
A Combined Fault Diagnosis and Test Case
Selection Assistant for Automotive End-of-Line

Test Systems
Sebastian Abele and Michael Weyrich

Institute of Industrial Automation and Software Engineering
University of Stuttgart

Email: {abele, weyrich}@ias.uni-stuttgart.de

Abstract—With growing complexity of premium cars, the end-
of-line test systems also increase in complexity. The test systems
have to provide more and more functionality like flashing of
electronic control units (ECUs) and sensor calibration. Current
end-of-line test systems evolved to complex networked IT-systems,
which consist of various components and subsystems from dif-
ferent suppliers. Automotive production maintenance engineers
are challenged to keep the availability of the test system on a
high level to not cause production delays. In a case study with
automotive test experts, we considered fault diagnosis and test
case selection as two major tasks to maintain a high system
availability. The experts combine their knowledge and experience
about fault-prone system parts and former faults to optimize fault
diagnosis and test case selection for regression testing. To support
the experts to manage the growing complexity, we propose a
combined fault diagnosis and test case selection assistance system.
The combination of both techniques enables synergy effects by
supporting the fault diagnosis with test case selection and by
considering fault data in regression testing. This paper presents
the concept of that combined assistant system and describes a
prototypical realization used in an exemplary scenario.

I. INTRODUCTION

Industrial quality assurance systems, e.g. automotive end-of-
line test systems, have become an important part of the value-
adding network for manufacturers. High customer require-
ments to the product quality lead to increasingly important
quality assurance during the production. Tests are performed
during the whole production process, which leads to a deep
integration of quality assurance systems into the production
lines. This deep integration makes the quality assurance sys-
tems to critical systems for the production process. Faults and
breakdowns of the quality assurance systems cause delays or
breakdowns of the whole production. In the automotive indus-
try, the quality assurance systems evolved to systems bringing
the cars into operation by flashing ECUs and calibrating a
growing number of sensors and thus participate directly in the
value-adding.

To achieve a high productivity, the availability of the quality
assurance systems has to be high. By interviewing end-of-
line test system maintenance experts of a large automotive
manufacturer, it has shown that fault diagnosis and test case
selection for regression test after new releases are important
tasks to maintain the availability. Both tasks are time consum-
ing with a lot of potential for automation and have the same

goal: The impact of faults should be minimized. Therefore
most of the faults should be found during the regression test
phase without impact to the production process. If a fault
occurs during operation, it has to be fixed as fast as possible.

The fault diagnosis is started after a system breakdown or
after a series of failed car tests, which indicate a problem
in the test system. The maintainer connects to the affected
test devices and browses the logfiles and result databases
for any entries indicating faults. If he cannot recognize the
cause of the fault directly, he performs further tests with the
system to isolate and finally diagnose the fault. Therefore he
needs to repeatedly execute tests and scan the logging for new
information.

New requirements coming from new car features or new
production variants lead to periodic releases of new system
versions which introduce changed hardware and software.
Before the new releases are used at a production line, they have
to be tested to ensure that the system still works properly. This
test is performed by the same maintenance engineers as the
fault diagnosis. Thus they bring together the knowledge about
newly introduced features and the experience about fault-prone
functions and components from the last operational period.
With this information they select the best-suited test cases with
the goal to find as many faults as possible before the system
is used in a production line.

This workflow reveals two drawbacks: Firstly, the main-
tainers spend a lot of time with scanning logs to identify
fault symptoms, even for already known faults. Secondly, the
complexity and the distribution of the test system leads to
an insufficient sharing of knowledge and experience which
leads to inefficient fault diagnosis and testing. To overcome
those drawbacks, we propose an assistance system which
combines symptom identification, fault diagnosis and test case
selection. The assistance system integrates formalized expert
knowledge from fault diagnosis and system testing. Addition-
ally, it uses system monitoring information to identify fault
symptoms and interfaces test run histories and fault histories
to determine the test importance for every system component.
Recommendations for further actions are generated based on
this information and the formalized expert knowledge.

