
Telematic Control and Communication with
Industrial Robot over Ethernet Network

M.W. Abdullah*, H. Roth, J. Wahrburg
 Institute of Automatic Control Engineering

University of Siegen
Siegen, Germany

*abdullah@zess.uni-siegen.de

M. Weyrich
Institute of Automation and Software Engineering

University of Stuttgart
Stuttgart, Germany

michael.weyrich@ias.uni-stuttgart.de

Abstract - This research presents and evaluates an approach
to control and communicate with industrial robot control system
over Ethernet network in order to implement online guiding and
live data exchange. One of the main benefits of this fully-
telematic control is to give the ability to integrate external sensors
so that a guarded-motion can be implemented or to use sensor-
guided motion by generating online trajectories. A comparison in
terms of execution time, sensor integration, and security is made
between the proposed fully-telematic control approach on one
side, and the semi-telematic approach and the classical offline
control of industrial robot on the other side.

Keywords - telematic control; indutrial robot; Ethernet network;
sensors integration.

I. INTRODUCTION
The usage of industrial robots is increasing rapidly

worldwide and especially after the advanced developments in
the industrial robot technologies, such as in the built in
controlling software and the interface options with different
external devices. However, despite of variety of sectors where
industrial robots are being used, the International Federation
of Robotics reported that the global density of industrial robots
was around 58 per 10,000 employees in 2014 [1]. This number
can be seen as a low density if the advantages of using
industrial robots in the plants are considered. For example,
industrial robots increase the production rate and reduce the
operational cost when long term view is taken. In addition, the
robots give better product quality since they are more precise
and have low repeatability error compared to the human
operators. When looking into the applications where the
implantations of industrial robots are limited, as an example a
simple assembling application of electronic parts in
automotive industry, it can be noticed that one of the main
reasons in this low usage is because of the limited ability of
industrial robot to deal with unforeseen events, i.e. accidents
or changes in workspace. Another reason that can be found
more in small and medium enterprises is due to the variety of
the given tasks and their different configurations in the
processes and the environments that requires flexible handling
and adaption from the operator [2]. Therefore, fully automated
processes could not be achieved unless the industrial robots
can meet these dynamic requirements by providing the same

flexibility as the human operator does [3]. Thus, in order to
have automated production lines with high efficiency and
performance in the processes, it is required to have intelligent
industrial robots that can sense the surrounding area by
reacting to unforeseen events that might occur and also by
interacting with human operators. This can be achieved by
sensor guided industrial robot with sensor based control. The
keyword and first challenging phase in the implementation of
sensor guided robot is the integration approach of external
sensors with the control system of the industrial robots [4].
Such an approach should always consider less hardware
modification and simplicity in integration with the existing
commercial control systems that are already in service with
more than 1.5 millions industrial robots [1].

II. BACKGROUND
Most, if not all, the industrial robots come with their own

control systems provided by the robot manufacturer. The
traditional way of using the industrial robot is to program
offline once and run it forever concept. In some cases if the
robot needs to work on conveyer on which the products come
to robot station by, the trigger of robot program or the
movement is done by the digital or analog input/output
interface which is usually a default feature. Moreover, the
commercial control systems do not give usually an access to
the internal low-level control loops of robots. On the other
hand, some recent advanced industrial robots give external
sensor interface feature, however, they are usually more
expensive, and not all types of sensors can be used directly.

Therefore, the first and most common approach the
researchers tend to use in order to integrate external sensors
with industrial robots is to replace the commercial control
systems with their own developed ones [2]. This approach has
two crucial issues; firstly the user will waive the warranty the
robot manufacturer gives with the commercial control system,
and secondly, an accurate dynamic model should be built to
control the robot. The dynamic models for the manipulator in
general can be driven by Euler-Lagrange method or Newton-
Euler method in form of motion equation. Assuming that all
the correct parameters are provided by the robot manufacturer
and a solid control system is built, it is unlikely to find this
approach used outside research labs and it is rarely found in
the industry.

