Components. IEEE Trans. Power Syst. 21, 2, 548–558.

[17] Schutte, S., Scherfke, S., and Troschel, M. 2011. Mosaik: A framework

for modular simulation of active components in Smart Grids. In SGMS

2011. 2011 IEEE First Inter-national Workshop on Smart Grid Modeling

and Simulation : [17 Oct. 2011, Brussels, Belgium]. IEEE.

[18] Nutaro, J., Kuruganti, P. T., Miller, L., Mullen, S., and Shankar, M.

2007. Integrated Hy-brid-Simulation of Electric Power and

Communications Systems. In 2007 IEEE Power Engineering Society

General Meeting, Tampa, FL 24-28 June. IEEE Xplore, Pisca-taway, N.J.

[19] Weiss, G. 2001, ©1999. Multiagent systems. A modern approach to

distributed artificial intelligence. MIT Press, Cambridge.

