
Enhancing an Agent-based Test Case

Prioritization System by Event Evaluation

Sebastian Abele, Peter Göhner and Michael Weyrich

Institute of Industrial Automation and Software Engineering,
Pfa�enwaldring 47, 70550 Stuttgart, Germany

{sebastian.abele,peter.goehner,michael.weyrich}@ias.uni-stuttgart.de

http://www.ias.uni-stuttgart.de

Abstract. Test case prioritization systems are useful tools to support
test managers in planning test runs in regression testing. These systems
evaluate information about test cases to �nd the best order for the test
case execution. During a system's life cycle, a lot of test runs are usually
performed. To give optimal support and to improve the results from test
run to test run, the prioritization systems need to react dynamically to
events, which occur during the di�erent phases development, test and
operation of the life cycle. They have to consider changes, unexpected
faults found during operation, and many other events. This article de-
scribes an agent-based approach to improve a test case prioritization
system by considering dynamic events for the test plan generation.

Keywords: test case prioritization, software agents, event evaluation

1 Motivation and State of the Art

Developing systems with a high quality is an important factor to succeed in the
market. The high competition leads to a decreasing time-to-market and there-
fore to the need for e�cient development and test processes. One of the major
parts of the test process is the system test. It is essential to prove the com-
pliance of the system with the quality requirements. The system test planning,
speci�cation, execution and evaluation is usually a process, which accompanies
the whole development process and cannot be considered isolated. The system
test is embedded in the system's life cycle. During its whole lifetime, a system
is usually changed and modi�ed to adapt to new requirements and boundary
conditions. Modi�cations of the system are always threaten to introduce faults
to the system. Even fault-free modi�cations can reveal faults that were already
inside the system. To minimize this risk of introducing faults, the system needs
to be retested after modi�cations. For this purpose already available test cases
can be reused and executed again. The test strategy of repeating already avail-
able test cases is called regression test. Over time, the test suites, which contain
the test cases for regression testing can grow to very large repositories with
thousands of test cases. Executing all the test cases takes a vast amount of time
and resources, which are often not available. Especially for minor changes, the

110



2 Sebastian Abele, Peter Göhner and Michael Weyrich

execution of the whole test suite is not suitable. Instead a selective testing of the
modi�ed system parts and components is needed.

Test planners have to identify suitable test cases to ensure that the quality of
the system is not a�ected by faults, which were introduced with changes. They
have to pick test cases out of the available test suite or de�ne new test cases
if the already available test cases are not su�cient. In order to address these
challenges, test case selection and prioritization techniques are used by support
systems to �nd the most important test cases for the available execution time.
Test case selection techniques reduce the test suites by identifying only relevant
test cases, for example based on changes of the source code. An overview of
di�erent test selection techniques can be found in [3] and [14]. Prioritization
techniques go one step further and order the test cases by their expected bene�t
for the test. Unlike test case selection, a test run that is executed on the basis
of prioritized test cases may be interrupted at any time having still the maximal
bene�t possible by the interruption time. Every test case prioritization technique
can also be seen as a selection technique by skipping test cases that have a lower
priority than a prede�ned threshold value. Test case prioritization techniques
are described in [2] and [5].

The techniques can be categorized by the data they evaluate to generate the
priorities. Many of the techniques proposed in the literature are based on white-
box information. They analyze the source code directly to optimize the coverage
of changes, e.g. in [13]. Prerequisite for these techniques is the direct access to
the source code and its di�erent versions. Due to the distribution of di�erent
development tasks to di�erent departments and the incorporation of external
modules into the system, this access is not guaranteed in every case. Hence,
the black-box methods have been proposed. They use data from the test itself
like execution and fault histories of test cases to prioritize them, e.g. [11]. Some
techniques especially concentrate on information about requirements, identifying
them as the most important entities for the test case prioritization, e.g. [12].

Some approaches have been proposed to adapt the prioritization to the on-
going test process. In [4] a prioritization technique is proposed that adapts im-
mediately to test case results as soon as they are available. In contrast to other
prioritization techniques, the test plan can be modi�ed dynamically after every
test case execution if the test results necessitate the change of the test plan. In
[6] a history-based technique is proposed, which considers di�erences in the sig-
ni�cance of historical data from di�erent test runs. Younger data gets a higher
weight when determining the priority. In [10] the incorporation of human factors
of the developers is proposed. Their performance is tracked over time and used
to �nd a better test case prioritization.