This article is structured as following: First, fault diagnosis,
test case selection and other maintenance techniques are



described in section II. In section III the concept is presented.
Section IV depicts a prototypical realization with an exemplary
test system. The transferability to other systems is described
in section V. Finally we conclude our work in section VI.

II. FAULT DIAGNOSIS, TEST CASE SELECTION AND
PREDICTIVE MAINTENANCE

Assistance for fault diagnosis and test case selection are
well-known techniques to improve the fault management. Fault
diagnosis systems are used to determine the cause of a fault
automatically with the goal to minimize the repair time. Test
case selection is used to find the most appropriate test cases
to test a system, especially after changes and bug fixes. With
test case selection, the test effectiveness can be increased. Less
faults remain in the system and a shorter time is needed for
the test.

A. Fault Diagnosis

Fault diagnosis systems have the goal to find the cause
of a fault based on symptoms. The cause is usually not
directly observable. The fault is revealed by its impact to
system functions. The impact of a fault could be for example
a broken hardware component or an error message of a
software. To be able to fix the fault, its cause has to be found.
In order to find fault symptoms, common fault diagnosis
methods monitor sensor signals (signal based methods) [1],
compare the system behavior with a modeled one (model
based methods) [1] or compare the current system state with
failures from the past (knowledge-based, data-driven or fault-
based methods) [2], [3]. To find the fault cause based on the
identified fault symptoms, classification and inference methods
are used. Typical classification methods are e.g. decision trees
[4] and support vector machines (SVM) [2]. Typical inference
methods are e.g. rule-based inference [5], fuzzy logic [2] or
Case-Based Reasoning (CBR) [6]. A more complete overview
of diagnosis methods and applications can be found in [1] and
[2] or in [7].

The system presented in this paper uses case-based rea-
soning to find the fault cause and to give a recommendation
for further handling. case-based reasoning is a methodology
that has been developed to solve problems by adapting similar
cases from the past to the current situation. The idea of case-
based reasoning is to match a human’s approach to problem
solving by remembering similar problems from the past. CBR
has proven its usefulness for fault diagnosis in numerous
applications. CBR has been chosen because it matches the way
of thinking in fault cases of the automotive testing experts.

B. Test Case Selection

Test case selection techniques support test engineers in
finding the most appropriate test cases for effective regression
testing after changes in a system [8]. Due to short time and
resources, the number of test cases which can be run in one test
cycle is limited [9]. Therefore the test cases covering system
changes and modules, which depend on changed modules,
are selected. A lot of test case selection techniques arise

from software engineering. Changes compared to a previous
release can be determined by comparing the two source
code versions. Test cases are then selected by maximizing
the change coverage. Those techniques are called white-box
techniques because they require source code access. If there
is no source code information available, e.g. in purchased
modules, or if evaluating the source code is not sufficient,
e.g. if also the hardware changes, other techniques need to
be used. Various techniques that do not depend on source
code have been proposed, which evaluate e.g. requirements
[10] or historical information [11]. Preceding research of
the authors investigated test case prioritization with learning
software agents [12]. A more complete overview of test case
selection can be found in the survey articles [8] and [13].

C. Condition Monitoring, Active Fault Diagnosis and Predic-
tive Maintenance

Condition Monitoring is the supervision of the condition
of a technical system [14]. Often, condition monitoring is
used to identify and to diagnose faults. Condition monitoring
data is used by the presented assistance system for symptom
identification. Usually the condition monitoring is passive and
does not interfere with the technical process of the monitored
system. In contrast, the active fault diagnosis interferes actively
with the technical process in order to get more information
about the system condition.

The availability of system condition information allows the
predictive maintenance. It summarizes techniques to prevent
system breakdowns by forecasting them. According mainte-
nance actions are scheduled to prevent the forecast break-
downs. More information and applications can be found in
[15] and [16].

