
Supporting the Regression Test of Multi-Variant
Systems in Distributed Production Scenarios

Sebastian Abele and Michael Weyrich
Institute of Industrial Automation and Software Engineering

University of Stuttgart, Stuttgart, Germany
{Abele, Weyrich}@ias.uni-stuttgart.de

Abstract—Modern manufacturing systems based on cyber-
physical systems with a growing amount of software allow for
frequent updates and reconfigurations to adapt the systems to
their usage in the production. A diverse system environment
arises even for similar or equal subsystems based on the same
platform used at different locations. A major challenge for such
systems is the regression test after changes or updates. The
resources for the regression test, in a dedicated test environment
or deployed to the assembly lines, are limited. To plan the test in
the best possible way, a lot of dependencies, relationships and
experiences from former tests and tests from other locations
have to be considered. This paper describes the research on an
assistance system which supports the planning of the regression
test in distributed manufacturing scenarios by combining man-
ual modeling with automated data processing to improve the
planning of the regression test. Therefore the system calculates
a cross-location test progress and suggests a prioritized test case
sequence.

I. INTRODUCTION

High volume or localized products, e.g. cars, are often pro-
duced at different locations. Such locations might be different
assembly lines in one or in different factories. The different
assembly lines are at least partly equipped with the same
production and quality assurance (QA) systems. Often the
same system platform is used for all locations. Product features
and environmental conditions differ in different locations, thus
each system is adapted and configured to run in a specialized
use case. The increasing spread of software and cyber-physical
systems facilitates frequent updates and reconfigurations. Fig.
1 depicts such a production scenario with the example of a
QA-system. QA-systems are exemplary for software-intensive
systems based on a platform.

Updates and changes in the particular systems need to be
tested before they can be rolled out. Module tests can be
executed isolated but the system test depends on the actual
production use case and the environment at the assembly lines.
Nevertheless, the time and resources for the system test in the
use case is limited since the production must not be interrupted
for a long time.

Usually, the updates are tested by the supplier and by the
manufacturer in dedicated test scenarios with regression tests.
Then they are handed over to the maintenance engineers at the
different locations. The engineers perform further tests based
on their knowledge and experience without or with only few
cross-location coordination. To improve the test effectiveness
of that regression test, we propose a test management support

Fig. 1. Exemplary scenrio of a multi-variant quality assurance system

system which allows for cross-location test progress monitor-
ing and test case prioritization that incorporates test runs from
other locations.

II. TEST CASE SELECTION AND PRIORITIZATION

Test case selection and prioritization methods are used to
find the most important test cases for the available execution
time. Test case selection methods reduce the test suites by
identifying only relevant test cases, for example based on
changes of the source code. An overview of different test
selection and prioritization methods can be found in [1]
and [2]. Prioritization methods sort the test cases by their
importance to increase the test progress as fast as possible. A
test case sequence based on prioritization can be interrupted
at any time with the maximal benefit possible to the time of
interruption.

Every test case prioritization method can also be seen as a
selection method when the test cases with the highest priority
are chosen. Test case prioritization methods are described in
e.g. [3], [4], [5].

The selection and prioritization methods can be categorized
by the data they evaluate. Methods which analyze the source
code directly to optimize the coverage of changes, e.g. [6],
are called white-box methods. Direct access to the source
code and its different versions is necessary for these methods.
The necessity of source code access limits those methods to
software components which are developed by the manufacturer
himself. Hardware components and components delivered by
suppliers require the usage of other methods.



Black-Box methods have been proposed that use data from
the test itself like execution- and fault-histories of test cases to
prioritize them, e.g. [7], [8] and [9]. Some other methods are
especially concentrating on information about requirements,
identifying them as the most important entities for the test
case prioritization, e.g. [10] and [11]. Black-Box methods
are applicable for both, software and hardware modules and
therefore used for the here presented support system.

The benefit of a test case is usually seen as its ability to find
as many faults as possible. In order to achieve the best results,
other aspects like monetary costs must be considered too [12],
[13]. A common approach is to incorporate the fault-proneness
or fault probabilities of modules or functionalities into the
test case prioritization, e.g. [9], [14] and [15]. Based on the
coverage of fault-prone modules, the test cases are selected
and prioritized accordingly.

For multi-variant systems, there is another dimension to
consider: Test results from other variants or locations give
hints about already tested components and interfaces. The test
for a particular system can be optimized by covering unique
components and interfaces in that system.

III. CONCEPT OF THE TEST MANAGEMENT SUPPORT
SYSTEM

As a basis, the support systems needs information about
test cases and about the system-under-test. This information
is currently modeled manually by the maintenance engineers
especially for the support system (see sections A, B and C).
Later it is planned to import the information from dedicated
design and test tools. With the data available, the support sys-
tems calculates the test progress and a test case prioritization
(see sections D and E).