Those techniques are well-suited to optimize the usage of the knowledge,
which is contained within the historical database. Based on that data, the pro-
posed techniques are able to generate a very good test plan. However, the tech-
niques are limited to the evaluation of the data that is stored during testing. To
generate a optimal test run, other factors need to be considered, too. Dynamic
events like the unexpected occurrence of faults at the customer's site or spon-

111



Event Evaluation for Test Case Prioritization 3

taneous changes of requirements, lead to the necessity to adapt the test plan
accordingly. Currently, these adaptations are done by test managers based on
their experience. In the underlying PhD work, I propose an agent-based test
management support system, which is able to react to such dynamic events. By
drawing conclusions from events, test plan adaptations are performed to relieve
the test manager. Therefore the system will be able to provide better support
than state of the art systems.

2 Basis: Agent-based Test Case Prioritization

In a preliminary work done by Malz et al. an agent-based test case prioritization
system has been developed, which generates a test plan considering test case
priorities and test resource utilization [7], [8], [9]. The prioritization is performed
in four steps:

Malz et al. recognized the problem of test case prioritization as a distributed
problem: Parts of the system, e.g. components and modules need to be tested.
They compete for as much test e�ort as possible for them. On the other hand,
the test cases, which provide those tests, compete for test resources, which are
necessary to execute them. They decided to model their test case prioritization
problem as a multi-agent system and established agents representing software
components and agents representing test cases. Additionally the system uses
interface agents to gather needed data. The following steps are performed by
the agents:

Step 1: Gather Data � Each interface agent is responsible for one data source.
Data sources can be test support tools and databases that store relevant test
data. The agents use interfaces, which are provided by the linked tools or use
a direct database connection. Therefore they need knowledge about the stored
data and about the data structures.

Step 2: Approximate components' fault pronenesses � Each system com-
ponent is represented by an agent called Component Agent. This agent holds the
information about its component, which have been delivered by the interface
agents in step 1. With this information and a special knowledge base, it deter-
mines a value for the expected fault proneness of the component. The rule-base
is described in [9].

Step 3: Approximate test cases' fault �nding probabilities � After the
fault pronenesses of the component has been determined, test cases are searched
that are suited to test especially the fault-prone components. Therefore each
test case is represented by a dedicated agent called test case agent. The test case
agent calculates the fault �nding probability of its test case for each component.
For the estimation of the fault �nding probabilities, tester-given rules are used
as well.

112



4 Sebastian Abele, Peter Göhner and Michael Weyrich

Step 4: Calculate test case priorities � In the �nal step, the previously
calculated values for the fault proneness of components and the fault �nding
probabilities of test cases are combined to a priority value for the test cases. The
more components with a high fault-proneness are well tested by a test case, the
higher raises its priority. The priority is calculated as the mean value of a test
case's fault �nding probability weighted with the corresponding fault-proneness
values of the covered components.

3 New Approach: Adding Response to Dynamic Events

The approach presented here has the goal to extend the agent-based test man-
agement system with the capability to react to dynamic events, which occur
during the development of a system. The system has three possibilities to react
to such events:

Modifying or amending data � If the system recognizes that the data it is
evaluating is wrong, or if an event brings new �ndings, which are not contained
in the data yet, the system can modify the stored data directly. Especially user-
given values like complexity and criticality approximations can be veri�ed in
later development stages when more empiric data is available.

Adapting or reparameterizing the prioritization algorithm � Long term
changes or slight deviations in the system require a long-term adaptation of the
prioritization. Therefore the prioritization algorithm is adapted itself. Param-
eters used for calculations or rules used for direct inferring can be changed if
necessary.

Modifying the resulting test plan directly � Serious events may require
an immediate change of the test plan as an adequate reaction. This immediate
change cannot be achieved by modifying the data or by adapting the prioriti-
zation algorithm in a long-term evolution step. Rather, a direct intervention in
the test plan itself is needed. S

3.1 Dynamic Events During a System's Life Cycle

This section describes the events, the agent system has to react to. Events are
classi�ed into three categories: Events from the Development, events from the
test and events from the system in use.

Events from development Events from development are triggered during the
development process - either while adding new features to the system or while
correcting faults that have been found in a preceding test run.

� Source code change to �x a fault

113



Event Evaluation for Test Case Prioritization 5

� Source code modi�cation to �x a recurred fault
� Source code modi�cation to implement a new requirement
� New test case available

Events from test Events form test are triggered during the test phase. Usually
a test phase starts after a development phase to get sure that the changes from
the development phase didn't introduced faults to the system. Events from test
can refer to those from the development. So, an event history with an appropriate
assessment is needed.

