

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2018) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2018 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

51st CIRP Conference on Manufacturing Systems

Component based Verification of Distributed Automation Systems

 based on Model Composition

 "Andreas Zeller, Michael Weyrich" *

"University of Stuttgart, Institute of Industrial Automation and Software Engineering, Germany"

* Corresponding author. Tel.: +49-711-685-67291 ; fax: +49-711-685-67302. E-mail address: andreas.zeller@ias.uni-stuttgart.de

Abstract

Challenges on safeguarding distributed automation systems arise due to their increasing complexity and changeability. Functional changes in

automation systems are mainly conducted by software modifications. Especially in distributed automation systems, the impacts of software

modifications are difficult to estimate. If behaviour models of the automation systems are available, model-based techniques are suitable to

estimate the impacts of software modifications on other system components. In fact, behaviour models of distributed automation systems are

seldom available or maintained, due to the high complexity of the overall system and the changing structure caused by reconfigurations or

software modifications. This often prevents the application of model-based techniques.

This contribution presents a model-based approach with which the impacts of software modifications can be recognized and affected subsystems

can be safeguarded efficiently by model-based verification methods. To achieve this an impact analysis is performed, identifying requirements

which are affected by software modifications. As the behaviour models that are necessary to verify the identified requirements are seldom

available, the necessary models are generated automatically.

© 2018 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

 Keywords: "Modelling, Software Modification, Verification, Smart Factory"

1. Introduction

Usually the life cycle of automated systems are longer than

the innovation cycles of system functionalities, which are often

realized by software. This leads to software modifications that

are increasingly relevant during the operation time of

automated systems. Software modifications, realized by

software updates, are already a relevant topic for consumer

products. In the context of the industrial internet of things it’s

very likely that software modifications at runtime will also gain

in importance for industrial automation systems to increase

their flexibility [1].

To ensure the necessary flexibility, industrial automation

systems control is increasingly decentralized [2] [3]. Service

oriented architectures can be a suitable approach to coordinate

distributed automation systems due their modular design and

the potential for scalability, reusability and ad-hoc networking.

Ad-hoc networking requires semantic described interfaces of

the services. The services are software components which

coordinate decentralized a control task. This eases software

modifications of the systems, by adapting the control code of a

component or integrate new components into the existing

automation system.

These easily modifiable distributed systems also create

substantial challenges to safeguard the impacts of software

modifications on other components [4]. That is due to the fact

that ad-hoc networking and software modifications can lead to

changing dependencies between the system components and

that dependencies of decentralized systems are harder to

determine than those of centralized systems. This leads to

difficulty in estimating impacts of software modifications. This

poses a significant barrier, in the field of industrial automation,

due to high safety requirements.

http://www.sciencedirect.com/science/journal/22128271

2 Author name / Procedia CIRP 00 (2018) 000–000

Model based techniques can support the estimation of the

impacts of software modifications and safeguard the subsystem

which is affecting by this. The application of model based

techniques often fails due the unavailability of suitable formal

behaviour models of the automation system. This is firstly due

to the fact that models of automation systems are becoming

increasingly complex. Furthermore, for each functional

modification of the automation system, the behaviour model of

the system has to be adapted. Often the operators of an

automation system are not capable of maintaining the overall

behaviour model.

To support the safeguarding process of distributed

automation systems there is a need for systematic test processes

and suitable modelling techniques. Some of them are presented

in the following.

2. State of the Art

Modifications to automation systems can be distinguished

in four categories [5]. By this differentiation, it can be decided

which parts of a simulation (context, platform, simulation of

the technical process) must be adapted after modifications.

According to this, when software modifications occur, just the

software has to be changed. The design of the other parts isn't

affected.

To meet the challenges for testing automation system there

are several approaches in the field of model based testing and

test automation. The research project “DoMain” focuses on

software evolution of automation systems. In the framework of

this project, [6] describes how software evolution can be

safeguarded by verifying interface models under consideration

of hardware, software and electric. Additionally a concept is

presented to safeguard the evolution of variant-rich by

incremental model checking [7]. Within the scope of another

project “FOCUS” a methodology has been presented how

distributed, reactive automation system can be developed on a

formal way [8] [9]. This enables the usage of verification

methods in different development phases on different

granularity levels. An approach how to automate the

identification and classification of software modifications is

presented in [10] on the basis of Programmable Logic

Controller.