More recent approaches to realize sensor integration with
commercial control systems are by using the alternative
interface options that either exist inside the control system or
require a hardware modification. Modern KUKA robots
provide an explicit Robot Sensor Interface (RSI) where sensor
data can be included with the defined trajectory for the
internal control algorithm [5, 6]. EtherCAT is one of these
interfaces where some of industrial robot control systems
provide and many researchers have used it to realize real-time
motion control [7, 8].

Other types of interface also have been used to integrates
sensors with robot control system such as CAN bus and
RS232 that usually require hardware modification either on
the commercial control system or on the network of the work
floor, such as the approaches were used in [9, 10, 11].
EtherNet/IP interface that provide real-time data transmission
is used with VxWorks operating system to integrate external
Force/Torque sensor with KUKA robot in [12]. Open source
control systems, e.g. ROS [13], also have been contributing in
a solution to standardize one platform for different types of
industrial robots and support external sensors integration. On
the other hand, according to IMS Research results, as shown
in Fig. 1, Ethernet TCP/IP interface is the most common
interface type among others Industrial Ethernet in the industry
[14]. In fact, many devices such as HMIs, PLCs, machines,
sensors, and even robots control system have made it as
standard interface option. In the experiment presented in this
research it is also the cases that Ethernet TCP/IP is a standard
interface feature in the robot model used.

Fig. 1. World market for industrial Ethernet 2015 forecast.

To summarize, external sensor integration is still not a solved
solution for many existing control systems of industrial robots.
Only advanced types have their own dedicated interface for
sensors such as in KUKA models. The other alterative
requires hardware and software modification which is not
always feasible due the closed architecture of control systems.
Open source systems such as ROS have couple of limitation in
the integration of sensors beside their complicated software
that requires experts and high programming knowledge to
modify the system in order to implement new sensors.

III. PROPOSED TELEMATIC APPROACHES

A. Objectives
In order to have the ability to integrate external sensors

and to communicate with the commercial control system
without replacing it or making a hardware modification, this
research will present two approaches for such requirements.
The interface link between the telematic machine, i.e. a PC,

and robot control system will be carried through an Ethernet
interface which is as mentioned previously the most common
interface type. By doing so, not only external sensors can be
integrated, but also live data such as; Tool Center Point (TCP)
position and orientation, torques on joints, input/output pins
status, and etc. can be transmitted from the robot control
system to the telematic machine. This data can be useful for
different applications, for instance, in this research it will be
used to trigger commands by including it as feedback for
telematic control system. To summarize, the objectives of this
work are:

• Provide a simple and fast solution for external sensors
integration with robot control systems that have limited
sensor interfaces.

• Telematic control of industrial robot over Ethernet
network. This opens the doors to use complicated
guiding algorithms that is hard to be implemented
directly on software of the robot control system.

• Standardize remotely command to be used with different
types of control systems.

• Monitor robot’s live data remotely.

• Study the performance and feasibility of the proposed
approach in comparison with the traditional method of
writing the programs inside the robot control system.

B. Hardware Setup
The industrial robot used here is a UR5 Robot

manufactured by the Danish company Universal Robot. It is a
low cost 6-DOF manipulator with 5 kg payload. UR5 control
system provides couple of standard interface options including
Ethernet TCP/IP socket. Using this interface real-time
measurements, ex. joints’; positions, velocity, torques, etc, can
be read with frequency of 125 Hz. It also gives the possibility
to write command either directly from the socket or to be
included inside the program loop as will be explained in the
next subsection. In addition, a Force/Torque sensor is used as
an external sensor to be integrated with the industrial robot.
The F/T sensor, type ATI Gamma F/T Transducer, provides
Ethernet interface through its NetBox using Row Data
Transfer (RDT) with high-speed streaming data up to 7000 Hz
by UDP protocol. Therefore, it cannot be integrated directly to
the robot control system.

The only additional hardware used is a standard switch to
connect the robot control system and external F/T sensor
NetBox with the telematic machine as shown below in Fig. 2.

Fig. 2. System architecture.

