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Abstract - This research presents and evaluates an approach 
to control and communicate with industrial robot control system 
over Ethernet network in order to implement online guiding and 
live data exchange. One of the main benefits of this fully-
telematic control is to give the ability to integrate external sensors 
so that a guarded-motion can be implemented or to use sensor-
guided motion by generating online trajectories. A comparison in 
terms of execution time, sensor integration, and security is made 
between the proposed fully-telematic control approach on one 
side, and the semi-telematic approach and the classical offline 
control of industrial robot on the other side.   

Keywords - telematic control; indutrial robot; Ethernet network; 
sensors integration. 

I.  INTRODUCTION  
The usage of industrial robots is increasing rapidly 

worldwide and especially after the advanced developments in 
the industrial robot technologies, such as in the built in 
controlling software and the interface options with different 
external devices. However, despite of variety of sectors where 
industrial robots are being used, the International Federation 
of Robotics reported that the global density of industrial robots 
was around 58 per 10,000 employees in 2014 [1]. This number 
can be seen as a low density if the advantages of using 
industrial robots in the plants are considered. For example, 
industrial robots increase the production rate and reduce the 
operational cost when long term view is taken. In addition, the 
robots give better product quality since they are more precise 
and have low repeatability error compared to the human 
operators.  When looking into the applications where the 
implantations of industrial robots are limited, as an example a 
simple assembling application of electronic parts in 
automotive industry, it can be noticed that one of the main 
reasons in this low usage is because of the limited ability of 
industrial robot to deal with unforeseen events, i.e. accidents 
or changes in workspace. Another reason that can be found 
more in small and medium enterprises is due to the variety of 
the given tasks and their different configurations in the 
processes and the environments that requires flexible handling 
and adaption from the operator [2]. Therefore, fully automated 
processes could not be achieved unless the industrial robots 
can meet these dynamic requirements by providing the same 

 
flexibility as the human operator does [3]. Thus, in order to 
have automated production lines with high efficiency and 
performance in the processes, it is required to have intelligent 
industrial robots that can sense the surrounding area by 
reacting to unforeseen events that might occur and also by 
interacting with human operators. This can be achieved by 
sensor guided industrial robot with sensor based control. The 
keyword and first challenging phase in the implementation of 
sensor guided robot is the integration approach of external 
sensors with the control system of the industrial robots [4]. 
Such an approach should always consider less hardware 
modification and simplicity in integration with the existing 
commercial control systems that are already in service with 
more than 1.5 millions industrial robots [1].  

II. BACKGROUND 
Most, if not all, the industrial robots come with their own 

control systems provided by the robot manufacturer. The 
traditional way of using the industrial robot is to program 
offline once and run it forever concept. In some cases if the 
robot needs to work on conveyer on which the products come 
to robot station by, the trigger of robot program or the 
movement is done by the digital or analog input/output 
interface which is usually a default feature. Moreover, the 
commercial control systems do not give usually an access to 
the internal low-level control loops of robots. On the other 
hand, some recent advanced industrial robots give external 
sensor interface feature, however, they are usually more 
expensive, and not all types of sensors can be used directly.  

Therefore, the first and most common approach the 
researchers tend to use in order to integrate external sensors 
with industrial robots is to replace the commercial control 
systems with their own developed ones [2]. This approach has 
two crucial issues; firstly the user will waive the warranty the 
robot manufacturer gives with the commercial control system, 
and secondly, an accurate dynamic model should be built to 
control the robot. The dynamic models for the manipulator in 
general can be driven by Euler-Lagrange method or Newton-
Euler method in form of motion equation. Assuming that all 
the correct parameters are provided by the robot manufacturer 
and a solid control system is built, it is unlikely to find this 
approach used outside research labs and it is rarely found in 
the industry.  



More recent approaches to realize sensor integration with 
commercial control systems are by using the alternative 
interface options that either exist inside the control system or 
require a hardware modification. Modern KUKA robots 
provide an explicit Robot Sensor Interface (RSI) where sensor 
data can be included with the defined trajectory for the 
internal control algorithm [5, 6]. EtherCAT is one of these 
interfaces where some of industrial robot control systems 
provide and many researchers have used it to realize real-time 
motion control [7, 8]. 