A. Test Step and Test Case Management

Often, test cases on the system test level describe complex
processes with many different steps to be performed. In various
test cases, the same test steps have to be executed. Test steps
are single activities that can be executed separately. A test step
is for example the stimulation of a sensor or the establishment
of a network connection to a server. By using the same test
steps, test cases are partly redundant.

The data model of the support systems differentiates in those
two levels: Test cases and test steps. A test step can be modeled
as part of several test cases (see Fig. 2). This allows the support

Fig. 2. Test Cases and Test Steps

Fig. 3. System Model used by the Support System

system to compare two test cases in terms of test step coverage.
If all test steps of a test case were already executed as part of
other test cases it might not be necessary or is only necessary
with a low priority to execute this test case. Nevertheless it is
assumed that a test case covers more than the sum of the test
steps contained in the test case. A test case execution of that
test case could be beneficial. However, the support system is
selecting and prioritizing test cases with the goal to maximize
test step coverage.

B. System Representation to Determine Test Coverage

A main challenge for test case prioritization for regression
testing is the identification of fault-prone and important to
test system parts. Those system parts are usually determined
by evaluating the changes is the system since the last test run.
The basis for our support system is a simplified system model
of the system-under-test which consists of a architectural
system representation in system components and a functional
representation in functionalitites. Each component and each
functionality is versioned. Components and functionalities
have dependencies which are also part of the system model.
The actual system variants which are used in the production
are modeled by selecting the version of each component and
functionality which is deployed in that variant. The system
model is depicted in Fig. 3. For each component, functionality
or test case, additional parameters are stored which help to
determine the test case priorities. The parameters are shown
in Fig. 4. Dependencies and parameters can change from
one version to another. Even with only few components and
functionalities a complex dependency network arises which
needs to be considered for test case selection. It is one of the
main advantages of the support system to be able to consider
complex dependencies.

Currently, the model is managed manually by the test engi-
neer. The support system provides functions like the automatic



Fig. 4. Parameters for functionalitites, components and test cases in the data
model

Fig. 5. Data Model

generation of a new version of a component or function with
the same dependencies like the older component based on
release notes which are provided with a new version. The
engineer only has to maintain the dependency changes of new
versions.

C. Connecting Test Cases and the System Model

To get a representation of the actual production use cases,
the data model is complemented with the actually used systems
at the production locations. Therefore the data entity Use Case
is introduced and added to the system model. A use case
represents an actual system at a special location. Test cases
are executed for one of these use cases.

The test cases themselves have three different connections
to the system model. First, they have a test coverage. The test
coverage determines which components and which functions
in which versions are tested by the test case. This information
is independent from actual variants and use cases. To consider
the real use cases, it is stored for which use case a test
case is relevant. With the relevance different configurations or
different usages of the same system can be considered. Only
relevant test cases are used to determine the test coverage and
to test a system used in a use case. The third connection for test
cases is the execution of a test case. Test cases are executed for
particular use cases. With this information, the support system
is capable to analyze if a test case already has been executed
for the same system in another use case and thus lowering the
priority to execute this test case again.

D. Test Progress Analysis

The test progress analysis determines for each component
and each functionality how good they are currently tested in-
corporating test results from the last test runs and information
about changes since those test runs. The determination allows

the test engineer in the assessment where to spend the most
test effort and when to stop the test and bring the system
into operation. Additionally, it supports the engineer in finding
coverage gaps.

The procedure of determining the test progress for compo-
nents and functions is identical. In the following the process
is only described for components. Functionalities are treated
the same way with the same parameters but with different
dependencies which allows another view to the system.

The following parameters are used for each component to
calculate the test progress:

• Untested changes
• Untested changes in dependent components
• Ratio of executed test cases to available test cases for the

current use case
• Ratio of executed test cases to available test cases for

other use cases
The parameters related to use cases are use case specific

because each use case might have different relevant test cases.
Thus, the test progress value for each component is use case
specific as well.

In the current approach of the support system, the param-
eters are just summed up to calculate the test progress value.
The actual calculation method is still part of the ongoing
research. It has to be figured out if the parameters have to be
weighted and in which circumstances the transferred results
of other use cases are trustful.

E. Test Case Prioritization

Based on the current test progress, the next test cycle has
to be planned. This task is supported by the test management
system with an automatic prioritization of already available
test cases.

To calculate the test case priorities, first the test importance
of the components has to be determined. This is done by
extending the test progress with the following parameters
which are indicators how important it is to test a component:

• Number of already found faults in the component
• User-given criticality estimation
• User-given complexity estimation
As a second step, the test cases are evaluated to find the most

appropriate to test the most important components. Therefore
the following parameters are summed up for each test case:

• Number of already found faults by the test case
• Not yet covered test steps
• User-given test importance estimation
Like with test progress calculation, the influence of the

parameters has to be investigated in further research.