C. Approch’ Concepts
 To control a robot, a program should be written inside its
control system using one of the available user interfaces. This
program, that is written with the manufacturer provide own
language, guides the robot for the required action as the
control system understands commands format. The concept of
purposed approach, which will be called fully-telematic
control, is to write a small program with default provided
robot language, inside the robot control system using the user
interface device, PolyScop. The purpose of this program is to
receive the messages from the telematic machine, which is in
different format than the robot default command format,
through the Ethernet interface and process them to instruct the
robot for the required action. In this case, the program written
with PolyScop and saved inside the control system will act as
handler for the commands by processing them and converting
them to the format that robot understand. As shown in Fig. 3,
this program consists of five parts:

Before Main Program: this part initiates the communication
with telematic machine by defining the IP address, the port
number, and set the I/O. The PolyScop will act a client in this
scenario and the telematic machine is the server.
Main Manipulator Program: handles the movement of robot
by the received poses that were interpreted in the other part.
Two type of movement are defined here, the movement in
joint space and in tool space. The movement can be always
interrupted if a request is sent from the telematic machine.
Thread 1: current pose of the robot TCP in terms of position
and orientation (x, y, z, θx, θy, θz) is sent continuously to the
telematic machine with frequency of 0.5 second.
Thread 2: is the part that checks and changes the status of I/O
based on the received command.
Thread 3: works as security measure by continuously
checking for a signal to interrupt the movement inside the
main program.

These Threads are executed in parallel with the main program,
therefore; it is possible to handle different commands in the
same time and even when the robot is in the motion state.

Fig. 3. Communication between telemaitc machinne and the internal
program written inside PolyScope.

Three types of messages are being sent to the control system
and handled by the Threads parts. The pose message as shown
in Fig. 4 consists of ten variables. Table 1 explains each
variable usage. The format and length of the message can be
changed or extended by the user based on the control system
specifications and features provided. The purposed message
has the essential variables to define the path for the robot.

Fig. 4. Pose message format sent from the telematic machine.

TABLE I.

Pose Message Variables
Definition

Movment Type
1: Joint Space
2: Linear
3: Circular Blend

Reference Coordinate
1: Base coordinate
2: Tool coordinate (TCP)
3: User specified coordinate

Position Targeted position of TCP
Orinetation Targeted orientation of TCP

Optional variables

Two variables that can be used to set
the velocity and acceleration or blend
radius. If set to 0 then the default
settings is used.

The second type of messages is designated for the digital I/O.
It contains three variables, first one defines whether to read or
write from I/O and second variable specifies the number of
port. In case of the read request for the state of the input port,
third variable will be ignored and the Thread that handle this
type of message will send to the telematic machine the state of
the requested input number. For setting the digital output,
variable three in this case will define the state of this output.
The last message type is to interrupt the movement of the
robot or the execution of the program based for example on
the sensor data or user request. When an interrupt signal is
sent, the robot will wait for a new pose to move to. The main
advantage of this approach is a safe execution of the
commands since the internal software of the control system is
handling them. In addition, error handling scenario can be
defined inside the control system and thus, no need to stop the
robot and reset the process. The downside of this approach is
the dual processing of information inside the telematic
machine and the control system which will lead to a delay or
longer execution time of the commands. This approach is
called a fully-telematic because the control of the robot is
always under the supervision of the telematic machine, and it
is always possible to interrupt a movement or the execution of
a specific command.

For the the semi-telematic control approach, that is used
for example by ROS and suggested by robot manufacturer, the
commands are executed directly inside the control system.
This is done by sending each command line individually and
waiting for the control system to execute it, and only after that
the next command line is sent. In this case, there will be no
handler for commands, i.e. PolyScop, which will lead to a
faster execution time. On other hand, to retrieve a specific data
from the robot, a request should be sent each time, and not like
the pervious approach where a parallel program is sending the
data continuously. However, retrieving the data directly is
much faster as will be shown later in the verification tests.
Another pitfall with this approach is the error handling, if the
command has a wrong or missing value then there are three
possible scenarios. First, there will be no indication sensed,
i.e. the robot will ignore the wrong command. Second

possibility is the robot will execute the wrong command which
will lead to a possible collision with itself or the surrounding
objects. And last scenario is when the robot enters in the
Emergency State where a human operator should manually
restart the robot. The reason of calling this approach as semi-
telematic is because the telematic machine will lose the
control during excitation of the command and can listen or
perform the coming command only after finishing the current
one.