 Model based verification techniques can be used to

examine if a test object meets its requirements. With these

techniques a functional behaviour model, that e.g. contains the

control logic of an automation component, can be verified

against formalized requirements with help of mathematic

methods. Thus model based verification constitutes a method

of static testing. As a result the real system is not executed. This

enables the testing of the behaviour of a system before going

into operation and decreases the risk of hazards when

commissioning.

With some formal verification methods like the model

checking the state space explosion poses challenges, especially

for system with a high degree of parallelism. There are several

approaches how to handle these challenges [11]. This shall not

be regarded further in the following.

For the success of verification methods the choice of a

suitable modelling technique plays an important role. For this

reason, several modelling techniques for control logic have

been developed in the field of automation (e.g. NCES [12],

Modellica, UPPAAL [13], SIPN) as well as internet

technologies (e.g. open nets [14]).

These modelling techniques which are suitable for

verification methods are listed and compared in table 1 by

criteria which are relevant for the concept presented.

M
o

d
el

li
n

g

T
ec

h
n

iq
u

e

E
n

v
ir

o
n

-

m
en

t

P

ar
al

le
li

sm

S
u

it
ab

il
it

y

fo
r

m
o

d
u

la
r

sy
st

em
s

S
p

ec
ia

li
sm

–
 M

o
d

el
li

n
g

o
f

L
o
g

ic

T
im

e

B
eh

av
io

u
r

Modellica No Yes Yes Low Yes

UPPAAL Yes No No Medium Yes

NCES No Yes Yes Medium Yes

Open Nets No Yes Yes High Yes

SIPN No Yes Nein High Yes

Table 1: Comparison of modelling techniques and environments that are

suitable for model based verification

3. Concept of component based verification

The goal of the concept is to efficiently safeguard distributed

automation systems after software modifications. For this a

customized input for a verification tool is generated. The

tailored input contains the requirements which are affected by

the software modifications as well as the behaviour models that

are needed to verify the affected requirements. The three steps

of the concept structure is pictured in Figure 1. The puzzle

pieces illustrate control services. The control services are

software components of the distributed automation system. In

the following just called components.

Figure 1: Overview of the concept of component based verification

Within the first step an impact analysis is done. Originating

from the component which was modified, the system

requirements of the components affected are identified, by

dissolving dependencies between the model interfaces. Within

the second step, the behaviour models of the components which

are necessary to verify the affected requirements, are composed

to a single behaviour model. Within the third step, the

requirements as well as the corresponding behaviour models

are verified by a model checking tool.

From the figure 1 it becomes evident, that modularization is

an essential part of the concept. In the following the

modularization approach and the requirements on the

modelling technique for the behaviour models are described

and a modelling technique that meets the requirements is

presented. This is the basis for the impact analysis of software

 Author name / Procedia CIRP 00 (2018) 000–000 3

modifications as well as the composition of behaviour models

that is subsequently presented.

3.1. Modularization Approach

Behaviour models of automation system can become

complex very quickly. Modularization is a suitable approach to

reduce this complexity. Every automation component

represents a module that contains an outer and an inner view.

The inner view describes the behaviour of the component and

the outer view describes the interaction between the

components of the automation system. These views are just

connected via the interfaces of the components. This allows an

encapsulated view on the behaviour of a component.

The outer view of a component is pictured in figure 2. It is

defined by the requirements which must be met by the

component by, its software interfaces as well as its interfaces

to the technical process. Due to a semantic interface

description, the mapping between the components can be done

by the interface description.

Figure 2: Outer view of a component

Every component contains the requirements, which have to

be fulfilled to ensure its functionality. The requirements do not

only depend on the behaviour of this component but also to the

behaviour of components on which the component is

dependent. The dependencies result by service calls. If a

component calls the services of other components it depends

on them. Hence similar to the call hierarchy between the

components a hierarchical structure between the requirements

exist. Due to the property of services the component is not

depending on the components by which its functionality is

called. The requirements can be modelled in a formal language

that is suitable as input for a verification tool, such as CTL

(Computation Tree Logic) or LTL (Linear temporal logic). The

dependencies between components and requirements will be

described within the impact analysis chapter in greater detail.

3.2. Modelling the Behaviour of a Component

As described in the state of the art, there are several

modelling techniques that are suitable to model the behaviour

of automation system. The concept poses additional

requirements which must be fulfilled by the modelling

technique: representation of parallelism, representation of

interfaces for asynchronous communication as well as

interfaces to the technical process, modularity, composability.

Next to these properties, the model must be formal and widely

used, such that it is a suitable input for existing verification

tools.

The inner view describes the behaviour of a component.