IV. PROTOTYPICAL IMPLEMENTATION

The test management support system has been realized as
a web-based prototype. The usage of web technology allows
a location-independent access to the support system and also
access from mobile devices. The system has been divided into
four components that are depicted in Fig. 6. The front-end has



Fig. 6. Architecture of the prototypical implementation of the support system

Fig. 7. Presentation of the test progress as a test management dashboard

been realized in HTML and Javascript. It shows the graphical
user interface. The back-end is split into a PHP and an Java
part and a data base. The data base stores the data model
from Fig. 4 and Fig. 5. the PHP back-end provides supportive
functions to manage test cases and the system model. The
Java back-end realizes the calculation algorithms for the test
progress calculation and the test case prioritization.

Fig. 7 shows the result of the test progress calculation for the
scenario shown in Fig. 1. A table based dashboard presentation
of the results has been chosen. The rows represent the system
structure represented by the components of the system. The
columns contain the production use cases. The individual cells
show the version of the component contained in the use case
and the current test progress which is encoded in a color
ranging from green to red.

To evaluate the prototype, data following the scenario of
Fig. 1 has been generated in cooperation with experts for
automotive QA-systems. With this data it could be shown that
the test progress dashboard shows correct and helpful results
as assessed by the experts. The test case prioritization also
provides traceable and good results that have been assessed by
the experts. Nevertheless a long-term evaluation with multiple
update cycles and the usage of the prioritized test case lists
still has to be done to evaluate the whole method.

V. CONCLUSION AND FURTHER WORK

A test management support system to support the regression
test in distributed industrial production scenarios is presented.
The system provides support functions to determine the current
test progress and to generate a prioritized list of test cases

to improve the test progress of a particular system variant
used in a special production use case. Therefore the system
uses a system model and a test case model. These models
are updated with system changes and test case executions. To
provide the support function, the system evaluates this model.
The main functionality of the test progress determination is the
evaluation of dependencies and coverage given in the model.
The test case prioritization then generates a list of test cases
intended to maximize the test progress with few effort.

Our current research focuses on the application of the con-
cept and the prototype to real production scenarios performing
a long-term evaluation. This allows to optimize the parameters
and assumptions which were made in the concept and to
investigate methods to better incorporate expert knowledge and
experience. Furthermore, methods are searched which allow
more automation in the provision of the needed data for the
support system.

REFERENCES

[1] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on
regression test selection techniques,” Information and Software Technol-
ogy, vol. 52, no. 1, pp. 14–30, 2010.

[2] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[3] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test case prioritization:
a family of empirical studies,” IEEE Transactions on Software Engi-
neering, vol. 28, no. 2, pp. 159–182, 2002.

[4] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[5] G. Rothermel, R. Untch, Chengyun Chu, and M. Harrold, “Prioritiz-
ing test cases for regression testing,” IEEE Transactions on Software
Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[6] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos, “Time
aware test suite prioritization,” in Proceedings of the 2006 international
symposium on Software testing and analysis. ACM, 2006, pp. 1–12.

[7] B. Qu, C. Nie, B. Xu, and X. Zhang, “Test case prioritization for
black box testing,” in 31st Annual International Computer Software and
Applications Conference - Vol. 1- (COMPSAC 2007). IEEE, 2007, pp.
465–474.

[8] H. Park, H. Ryu, and J. Baik, “Historical value-based approach for
cost-cognizant test case prioritization to improve the effectiveness of
regression testing,” in Second International Conference on Secure System
Integration and Reliability Improvement, 2008, pp. 39–46.

[9] C. Malz, N. Jazdi, and P. Göhner, “Prioritization of test cases using
software agents and fuzzy logic,” in IEEE Fifth International Conference
on Software Testing, Verification and Validation (ICST), 2012, pp. 483–
486.

[10] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, vol. 14, no. 5, pp. 67–74, 1997.

[11] H. Srikanth, L. Williams, and J. Osborne, “System test case prioritization
of new and regression test cases,” in International Symposium on
Empirical Software Engineering, 2005, pp. 62–71.

[12] M. Kumar, “Towards multi-faceted test cases optimization,” Journal of
Software Engineering and Applications, vol. 04, no. 09, pp. 550–557,
2011.

[13] A. Malishevsky, G. Rothermel, and S. Elbaum, “Modeling the cost-
benefits tradeoffs for regression testing techniques,” in Proceedings of
the International Conference on Software Maintenance, 2002, pp. 204–
213.

[14] N. Fenton and M. Neil, “A critique of software defect prediction
models,” IEEE Transactions on Software Engineering, vol. 25, no. 5,
pp. 675–689, 1999.

[15] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
faults from cached history,” in Proceedings of the 29th International
Conference on Software Engineering. IEEE Computer Society, 2007,
pp. 489–498.


