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Abstract—Industrial plants are multi-disciplinary systems that
are operated for multiple decades. Changes in these systems are
consequently indispensable, making appropriate mechanisms for
managing co-evolution of engineering documentation necessary.
In this paper, a co-evolution model for control and simulation
software is introduced. Typical evolution categories and modifi-
cation strategies for enabling co-evolution of automation control
and simulation software are derived and formally defined. Using
description logics, the identification of these complex modification
strategies based on atomic modification actions is made possible.

I. INTRODUCTION

As industrial plants are typically operated between 15 and
30 years, industrial companies are forced to evolve their plants
due to several conditions, e.g. new technological developments
or market requests [1]. Different disciplines, e.g. mechanical,
electrical and software engineering, are involved cooperatively
in this process; hence, these disciplines need to be considered
during engineering. One means to support this process is the
application of simulation software: parts of the mechanical and
electrical design can be simulated and, thus, aspects such as
virtual commissioning of industrial plants can be supported.
Nevertheless, changes within industrial plants occur frequently
with diverging evolution cycles of involved disciplines [2].
Although first approaches are currently being developed for
managing the co-evolution of these disciplines, co-evolutionary
aspects of simulation and automation control software have
not been sufficiently investigated yet. Hence, in this paper,
an abstract co-evolution model for simulation and automation
control software is introduced. Based on typical evolution
categories, complex modification strategies are defined based
on atomic modification actions in order to support co-evolution
of automation control and simulation software.

The remainder of the paper is structured as follows: In the
next section, the term evolution is specified in detail and related
work to ease evolution in automation control and simulation
software is analyzed. In section III, an abstract model on co-
evolution of automation control and simulation software is
introduced. The results of a case study on evolution resulting in
basic evolution categories are presented in detail in section IV.
From these evolution categories, modification strategies are

derived and formalized in section V. A conclusion and an
outlook on future work are given in section VI.

II. RELATED WORK

Evolution of industrial plants involves multiple terms and
approaches that are currently being investigated, e.g. change-
ability and reconfigurability. A definition of changeability is
given in [3]. Therein, changeability is defined as “characteris-
tics to accomplish early and foresighted adjustments of the fac-
tory’s structure and processes”. In contrast, reconfigurability is
related to the “ability of a manufacturing or assembly system to
switch with minimal effort and delay to a particular family of
work pieces or subassemblies through the addition or removal
of functional elements” [3]. Thus, the term changeability
refers to anticipated changes whereas reconfigurability aims
at reacting to unanticipated changes and, hence, to the ability
of easing a system’s evolution [4]. Dynamic reconfigurability
refers to adjusting (automation control) software during a
system’s operation [5], [6]. Moreover, plug and play control
refers to the adjustment of control software during operation
in order to address changing hardware [7]. As all these terms
refer to evolving aspects of a manufacturing system, they are
henceforth considered as evolution.

Evolution of automation control and simulation software
is a highly addressed research topic. In [8] for example, an
approach on adjusting close-loop control in a plug and play
manner is proposed. Sünder et al. [9] propose an approach
to model and verify the adaptation of automation control
software during operation. Nevertheless, one key aspect to
enable control software’s evolution is its modularity and,
enabled by a modular software structure, its reuse [10]. By
providing a modular and reusable software structure, evolution
may be simplified as systems’ parts can easily be managed in
central libraries by applying change actions to these parts. In
the remainder of this section, research on easing the evolution
of automation control and simulation software is discussed.

A. Related work on evolution of automation control software

For easing evolution of automation control software, mod-
ularity and reuse, design patterns and appropriate software



architectures provide suitable means. These aspects are dis-
cussed in detail in the following.

1) Modularity and reuse: Despite large research efforts
within the area of modularizing industrial plants, a modular-
ization considering all disciplines involved in the engineering
process, e.g. mechanical engineering, electrical/ electronic
engineering and software engineering, is not yet state of the
art. Especially choosing and selecting mechatronic units [11]
increases the complexity of the system and the integration of
the system’s parts to a holistic system [12]. Hence, “copy,
paste and modify” is often used for reusing automation control
software [13] by applying change actions, e.g. add, delete and
modify [14]. The reasons for these challenges are manifold:
On the one hand, Jazdi et al. [10] identify conflicts of in-
terest while choosing the correct module granularity, as fine-
grained modules increase reuse and flexibility, whereas coarse-
grained modules improve efficiency and robustness in module
application. To make things worse, choosing an appropriate
granularity depends on the engineering phase of the project;
hence, hierarchical models are necessary [13]. On the other
hand, the modules’ size affects reuse capabilities, as numerous
small units make choosing necessary modules and their combi-
nation difficult, whereas few large units hamper the modules’
flexibility [10]. Respective modeling notations for improving
module reuse are currently being applied in automation control
software engineering, e.g. UML for software systems [15], [16]
and SysML for a holistic view on the system [17], [18], [19],
and are being applied for generating the control software [20].

2) Design patterns: In order to increase software modular-
ity, reuse and – by that – quality, design patterns are suitable
means. Whereas such design patterns are well-established in
the computer science domain, e.g. the “Gang of Four” [21],
such design patterns are not yet state of the art in automation
control software engineering. A first approach for identifying
reusable design patterns was proposed in [22]. A design
framework for integrating cognitive functions into intelligent
technical systems was investigated in [23]. Recently, design
patterns are being identified for defining transformations be-
tween UML models and IEC 61131-3-compliant software [20].
Moreover, design patterns for distributed automation systems
with regard to – among others – timing requirements was
introduced in [24]. Nevertheless, if such design patterns were
provided within libraries and, hence, were made reusable for
diverse engineering projects, reuse would be enhanced and
evolution of automation control software would be simplified.