III. DESIGN AND CONCEPT OF THE COMBINED
ASSISTANT SYSTEM

The combination of fault diagnosis and test case selection
allows the usage of diagnosis information for regression testing
and to support the fault diagnosis with the selection of test
cases. A common scenario for the interaction between fault
diagnosis and test case selection is depicted in Fig. 1.

The basic system architecture is shown in Fig. 2. It contains
a test system specific and an independent part. The indepen-
dent part manages the test system from a functional point
of view. It integrates the different system variants from the
particular assembly lines. The system specific part contains
the monitoring adapters to interface the system monitoring of
each different supplier.

A. Requirements and Boundary Conditions

To be feasible, the assistance system needs to consider
boundary conditions that arise from the workflow and the use
cases of the automotive production. The most important one is
the independence from particular suppliers. The test system is
specified during the engineering of a new assembly line. Based
on the specification, the system is delivered by one or various



Fig. 1. Scenario for the interaction between fault diagnosis and test case
selection

Fig. 2. System architecture of the assistance system

suppliers. The system is managed based on its specification
equally for all assembly lines but might be realized differently.

As a second boundary condition, the diagnosis-relevant time
span is set to the duration of one car test. Testing cars is the
main action in which faults are revealed and in which cause-
effect relations can be observed. The symptom identification
filters for one relevant car test. This fits to the manual workflow
in which the maintainers usually investigate single failed car
tests.

B. Design of the Shared Data Model

To fulfill its tasks, the assistance system needs a data model
which contains all relevant information for fault diagnosis
and test case selection. One of the major advantages of the
assistance system is the ability to process a lot of data and
to consider many dependencies compared to human experts.
Fig. 3 depicts the data model that has been developed for the
assistance system. It contains data needed for fault diagnosis
and for test case selection.

For the fault diagnosis, information about the system com-
position and about faults and fault symptoms is needed. The
system composition is stored in a common model of com-
ponents and functions. Particular systems consist of various
components and are stored as configuration baselines in the
model.

The test case selection requires data about the test process.
Test cases and test runs are stored as well as changes in the
system. Especially the information about test case coverage
and dependencies between functions and components is used
to select test cases. This data is usually stored in specialized
test management tools. A monitoring adapter for the used
test management tool is introduced, which gives the assistant
system access to the test data.

C. Symptom Identification by System Monitoring

To enable fault diagnosis, the current system state of the test
system has to be known by the diagnosis system. For the fault
diagnosis the relevant system state is abstracted to a collection
of symptoms which can occur when the test system is faulty.
Newly found symptoms of new faults are added subsequently
to the symptom model by the maintainers to enable automatic
supervision of that symptoms. The first task of the diagnosis
system is to identify which of the symptoms are occurred.
There are two options for the symptom identification: The user
can be asked directly or the system monitoring can be used.
The usage of the system monitoring is preferred. However the
diagnosis system needs the knowledge about how a symptom’s
state is contained within the system monitoring data.

The system monitoring is supplier specific whereas the
symptom model is used for the whole system. Therefore the
diagnosis system uses a supplier specific monitoring adapter
for each test system. The adapter contains specific rules for
symptom identification (see also Fig. 2). To identify faults, the
system-independent symptom identification module requests a
symptom’s state from the system-specific system monitoring
adapter. A request always contains a time-span in which the
symptom has to be occurred and the symptoms to search for.
The adapter answers for each requested symptom with the
state or with a message, that the state could not be identified.
There are three reasons why the identification might fail:

• There is no monitoring rule available.
• The relevant time-span is not contained in the monitoring

data anymore. This might happen for example when the
file size of logfiles is limited.

• The function to which the symptom belongs to has not
been executed. The system state is set to not executed.



Fig. 3. Shared data model for fault diagnosis and test case selection

The determination of this state requires that the execution
of functions is monitored and that the symptoms are
linked to that functions.