The communications methods of two the approaches are
shown in Fig. 5. The commands in the semi-telematic
approach should be formatted according to the script language
provided by robot manufacturer, thus, it cannot be universal as
in the fully-telematic approach. For example, to move the
robot TCP linearly to the targeted position from user defined
coordinate, the first approach needs to send [2, 3, x, y, z, θx, θy,
θz, 0, 0]. While in the second approach, the user coordinate
should be defined first in individual request, then the type of
the movement should be defined each time the move function
is used. For the example with the robot mode used in this
research, above the request will be movel(x, y, z, θx, θy, θz, α,
υ,) where α and υ represent the acceleration and velocity
respectively.

Fig. 5. Communication channels between URControl and Telematic Machine
in the two approaches.

D. Telematic Machine

The telematic machine used in this research is a laptop
running with Windows 8 operating system. It has an Intel
iCore 3 processor with 1.7 GHz and 4 GB RAM. The
controlling program was implemented in LabVIEW software,
see Fig. 6 below, where the visualization for the F/T sensor
and robot status is created for the user. Also manual controls
based on two approaches were created so the user can select
between the messages and their format that will be sent to the
robot control system.

Fig. 6. Telematic Machine Control Software GUI.

E. Experiment and Preminiary Results
First experiment is conducted to check the execution time

for a specific request sent by the the telematic machine. In this
experiment, the telematic machine is requesting the current
external force at TCP which is measured internally by the
control system. The execution time is calculated as the delta
time between request when data package leaves the telematic
machine and answer data package arrives to telematic
machine. The data was captured by Wireshark network
analyzer software. The average time as shown in Fig. 7 is 13.8
ms for the first fully-telematic approach. A fourth Thread was
defined inside the internal program written with PolyScope to
response to the request for TCP force. This thread consist of
five commands lines starting with setting a variable to
received message over Ethernet, interpreting the message,
calling the function get_tcp_force(), sending the results to
telematic machine, and finally a loop to continuously reading
coming messages.

Fig. 7. Execuation time for specific requests in fully (blue) and semi (red)
telematic control approaches.

On the other hand, the average execution time for the semi-
telematic approach was 1.71 ms. These preliminary results
show that the second approach has as expected a faster
execution time, since the communication is directly between
the telematic machine and the robot control system without a
middle man. The second experiment aimed to compare the
process time of same assembling application in the two
proposed approaches and the classical offline control. In this
peg-in-hole assembling application, the robot has to move to
five poses as can be seen in Fig. 8. First pose represents the
home pose from which the robot should start and end the
process. The peg is gripped through two poses, 1 and 2, and
this because the end-effector needs to approach the peg
vertically to grip correctly. Same steps are used also in the
assembling phase, i.e. 3 and 4 poses.

Fig. 8. Peg-in-Hole assembling application five poses.

In the offline programming approach, the average process
of time of 10 runs to the complete assembling application was
7.38 seconds. There were two waits steps of 0.5 second during
the gripping and releasing of the peg immediately after
reaching pose 2 and 4, and this is necessary to give the time to
the gripper to close and open before the robot start the
movement again. The same wait steps were also used in the
semi-telematic control. But since the robot should receive the
next move-command only after reaching the previous pose, a
check loop was needed to compare the incoming message.
Each message is sent from the robot with frequency of 125 Hz
and that contain the actual position of robot. Thus, the trigger
to send the next move-command is by comparing the sent pose
with the actual pose sent received. The average process time in
this approach was 10.21 seconds. For the fully-telematic
control approach, again the wait steps were as in previous
approaches. As for triggering the next move-command, a
reached signal is sent from the program written inside the
PolyScope to indicate that the robot has reached the required
pose. The average process time in this approach was 12.45
seconds. The robot speed and acceleration were the same in all
the approaches.

 Sensor based automated peg-in-hole assembling using
vision sensor and F/T sensor was carried with the purposed
fully-telematic approach and presented in [15]. This intuitive
search algorithm to detect the hole uses different the models
that interrupted the contact forces shown in Fig. 9. The
assembling task was carried in seven steps compared and the
execution time, including image processing to primarily detect
the location of the hole, was around 27 to 32 seconds.