Other types of interface also have been used to integrates 
sensors with robot control system such as CAN bus and 
RS232 that usually require hardware modification either on 
the commercial control system or on the network of the work 
floor, such as the approaches were used in [9, 10, 11]. 
EtherNet/IP interface that provide real-time data transmission 
is used with VxWorks operating system to integrate external 
Force/Torque sensor with KUKA robot in [12]. Open source 
control systems, e.g. ROS [13], also have been contributing in 
a solution to standardize one platform for different types of 
industrial robots and support external sensors integration. On 
the other hand, according to IMS Research results, as shown 
in Fig. 1,   Ethernet TCP/IP interface is the most common 
interface type among others Industrial Ethernet in the industry 
[14]. In fact, many devices such as HMIs, PLCs, machines, 
sensors, and even robots control system have made it as 
standard interface option. In the experiment presented in this 
research it is also the cases that Ethernet TCP/IP is a standard 
interface feature in the robot model used.   

 
Fig. 1. World market for industrial Ethernet 2015 forecast. 

To summarize, external sensor integration is still not a solved 
solution for many existing control systems of industrial robots. 
Only advanced types have their own dedicated interface for 
sensors such as in KUKA models. The other alterative 
requires hardware and software modification which is not 
always feasible due the closed architecture of control systems. 
Open source systems such as ROS have couple of limitation in 
the integration of sensors beside their complicated software 
that requires experts and high programming knowledge to 
modify the system in order to implement new sensors. 

III. PROPOSED TELEMATIC APPROACHES 

A. Objectives  
In order to have the ability to integrate external sensors 

and to communicate with the commercial control system 
without replacing it or making a hardware modification, this 
research will present two approaches for such requirements. 
The interface link between the telematic machine, i.e. a PC, 

and robot control system will be carried through an Ethernet 
interface which is as mentioned previously the most common 
interface type. By doing so, not only external sensors can be 
integrated, but also live data such as; Tool Center Point (TCP) 
position and orientation, torques on joints, input/output pins 
status, and etc. can be transmitted from the robot control 
system to the telematic machine. This data can be useful for 
different applications, for instance, in this research it will be 
used to trigger commands by including it as feedback for 
telematic control system. To summarize, the objectives of this 
work are: 

• Provide a simple and fast solution for external sensors 
integration with robot control systems that have limited 
sensor interfaces. 

• Telematic control of industrial robot over Ethernet 
network. This opens the doors to use complicated 
guiding algorithms that is hard to be implemented 
directly on software of the robot control system.  

• Standardize remotely command to be used with different 
types of control systems. 

• Monitor robot’s live data remotely. 

• Study the performance and feasibility of the proposed 
approach in comparison with the traditional method of 
writing the programs inside the robot control system. 

B. Hardware Setup 
The industrial robot used here is a UR5 Robot 

manufactured by the Danish company Universal Robot. It is a 
low cost 6-DOF manipulator with 5 kg payload. UR5 control 
system provides couple of standard interface options including 
Ethernet TCP/IP socket. Using this interface real-time 
measurements, ex. joints’; positions, velocity, torques, etc, can 
be read with frequency of 125 Hz. It also gives the possibility 
to write command either directly from the socket or to be 
included inside the program loop as will be explained in the 
next subsection. In addition, a Force/Torque sensor is used as 
an external sensor to be integrated with the industrial robot. 
The F/T sensor, type ATI Gamma F/T Transducer, provides 
Ethernet interface through its NetBox using Row Data 
Transfer (RDT) with high-speed streaming data up to 7000 Hz 
by UDP protocol. Therefore, it cannot be integrated directly to 
the robot control system.  

The only additional hardware used is a standard switch to 
connect the robot control system and external F/T sensor 
NetBox with the telematic machine as shown below in Fig. 2. 

 
Fig. 2. System architecture. 

 



C. Approch’ Concepts 
 To control a robot, a program should be written inside its 
control system using one of the available user interfaces. This 
program, that is written with the manufacturer provide own 
language, guides the robot for the required action as the 
control system understands commands format. The concept of 
purposed approach, which will be called fully-telematic 
control, is to write a small program with default provided 
robot language, inside the robot control system using the user 
interface device, PolyScop. The purpose of this program is to 
receive the messages from the telematic machine, which is in 
different format than the robot default command format, 
through the Ethernet interface and process them to instruct the 
robot for the required action. In this case, the program written 
with PolyScop and saved inside the control system will act as 
handler for the commands by processing them and converting 
them to the format that robot understand. As shown in Fig. 3, 
this program consists of five parts: 

Before Main Program: this part initiates the communication 
with telematic machine by defining the IP address, the port 
number, and set the I/O. The PolyScop will act a client in this 
scenario and the telematic machine is the server. 
Main Manipulator Program: handles the movement of robot 
by the received poses that were interpreted in the other part. 
Two type of movement are defined here, the movement in 
joint space and in tool space. The movement can be always 
interrupted if a request is sent from the telematic machine. 
Thread 1: current pose of the robot TCP in terms of position 
and orientation (x, y, z, θx, θy, θz) is sent continuously to the 
telematic machine with frequency of 0.5 second.  
Thread 2: is the part that checks and changes the status of I/O 
based on the received command. 
Thread 3: works as security measure by continuously 
checking for a signal to interrupt the movement inside the 
main program.  