The monitoring adapter itself uses different data sources to
search for symptoms. The most important for the test system
are the result logging database and logfiles generated by the
test runtime environment which is running on the test devices.
For each data source a different kind of rule is used. A rule
for the log database contains a SQL statement and a result
value identifying that the according symptom is occurred. A
rule for the logfile contains a regular expression to identify
the message which indicates that the symptom is occurred.

D. Fault Diagnosis with Case-Based Reasoning

Based on the symptoms and their states, the fault diagnosis
searches for the fault cause and for a recommendation for
further actions. Therefore the CBR compares diagnosis cases
with previous solved cases. A diagnosis case consists of the
symptoms with their states when a fault occurs and the fault
cause together with a recommendation for further action.

To diagnose a fault, a case is constructed from all symptoms
of which the state is known. The CBR then searches for similar
cases from the past which are called base cases and presents
their solution as a candidate for the fault cause of the current
case. The similarity is determined by summing up the number
of symptoms with the equal state. Symptoms with the state
occurred are weighted twice . Symptoms that are not contained
in the base case are ignored.

The base cases are grouped by the fault causes they rep-
resent. There might be various cases describing the same
problem. To retrieve the most probable cause for the current

problem, the cause with a base case with the highest similarity
is chosen. If two base cases with different fault causes have
the same similarity value, the fault cause with a base case with
the highest unique similarity value is chosen first.

After the CBR has finished, the maintainer gets a list
of the most probable fault causes. The maintainer now has
the possibility to acknowledge one of the causes as the
correct cause for the current diagnosis case. Then the current
symptoms are stored as a new base case for this cause. If the
correct fault cause could not be found, the maintainer has the
possibility to manually enter the correct solution. Therefore he
can define new symptoms if he investigated something which
is not yet covered by an existing symptom. Then the current
case is inserted as a new base case with a new fault cause. By
acknowledging or entering correct solutions, the ability of the
system to diagnose faults correctly grows over time.

E. Test Case Selection to Support Fault Diagnosis

If the diagnosis cannot find a unique fault cause, more
information about the current system state is needed. Test cases
are executed to get this information. They provoke further
symptoms which finally lead to the correct fault cause. The
assistance system should find the best suited test cases for the
current diagnosis situation. The decision mechanism depends
on whether detailed test case – symptom coverage information
is available. This information is usually incomplete since the
modeling effort is too high for a complete and up-to-date
manual modeling. However, the coverage can be determined
automatically when after a test case execution, the symptom
identification is executed immediately. All symptoms that
were found after a test run are then linked automatically to



Fig. 4. Protoypical realiziation of the assistance system with an exemplary end-of-line test system

the corresponding test case. In upcoming diagnosis situations
this information is then used to find suited test cases. First,
symptoms to distinguish two or more non-unique diagnosis
results are identified. Therefore symptoms with an unknown
state are searched that are contained in the most similar base
cases. If they have a different state in the different base
cases then they are suited to find the correct solution. This
suited symptoms are called relevant symptoms for test case
selection. After the relevant symptoms have been identified,
the link between them and corresponding test cases is used
to select test cases which provoke the symptoms. The number
of provoked relevant symptoms is counted for each test case.
Then the test cases are ordered by the number of provoked
symptoms. After a test case has been executed, the fault
diagnosis is started again. If the fault cause could not be found,
the test case selection is started again.

If the coverage information between relevant symptoms
and test cases is not available or if no relevant symptoms
were found, the test case selection uses meta data about
system components to calculate a fault probability for each
component. If there were already symptoms found which can
be linked to a component, test cases are selected that test
especially this component and components that are dependent
from it. If no symptoms have been found, historical data is
used to determine a diagnosis-independent fault probability.
This historical data includes the fault-history, the change-
history and the test run-history. The number of changes, the
number of faults and the number of failed test runs is summed
up for each component. Test cases are selected to cover the
components with the highest fault probability.