� Test case executed
� Test run completed

Events from operation Events from system in operation are usually triggered
by a customer's input. Since those events occur at the customer's site, they are
the most critical ones. They usually need a fast reaction.

� Fault reported by customer
� Requirements changed
� Requirements' importance changed

3.2 Adding event-evaluation to the agents

To add the capability of reacting to dynamic events, the agents �rstly need
to recognize the events. After an event is recognized, the agents need to draw
the correct conclusions. Some events, like the completion of a test run, can be
recognized by observing the data sources of the other test tools. As far as the
results are available, the event is triggered. Other events need special interfaces
or human interaction because they cannot be recognized automatically.

After the events are recognized and sent to the concerning agents, they have
to decide, which of the possibilities described above they use. To recognize faults
in the data sources the agents use consistency and plausibility checks and rules
describing wrong parameters. The long-term evolution by modifying the priori-
tization algorithm with a learning algorithm has already been investigated and
is described in [1]. A genetic algorithm is used to optimize the rule-weights of
the rules used to calculate the fault-pronenesses of components.

The possibility to alter the test plan directly is to be investigated. A rule-
based approach with learning capability is imaginable here.

4 Summary

During the life cycle of a system, a system test is performed periodically. To
maximize the test e�ciency in the available test time, an state of the art agent-
based test case prioritization systems is used, which order the test cases due to
their performance. Based on the prioritization, a test plan is created. To enhance

114



6 Sebastian Abele, Peter Göhner and Michael Weyrich

the test plan generation over the life time of the system, dynamic events need
to be recognized and considered by the prioritization system. In the approach
presented here, those events are recognized and evaluated by the agents in order
to improve the test case prioritization over time.

References

1. Abele, S., Göhner, P.: Improving proceeding test case prioritization with learning
software agents. In: International Conference on Agents and Arti�cial Intelligence.
pp. 293�298 (2014)

2. Elbaum, S., Malishevsky, A., Rothermel, G.: Test case prioritization: a family
of empirical studies. IEEE Transactions on Software Engineering 28(2), 159�182
(2002)

3. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Information and Software Technology 52(1), 14�30 (2010)

4. Hao, D., Zhao, X., Zhang, L.: Adaptive test-case prioritization guided by output
inspection. In: 2013 IEEE 37th Annual Computer Software and Applications Con-
ference (COMPSAC). pp. 169�179 (2013)

5. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case pri-
oritization. IEEE Transactions on Software Engineering 33(4), 225�237 (2007)

6. Lin, C.T., Chen, C.D., Tsai, C.S., Kapfhammer, G.M.: History-based test case pri-
oritization with software version awareness. In: 2013 18th International Conference
on Engineering of Complex Computer Systems (ICECCS). pp. 171�172 (2013)

7. Malz, C., Jazdi, N.: Agent-based test management for software system test. In:
IEEE International Conference on Automation, Quality and Testing, Robotics
(AQTR). pp. 1�6 (2010)

8. Malz, C., Göhner, P.: Agent-based test case prioritization. In: IEEE Fourth Inter-
national Conference on Software Testing, Veri�cation and Validation Workshops
(ICSTW). pp. 149�152 (2011)

9. Malz, C., Jazdi, N., Göhner, P.: Prioritization of test cases using software agents
and fuzzy logic. In: 2012 IEEE Fifth International Conference on Software Testing,
Veri�cation and Validation (ICST). pp. 483�486 (2012)

10. Malz, C., Sommer, K., Göhner, P., Vogel-Heuser, B.: Consideration of human fac-
tors for prioritizing test cases for the software system test. In: Engineering Psy-
chology and Cognitive Ergonomics, Lecture Notes in Computer Science, vol. 6781,
pp. 303�312. Springer Berlin Heidelberg, Berlin and Heidelberg (2011)

11. Park, H., Ryu, H., Baik, J.: Historical value-based approach for cost-cognizant test
case prioritization to improve the e�ectiveness of regression testing. In: Second In-
ternational Conference on Secure System Integration and Reliability Improvement.
pp. 39�46 (2008)

12. Srikanth, H., Williams, L., Osborne, J.: System test case prioritization of new and
regression test cases. In: 2005 International Symposium on Empirical Software
Engineering. pp. 62�71 (2005)

13. Walcott, K.R., So�a, M.L., Kapfhammer, G.M., Roos, R.S.: Time aware test suite
prioritization. In: Proceedings of the 2006 international symposium on Software
testing and analysis. pp. 1�12. ACM, New York and NY (2006)

14. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Software Testing, Veri�cation and Reliability 22(2), 67�120 (2012)

115