These Threads are executed in parallel with the main program, 
therefore; it is possible to handle different commands in the 
same time and even when the robot is in the motion state. 

 
Fig. 3. Communication between telemaitc machinne and the internal 
program written inside PolyScope. 

Three types of messages are being sent to the control system 
and handled by the Threads parts. The pose message as shown 
in Fig. 4 consists of ten variables. Table 1 explains each 
variable usage. The format and length of the message can be 
changed or extended by the user based on the control system 
specifications and features provided. The purposed message 
has the essential variables to define the path for the robot. 

 

 
Fig. 4. Pose message format sent from the telematic machine. 

TABLE I.   

Pose Message Variables  
Definition 

Movment Type 
1: Joint Space 
2: Linear  
3: Circular Blend  

Reference Coordinate 
1: Base coordinate 
2: Tool coordinate (TCP) 
3: User specified coordinate 

Position   Targeted position of TCP 
Orinetation   Targeted orientation of TCP 

Optional variables  

Two variables that can be used to set 
the velocity and acceleration or blend 
radius. If set to 0 then the default 
settings is used. 

 
The second type of messages is designated for the digital I/O. 
It contains three variables, first one defines whether to read or 
write from I/O and second variable specifies the number of 
port. In case of the read request for the state of the input port, 
third variable will be ignored and the Thread that handle this 
type of message will send to the telematic machine the state of 
the requested input number. For setting the digital output, 
variable three in this case will define the state of this output. 
The last message type is to interrupt the movement of the 
robot or the execution of the program based for example on 
the sensor data or user request. When an interrupt signal is 
sent, the robot will wait for a new pose to move to. The main 
advantage of this approach is a safe execution of the 
commands since the internal software of the control system is 
handling them. In addition, error handling scenario can be 
defined inside the control system and thus, no need to stop the 
robot and reset the process. The downside of this approach is 
the dual processing of information inside the telematic 
machine and the control system which will lead to a delay or 
longer execution time of the commands. This approach is 
called a fully-telematic because the control of the robot is 
always under the supervision of the telematic machine, and it 
is always possible to interrupt a movement or the execution of 
a specific command. 

For the the semi-telematic control approach, that is used 
for example by ROS and suggested by robot manufacturer, the 
commands are executed directly inside the control system. 
This is done by sending each command line individually and 
waiting for the control system to execute it, and only after that 
the next command line is sent. In this case, there will be no 
handler for commands, i.e. PolyScop, which will lead to a 
faster execution time. On other hand, to retrieve a specific data 
from the robot, a request should be sent each time, and not like 
the pervious approach where a parallel program is sending the 
data continuously. However, retrieving the data directly is 
much faster as will be shown later in the verification tests. 
Another pitfall with this approach is the error handling, if the 
command has a wrong or missing value then there are three 
possible scenarios. First, there will be no indication sensed, 
i.e. the robot will ignore the wrong command. Second 



possibility is the robot will execute the wrong command which 
will lead to a possible collision with itself or the surrounding 
objects. And last scenario is when the robot enters in the 
Emergency State where a human operator should manually 
restart the robot. The reason of calling this approach as semi-
telematic is because the telematic machine will lose the 
control during excitation of the command and can listen or 
perform the coming command only after finishing the current 
one. 

The communications methods of two the approaches are 
shown in Fig. 5. The commands in the semi-telematic 
approach should be formatted according to the script language 
provided by robot manufacturer, thus, it cannot be universal as 
in the fully-telematic approach. For example, to move the 
robot TCP linearly to the targeted position from user defined 
coordinate, the first approach needs to send [2, 3, x, y, z, θx, θy, 
θz, 0, 0]. While in the second approach, the user coordinate 
should be defined first in individual request, then the type of 
the movement should be defined each time the move function 
is used. For the example with the robot mode used in this 
research, above the request will be movel(x, y, z, θx, θy, θz, α, 
υ,) where α and υ represent the acceleration and velocity 
respectively.   

 
Fig. 5. Communication channels between URControl and Telematic Machine 
in the two approaches.  