F. Test Case Selection for Regression Test

Changes to solve faults or new functions to fulfill new
requirements lead to changes of the test system. These changes
are tested in a regression test. To keep the production down-
time short, the best test cases to test especially the changed
system components are selected. Therefore a release note
which describes the changes of the components is read in. In
the first step, the assistance system calculates a test importance

of each component. Besides the changes themselves the test
importance is influenced by changes in dependent components
and a user given criticality value. The test importance is
calculated as the mean value of the three values number of
changes, number of changes in dependent components and
criticality of the component.

IV. PROTOTYPICAL REALIZATION

The assistance system has been realized as a prototype. Its
setup is depicted in Fig. 4. It consists of the assistance system
itself and an exemplary test system. The assistance system
consists of a front-end with the user interface and a back-end
that realizes the functions which were described in section III.
The database stores the data of the data model from Fig. 3.
The front-end provides basic editing functions for this data to
give the possibility to enter scenario-related data. A condition
monitoring adapter has been realized for logfiles and for a
log database. In the exemplary system, historical logfiles or
database entries with faults included can be used instead of
live condition monitoring data.

Common faults that occur in the communication between
the diagnosis device and a ECU in the car have been used
to test the assistance system. In the first test, the complete
data was available. The test system was modeled in 33
components and 25 functions. 53 symptoms have been defined
that might occur during the communication. Then base cases
were constructed by asking experts for the steps they would
perform to find the fault cause for 34 common faults. Every
step was modeled as one of the symptoms. If the symptom is
contained in the database or a logfile, a monitoring rule was
added.

A common exemplary fault is a loose connection of at least
one pin of the car adapter plug. The fault usually leads to a
failed car test with a time out or communication error. Fault
symptoms are numerous connection losses and reconnects
which can be found in the networking log of the test device.
Another common fault is the missing of needed files for
flashing the ECU which is either caused by a problem in
the communication between the server to the test device or



in a wrong device configuration. The cause is distinguished
by checking the server log if the test device tried to load the
correct data.

After the base cases and the symptom rules had been estab-
lished, we put the logfiles and database entries containing the
real faults on the test system and started the diagnosis process.
With this full information given, the diagnosis system was able
to identify all symptoms with the corresponding rule. With the
overview of occurred symptoms, the experts were already able
to give the correct diagnose. The symptom identification itself
reduces the fault diagnosis time. The automatic fault diagnosis
was able to find 2 out of 3 fault causes correctly. For the
last third, the system was not able to distinguish between
multiple possibilities. More symptoms would be needed to
give a unique fault diagnosis for those faults.

To test the test case selection, we added some test cases
with random coverage to the system. Then we executed the test
case selection for fault symptom identification and to improve
the regression test and reviewed the results by manually in-
vestigating the coverage and interdependency links. It showed
that the system is able to find the right test cases if some are
available. Nevertheless the success depends on the quality of
the test cases and the given meta-information.

The ability of the system to handle incomplete data and
new faults has to be proven in a long-term case study at a real
assembly line. For the exemplary test system with reproduced
faults, the system already works well and is suited to support
the maintenance engineers.

V. TRANSFERABILITY OF THE CONCEPT

During design of the assistance system, an abstract system
model has been used, which consists basically of compo-
nents, functionalities and fault symptoms. The abstraction
is necessary to achieve independence from the realizations
of particular suppliers which deliver parts of the system.
This abstraction allows for a easy transfer of the assistance
system for the usage with other systems. The main task to
transfer it is the modeling of the new system, the setup of an
initial symptom model and the realization of the new system
monitoring adapters.

VI. CONCLUSION AND FURTHER WORK

Fault Diagnosis and Test Case Selection are important
tasks to maintain the availability of automotive end-of-line
test systems. This article introduced an assistance system
that supports the engineers by formalizing their knowledge
and experience for both tasks in a shared data model. With
that shared data model, information from fault diagnosis is
considered automatically in the system test and the test case
selection helps in finding and isolating faults for the diagnosis.