Fig. 9. F/T sesnor reading during peg-in-hole assembling steps.

IV. CONCLUSION
This paper presented an approach to guide industrial robot

with a telematic machine over Ethernet interface. With this
approach external sensors can be integrated with existing
robot control systems that have limited sensor interfaces, and
thus, more intelligent guiding algorithms can be implemented.
This will give the opportunity for the industrial robots to be
used in applications that require sophisticated processes such
as assembling of electronic parts. In Table 2, the results of the
comparison between the proposed approach and the existing

other two approaches for controlling of industrial robots are
given.

TABLE II.

Comparison between control
methods

Approach
Fully-

Telematic
Semi-

Telematic
Offline

(Classic)
Real-Time Guiding • •
External Sensors Integration • •
Guard-Motion •
Online Trajcotries Generation • •
Live Data Exchange • •
Telematic Control • •
Peg-in-hole assembling time (s) 12.45 10.21 7.38

REFERENCES
[1] Executive Summery World Robotics 2013; Industrial Robots,

International Federation of Robotics-IFR, 2014.
[2] A. Blomdell, G. Bolmsjö, T. Brogårdh, and others, in: Extending an

Industrial Robot Controller, Implementation and Applications of a Fast
Open Sensor Interface. IEEE Robotics and Automation Magazine,
September 2005.

[3] E. Kus, R. Grüninger, and R. Hüppi, in: Integration of Intelligent
Sensors for Sensor guided Motions in Industrial Robot Applications.
IEEE International Conference on Automation and Logistics Qingdao,
China, September 2008.

[4] T. Kreoger and F. M. Wahl in: Multi-Sensor Integration and Sensor
Fusion in Industrial Manipulation: Hybrid Switched Control, Trajectory
Generation, and Software Development. IEEE Conference on
Multisensor Fusion and Integration for Intelligent Systems, 2008.

[5] R. Winkler and J. Suchy in: Position Feedback in Force Control of
Industrial Manipulators An Experimental Comparison with Basic
Algorithms. IEEE Conference on Robotic Sensor Environments, 2012.

[6] KUKA Robot GmbH in: KUKA Robot Sensor Interface, 2009.
[7] Il-Kyun Jung and Sun Lim in: An EtherCAT based Real-time

Centralized Soft Robot Motion Controller. International Conference on
Instruments and Measurements, Sensor Network and Automation 2012.

[8] T. Choi, H. Do, J.Kyung, D. Park and C. Park in: Control of 6DOF
Articulated Robot with the Direct-teaching Function using EtherCAT.
IEEE International Symposium on Robot and Human Interactive
Communication (2013).

[9] S. Luo and S. Zhu in: Open Architecture Multi-Axis Motion Control
System for Industrial Robot Based on Can Bus. International
Conference on Automatic Control and Artificial Intelligence (2012).

[10] [10] P. Dzitac A. M. Mazid in: A Depth Sensor to Control Pick-and-
Place Robots for Fruit Packaging. International Conference on Control,
Automation, Robotics & Vision, 2012.

[11] M. Lotz, H. Bruhm and A. Czinki in: A New Force Control Strategy
Improving the Force Control Capabilities of Standard Industrial Robot.
Journal of Mechanics Engineering and Automation 4 276-283, 2014.

[12] J. Loske and R. Biesenbach in: Force-torque sensor integration in
industrial robot control. 15th International Workshop on Research and
Education in Mechatronics, 2014.

[13] Steve Cousins in: Welcome to ROS. IEEE Robotics & Automation
Magazine, page 13-14, 2010.

[14] The World Market for Industrial Ethernet: Industrial Ethernet book Issue
69/42, 2012.

[15] M. W. Abdullah, H. Roth, M. Weyrich, and J. Wahrburg in: An
Approach for Peg-in-Hole Assembling using Intuitive Search Algorthim
based on Human Behavior and Carried by Sensors Guided Industrial
Robot. The 15th IFAC/IEEE/IFIP/IFORS Symposium on Information
Control Problems in Manufacturing, Ottawa-Canada, May 2015.