Open-Petri Nets are very suitable to model the behaviour due

to their suitability for event-controlled systems and their easy

representation of parallel processes and the wide usage of petri-

net similar models in the field of automation. The open nets are

extended by attributes from signal interpreted petri nets

(SIPNs) to enable the representation of interface to and from

the technical process. In the following the attributes of the open

nets are described as the composition of the components to a

behaviour model of the overall system. The open net is

described by the following 9-tuple:

𝑁 =< 𝑃, 𝑇, 𝐹, 𝑀0, Ω, 𝐼, 𝐴, 𝑆, 𝐿, >

 𝑷: finite set of spaces.

 𝑻: finite set of transitions.

 𝑭: finite set of of flow relations between transitions and

places and reverse𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃).

o set of predecessor places of transitions described

via ∙ 𝑡 = {𝑝|(𝑝, 𝑡) ∈ 𝐹}

o set of successor places of transitions described via

𝑡 ∙= {𝑝|(𝑡, 𝑝) ∈ 𝐹}

o set of predecessor transitions of places described

via∙ 𝑝 = {𝑡|(𝑡, 𝑝) ∈ 𝐹}

o set of successor places of transitions described via

𝑝 ∙= {𝑡|(𝑝, 𝑡) ∈ 𝐹}.

 𝑴𝟎 : initial marking, represented via a vector with the

cardinality|P|.

 𝛀: finite set of markings where N is allowed to terminate.

 𝑰: interface places 𝐼 ⊆ 𝑃. Places to exchange message with

other open nets. The description of the places corresponds

with the messages being exchanged. For minimal open

nets apply:

o input places 𝐼1 which receive messages don’t

have predecessor transitions: ∙ 𝑝 = ∅.

o output places 𝐼2 which send messages don’t have

predecessor transitions: 𝑝 ∙= ∅.

o an input place can’t also be an output place and

reverse: 𝐼1 ∩ 𝐼2 = ∅.

 A: interface to the technical process. Actions which are

executed to the technical process when a place is occupied.

A vector with the cardinality: |𝐴| ≡ |𝑃|.
 S: interface from the technical process. Events from the

technical process trigger transitions. A vector with the

cardinality: |𝑆| ≡ |𝑇|.
 𝑳: Latency of the arcs. A vector with the cardinality: |𝐿| ≡

|𝐹|.

A generic graphical representation of the open net is

illustrated in figure 3.

Figure 3: Generic illustration of an open net.

4 Author name / Procedia CIRP 00 (2018) 000–000

The interface places are marked red on the system

boundaries. The functionality offered by component 1 can be

requested with the service call “message A”. “Message B”

illustrates a service call to a component whose functionality is

requested by component 1. Similar to SIPN the interfaces to the

technical process are mapped to the places (action X) and the

interfaces from the technical process are mapped to the

transitions (event Y).

3.3. Composing Behaviour Models

The descriptions of the interface places correspond with the

interface descriptions of the outer view. If open petri nets of

several related component are available, a common open net of

the system can be composed by following calculation rules:

𝑃𝑔𝑒𝑠 = 𝑃𝐾𝑜𝑚𝑝.1 ∪ 𝑃𝐾𝑜𝑚𝑝.2 ∪ … ∪ 𝑃𝐾𝑜𝑚𝑝.𝑛
𝑇𝑔𝑒𝑠 = 𝑇𝐾𝑜𝑚𝑝.1 ∪ 𝑇𝐾𝑜𝑚𝑝.2 ∪ … ∪ 𝑇𝐾𝑜𝑚𝑝.𝑛
𝐹(𝑠, 𝑡) = 𝐹𝐾𝑜𝑚𝑝.1(𝑠, 𝑡) ⊕ 𝐹𝐾𝑜𝑚𝑝.2(𝑠, 𝑡) ⊕ … ⊕
𝐹𝐾𝑜𝑚𝑝.𝑛(𝑠, 𝑡)

𝐹𝑔𝑒𝑠(𝑡, 𝑠) = 𝐹𝐾𝑜𝑚𝑝.1(𝑡, 𝑠) ⊕ 𝐹𝐾𝑜𝑚𝑝.2(𝑡, 𝑠) ⊕ … ⊕
𝐹𝐾𝑜𝑚𝑝.𝑛(𝑡, 𝑠)