D. Telematic Machine 

The telematic machine used in this research is a laptop 
running with Windows 8 operating system. It has an Intel 
iCore 3 processor with 1.7 GHz and 4 GB RAM.  The 
controlling program was implemented in LabVIEW software, 
see Fig. 6 below, where the visualization for the F/T sensor 
and robot status is created for the user. Also manual controls 
based on two approaches were created so the user can select 
between the messages and their format that will be sent to the 
robot control system. 

 
Fig. 6. Telematic Machine Control Software GUI. 

E. Experiment and Preminiary Results  
First experiment is conducted to check the execution time 

for a specific request sent by the the telematic machine. In this 
experiment, the telematic machine is requesting the current 
external force at TCP which is measured internally by the 
control system. The execution time is calculated as the delta 
time between request when data package leaves the telematic 
machine and answer data package arrives to telematic 
machine. The data was captured by Wireshark network 
analyzer software. The average time as shown in Fig. 7 is 13.8 
ms for the first fully-telematic approach. A fourth Thread was 
defined inside the internal program written with PolyScope to 
response to the request for TCP force. This thread consist of 
five commands lines starting with setting a variable to 
received message over Ethernet, interpreting the message, 
calling the function get_tcp_force(), sending the results to 
telematic machine, and finally a loop to continuously reading 
coming messages.  

 

Fig. 7. Execuation time for specific requests in fully (blue) and semi (red) 
telematic control approaches. 

On the other hand, the average execution time for the semi-
telematic approach was 1.71 ms. These preliminary results 
show that the second approach has as expected a faster 
execution time, since the communication is directly between 
the telematic machine and the robot control system without a 
middle man. The second experiment aimed to compare the 
process time of same assembling application in the two 
proposed approaches and the classical offline control. In this 
peg-in-hole assembling application, the robot has to move to 
five poses as can be seen in Fig. 8. First pose represents the 
home pose from which the robot should start and end the 
process. The peg is gripped through two poses, 1 and 2, and 
this because the end-effector needs to approach the peg 
vertically to grip correctly. Same steps are used also in the 
assembling phase, i.e. 3 and 4 poses. 
 

 
Fig. 8. Peg-in-Hole assembling application five poses. 

 



In the offline programming approach, the average process 
of time of 10 runs to the complete assembling application was 
7.38 seconds. There were two waits steps of 0.5 second during 
the gripping and releasing of the peg immediately after 
reaching pose 2 and 4, and this is necessary to give the time to 
the gripper to close and open before the robot start the 
movement again. The same wait steps were also used in the 
semi-telematic control. But since the robot should receive the 
next move-command only after reaching the previous pose, a 
check loop was needed to compare the incoming message. 
Each message is sent from the robot with frequency of 125 Hz 
and that contain the actual position of robot. Thus, the trigger 
to send the next move-command is by comparing the sent pose 
with the actual pose sent received. The average process time in 
this approach was 10.21 seconds. For the fully-telematic 
control approach, again the wait steps were as in previous 
approaches. As for triggering the next move-command, a 
reached signal is sent from the program written inside the 
PolyScope to indicate that the robot has reached the required 
pose. The average process time in this approach was 12.45 
seconds. The robot speed and acceleration were the same in all 
the approaches.  

 Sensor based automated peg-in-hole assembling using 
vision sensor and F/T sensor was carried with the purposed 
fully-telematic approach and presented in [15]. This intuitive 
search algorithm to detect the hole uses different the models 
that interrupted the contact forces shown in Fig. 9. The 
assembling task was carried in seven steps compared and the 
execution time, including image processing to primarily detect 
the location of the hole, was around 27 to 32 seconds.  

 
Fig. 9. F/T sesnor reading during peg-in-hole assembling steps. 

IV. CONCLUSION  
This paper presented an approach to guide industrial robot 

with a telematic machine over Ethernet interface. With this 
approach external sensors can be integrated with existing 
robot control systems that have limited sensor interfaces, and 
thus, more intelligent guiding algorithms can be implemented. 
This will give the opportunity for the industrial robots to be 
used in applications that require sophisticated processes such 
as assembling of electronic parts. In Table 2, the results of the 
comparison between the proposed approach and the existing 

other two approaches for controlling of industrial robots are 
given.  

TABLE II.   

Comparison between control 
methods 

Approach 
Fully-

Telematic 
Semi-

Telematic 
Offline 

(Classic) 
Real-Time Guiding  • • 
External Sensors Integration • •  
Guard-Motion  •   
Online Trajcotries Generation • •  
Live Data Exchange  • •  
Telematic Control • •  
Peg-in-hole assembling time (s) 12.45 10.21 7.38 
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