The system has been realized prototypically. The experi-
ments with this prototype showed that it is able to diagnose
reproduced faults when the necessary knowledge is contained
in the data. If it is not, the system is still helpful by providing
information about already known symptoms and thus by
shortening the manual diagnosis resulting in less maintenance

cost and shorter production downtimes. With enough test cases
available and full coverage information given, the system
is able to find test cases to support symptom identification
and to increase the test coverage of the whole test system.
Thus we could show that the concept of the combined fault
diagnosis and test case selection works. Nevertheless, the
assistant system has to prove its function in a long-term
evaluation under real conditions, e.g. with incomplete data and
fault situations, which are unknown yet.

The next step is that evaluation using a end-of-line test
system at a real assembly line. The system has to prove that
it can handle unknown situations and is able to support the
maintainers even with incomplete data. The test case selection
technique has to be investigated for various system releases.
It has to be determined if the selected test cases really helped
to reduce the fault-proneness of the system.

REFERENCES

[1] Z. Gao, C. Cecati, and S. X. Ding, “A Survey of Fault Diagnosis
and Fault-Tolerant Techniques Part I: Fault Diagnosis With Model-
Based and Signal-Based Approaches,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 6, pp. 3757–3767, 2015.

[2] Z. Gao, C. Cecati, and S. Ding, “A Survey of Fault Diagnosis and
Fault-Tolerant Techniques Part II: Fault Diagnosis with Knowledge-
Based and Hybrid/Active Approaches,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 6, pp. 3768–3774, 2015.

[3] M. Bordasch, C. Brand, and P. Göhner, “Fault-based identification and
inspection of fault developments to enhance availability in industrial
automation systems,” in 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA), 2015, pp. 1–8.

[4] D. Barber, Bayesian Reasoning and Machine Learning. Cambridge and
New York: Cambridge University Press, 2012.

[5] H. Liu, A. Gegov, and M. Cocea, Rule Based Systems for Big Data:
A Machine Learning Approach, ser. Studies in Big Data. Heidelberg:
Springer, 2016, vol. 13.

[6] J. Kolodner, Case-Based Reasoning. Burlington: Elsevier Science,
2014.

[7] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and
Fault-Tolerant Control, 3rd ed. Berlin and Heidelberg: Springer, 2016.

[8] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[9] C. Malz, N. Jazdi, and P. Göhner, “Prioritization of Test Cases Using
Software Agents and Fuzzy Logic,” in IEEE Fifth International Confer-
ence on Software Testing, Verification and Validation (ICST), 2012, pp.
483–486.

[10] H. Srikanth, L. Williams, and J. Osborne, “System test case prioritization
of new and regression test cases,” in International Symposium on
Empirical Software Engineering, 2005, pp. 62–71.

[11] J.-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Pro-
ceedings of the 24rd International Conference on Software Engineering
(ICSE), 2002, pp. 119–129.

[12] S. Abele, M. Bordasch, and P. Göhner, “Qualitätsbasierte Testfallprior-
isierung mithilfe von Softwareagenten,” in Entwurf Komplexer Automa-
tisierungssysteme (EKA), 2014.

[13] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on
regression test selection techniques,” Information and Software Technol-
ogy, vol. 52, no. 1, pp. 14–30, 2010.

[14] A. K. Jardine, D. Lin, and D. Banjevic, “A review on machinery di-
agnostics and prognostics implementing condition-based maintenance,”
Mechanical Systems and Signal Processing, vol. 20, no. 7, pp. 1483–
1510, 2006.

[15] R. K. Mobley, An Introduction to Predictive Maintenance, 2nd ed.
Amsterdam and New York: Butterworth-Heinemann, 2002.

[16] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi,
“Machine Learning for Predictive Maintenance: A Multiple Classifier
Approach,” IEEE Transactions on Industrial Informatics, vol. 11, no. 3,
pp. 812–820, 2015.