𝑀0,𝑔𝑒𝑠 = 𝑀0,𝐾𝑜𝑚𝑝.1 ∪ 𝑀0,𝐾𝑜𝑚𝑝.2 ∪ … ∪ 𝑀0,𝐾𝑜𝑚𝑝.𝑛
𝛺𝑔𝑒𝑠 = Ω𝐾𝑜𝑚𝑝.1 ∪ Ω𝐾𝑜𝑚𝑝.2 ∪ … ∪ Ω𝐾𝑜𝑚𝑝.𝑛

𝐼𝑔𝑒𝑠 = 𝐼𝐾𝑜𝑚𝑝.1 ∪ 𝐼𝐾𝑜𝑚𝑝.2 ∪ … ∪ 𝐼𝐾𝑜𝑚𝑝.𝑛
𝐴𝑔𝑒𝑠 = 𝐴𝐾𝑜𝑚𝑝.1 ∪ 𝐴𝐾𝑜𝑚𝑝.2 ∪ … ∪ 𝐴𝐾𝑜𝑚𝑝.𝑛
𝑆𝑔𝑒𝑠 = 𝑆𝐾𝑜𝑚𝑝.1 ∪ 𝑆𝐾𝑜𝑚𝑝.2 ∪ … ∪ 𝑆𝐾𝑜𝑚𝑝.𝑛
𝐿𝑔𝑒𝑠 = 𝐿𝐾𝑜𝑚𝑝.1 ∪ 𝐿𝐾𝑜𝑚𝑝.2 ∪ … ∪ 𝐿𝐾𝑜𝑚𝑝.𝑛

The graphical representation of the composition is

illustrated in figure 4.

When the composed petri-net is available, it is possible to

verify it against its system requirements. As automation

systems can become very big and many parallelisms and

system requirements exist, it is very CPU-intensive to verify

the overall system. As not to need to safeguard the overall

system in the event of software modifications, and impact

analysis can be useful. An impact analysis approach that is

suitable for distributed automation system will be introduced in

the next chapter.

Figure 4: Graphical representation of the composition

3.4. Impact Analysis of Software Modifications

To analyse the impacts of software modifications, the

dependencies within the systems must be known. With

increasing size of the net, it is hard to recognize the

dependencies within an open net, because of its meshed

structure. In contrast structure diagrams are very suitable to

visualize dependencies between components. To improve the

comprehensibility, the call relations between the components

are extracted and a structure diagram is generated. For this the

structure diagram “block definition diagram” has been chosen

due to its standardization in UML and its high degree of

recognition.

The block definition diagram of a small example is

illustrated in figure 5. The blocks correspond with the

components of the outer view. The requirements which must

be met by the components are mapped on the respective block.

In this example component 2 is dependent on component 1 as

well as component 3. Component 2 could be a control and

component 1 and 3 sensors or actuators. The impact of software

modifications of a component can be analysed by following the

arrows backwards from the component which was modified.

As the functionality of these components depend on the

functionality of the modified component and as a result the

validity of their requirements cannot be ensured anymore and

must be verified again. For example when component 1 is

modified, the requirements of component 1 and 2 have to be

secured.

For the affected requirements of each component a customized

open petri net must be composed. Because the requirements of

a component relate not only to this component but also to all

components on which the component depends, the petri nets of

all components that are accessible in the direction of the arrows

must be considered. In the example of figure 5, to verify the

requirements of component 2, an open petri net must be

composed by the open petri nets of component 1, 2 and 3 as

well as the behaviour model of the technical process. The

technical process which represents the physical dependencies

between actuator and sensor can also be modelled with open

nets and composed with the same calculation rules. The

composed open petri nets as well as their requirements are the

tailored inputs for the model checker which delivers statements

if the requirements are fulfilled by the models.

Figure 5: Structure of a block definition diagram

 Author name / Procedia CIRP 00 (2018) 000–000 5

4. Realization and Evaluation of the Conception

The concept has been realized with the test component

“TestIAS”. TestIAS can be ad-hoc integrated into a distributed

automation system. It scans the automation system for software

modifications. When a software modification is detected,

TestIAS safeguards the affected subsystem as described within

the conception. A model pool administers the models of the

components as well as their system requirements. The build-

up, consisting of the distributed automation system, TestIAS as

well as a model pool, is illustrated in figure 6.

Figure 6: Structure of the realized demonstrator

The distributed automation system meets important

requirements of future automation systems like ad-hoc

networking, configurability, reusability and scalability.

An OPC-UA based control network interacts with a

technical process. The control network consists of 122 services

/ components running on 6 controllers. The services contain the

control functionality and coordinate the production process.

Five services are illustrated as examples within the distributed

control in figure 6. A configuration interface allows

modification of services at run-time. The technical process that

represents a discrete production is realized by a game engine.

This virtual reality simulation allows the technical process to

scale with ease. A configuration interface allows modification

of services at run-time.

TestIAS contains a graphical user interface (GUI), an OPC-

UA Client, an interface to the model pool database as well as

an algorithm that implements the concept. After starting the

safeguarding process via the GUI, the OPC-UA Client scans

the distributed automation system for software modifications.

This is done by scanning which components are available and

comparing their version with the version of a previous scan.

When a modification is detected, the models of components of

the automation systems as well as their requirements are

obtained from the model pool. Using the interface of the

components an impact analysis is executed, the tailored input

for the verification tools is generated and a model checker (ITS-

Tool) executed. The verification results are displayed on the

GUI.

The successful applicability of the conception has been

evaluated by five software modification scenarios. Different

types of defects could be allocated, caused by errors in time

behaviour or by errors in the logical behaviour.

5. Conclusion

By means of the concept it was demonstrated how software

modifications can be safeguarded on an efficient way. The

requirements of affected components could be identified by an

impact analysis. It was shown how the behaviour models that

are necessary to verify the requirements can be composed

automatically. For this a suitable modelling technique as well

as calculation rules for the composition have been presented.

The applicability of the concept has been evaluated with the

help of a test component that comprises the concept. This

executes the concept described automatically when software

modifications are detected and returns the verification results.

The software modifications have been carried out on a

distributed automation system that consists of 122 control

services. All five tested software modifications, including

logical and temporal behaviour, could be verified correctly by

the test component.

References

[1] Vogel-Heuser Birgit, Fay Alexander, Schaefer Ina, Tichy Matthias.

Evolution of software in automated production systems: Challenges and

research directions, The Journal of Systems and Software 110, 2015.

[2] Forschungsunion, Acatech. Recommendations for implementing the

strategic initiative INDUSTRIE 4.0, 2013.

[3] Fay Alexander, Vogel-Heuser Birgit, et al. Enhancing a model-based

engineering approach for distributed manufacturing automation systems

with characteristics and design patterns, The Journal of Systems and

Software 101 (2015) 221-235.

[4] Zeller Andreas, Weyrich Michael. Challenges for Functional Testing of

reconfigurable Production Systems, 21st IEEE International Conference on

Emerging Technologies and Factory Automation ETFA, 2016.

[5] Legat Christoph, Steden Frank, Feldmann Stefan, Weyrich Michael,

Vogel-Heuser Birgit. Co-Evolution and Reuse of Automation Control and

Simulation Software, IECON 40th Annual Conference of the IEEE, 2014.

[6] Legat Christoph, Mund Jakob, Campetelli Alarico, Hackenberg Georg et

al. Interface Behavior Modeling for Automatic Verification of Industrial

Automation Systems' Functional Conformance, Automatisierungstechnik

(at), 62(11):815—825, 2015.

[7] Lochau Malte, Mennicke Stephan, Baller Hauke, Ribbeck Lars.

Incremental model checking of delta-oriented software product lines,

Journal of Logical and Algebraic Methods in Programming 85, 2016.

[8] Broy Manfred, Fox Jorge et al.Service-oriented Modeling of CoCoME

with Focus and AutoFocus, The Common Component Modeling Example,

Springer, 2008.

[9] Spichkova Maria. Focus on Isabelle: From specification to verification,

Technical Report Department of Electrical and Computer Engineering,

Concordia University, 2008.

[10] Ulewicz Sebastian, Schütz Daniel, Vogel-Heuser Birgit. Software

Changes in Factory Automation, IECON 2014-40th Annual Conference of

the IEEE, 2014.

[11] Schlich Bastian, Brauer Jörg, Wernerus Jörg, Kowalewski Stefan. Direct

Model Checking of PLC Programs in IL, 2nd IFAC Workshop on

Dependable Control of Discrete Systems DCDS’09.

 [12] Khalgui Mohamed. NCES-based modelling and CTL-based verification

of reconfigurable embedded control systems, Computers in Industry 61,

2010.

[13] Behrmann Gerd, David Alexandre, Larsen Kim. A Tutorial on UPPAAL,

in: Formal Methods for the Design of Real-Time Systems, Lecture Notes

in Computer Science , Springer-Verlag 2004.

[14] van der Aaslst Wil, Lohmann Niels, Massuthe Peter, Stahl Christian, Wolf

Karsten. Multiparty Contracts: Agreeing and Implementing

Interorganizational Processes. The Computer Journal 53 (1)90-106, 2010