3) Software architectures: For increasing reuse and recon-
figurability of existing functionality, diverse software archi-
tectures can be applied. Service-oriented architectures (SOA)
are established for adaptable business integration [25] and
are more and more being applied in automation control
software engineering enabling to reuse automation processes
by encapsulating them as services [26]. Moreover, semantic
technologies are applied to semantically describe such services
for orchestrating them to a specific software application [27],
[28]. By combining these techniques with modeling languages,
e.g. BPMN [28] or SysML [29], changes to the software
system are simplified. Nevertheless, these SOA techniques are
not yet applied in industry and lack in combination with further
aspects of the system, e.g. mechanical or electrical parts.
Multi-agent systems (MAS) were studied intensely within
research for intelligent reconfiguration and self-adaptation of

industrial plants, cf. [30]. They are applied for reconfiguring
IEC 61131-3 [31]-based control systems to handle module
breakdowns in inner logistic systems [6], for dynamically
reconfiguring logistic systems [32] or for identifying appropri-
ate reconfiguration strategies [33], [34]. Furthermore, a new
standard, i.e. IEC 61499 [35], was introduced in order to
address modularity issues regarding deployment of automation
functions. Thereby, reconfiguration of manufacturing systems
is eased [32]. However, although IEC 61499 runtimes on state
of the art controllers exist [36], “IEC 61499 has a long way
in order to be seriously considered by the industry” [37].

B. Related work on evolution of simulation software

Simulation models are used for testing and virtual com-
missioning in industrial plant engineering. With simulation
models, the evolution concepts of an industrial plant can be
evaluated [38]. It is possible to detect mechanical design errors
as well as failures in the automation control software program
to avoid collisions of parts of the plant. Furthermore, the con-
trol software can be pre-optimized before real commissioning.
Hence, the down time of the plant can be reduced significantly.

The simulation model is a functional performance model
of the plant often supported with a visualization to ease the
analysis of the simulation experiment [39]. The simulation
model comprises the functional behavior of the mechanical
parts of the plant as well as of actuators and sensors. The
level of detail of the functional model (time-based vs. detailed
physical model) depends on the simulation’s purpose. The
modeling effort increases with a higher level of detail: the
more necessary details, the more complex and time-consuming
the modeling process. A time-based model often meets the
requirements with an adequate cost : benefit ratio [40]. For
the simulation experiment, the simulation model is linked to
the control program via the PLC’s inputs and outputs (I/Os)
in a hardware- or software-in-the-loop simulation.

To evaluate the industrial plant during its evolution, a new
simulation model has to be generated or an existing model
has to be modified. The manual modeling effort carried out
by simulation experts can be time-consuming and may cause
large costs. Hence, the challenge is to reduce the modeling
effort in simulation projects and to ease and accelerate the cre-
ation and modification of a simulation model [39]. To reduce
the modeling effort, many approaches show the possibilities
for an automated creation of a simulation model. In these
approaches, a standardized description language is used for
the transformation of the required plant data into a functional
simulation model [41]. In case of complete data, the effort
for the creation of the necessary simulation model is reduced,
but the implementation of these methods for automated model
creation is very complex. With incomplete data, the model has
to be completed manually by a simulation expert.

The efficiency and economics in simulation projects may
also be increased by reusing simulation (sub)models in the
plant life cycle [43]. The requirements on engineering systems
for processing reusable models have already been analyzed;
the VDI standard 3633 recommends the complete or at least
partial reuse of simulation models [13], [44]. First approaches
demonstrate the economical use of simulation modules [45].
Based on their smaller functional extent, the modules can be
reused and modified more easily. In [46] a methodology for



Fig. 1. Co-evolution model of simulation and automation software (based on [42])

the identification and implementation of simulation modules is
presented. Depending on the level of detail and the simulation
purposes, the simulation can be used in individual engineering
steps. In [47] the influencing factors for reuse of simulation
modules are identified. In addition, reuse is classified into
direct and indirect reuse. The indirectly reusable modules
have to be modified. To perform these changes, modification
strategies from software engineering are adopted.

C. Conclusions

In a nutshell, various approaches address reuse, changeabil-
ity and reconfigurability of automation control and simulation
software. Drivers for evolution are manifold [1], and basically
result in changes of requirements on the industrial plant [42].
To make things worse, such changes in requirements not only
result in changes in single disciplines, e.g. solely simula-
tion or solely automation control software, but trigger a co-
evolution of multiple disciplines. Hence, complex modification
strategies, which enable to define modification actions to be
applied to the models [14], would provide a suitable means
for simplifying automation control and simulation software
co-evolution. However, until now, such modification strategies
are not applied for automation control and simulation software
development. Therefore, an analytic co-evolution model would
significantly contribute to the domain of automation control
and simulation software engineering.

III. EXTENDED PLANT EVOLUTION MODEL

For investigating simulation and control software co-
evolution, a co-evolution model is proposed in detail in this
section. Firstly, the plant evolution model proposed in [42]
providing the base for the model is described briefly. Secondly,
based on an investigation of the interaction between simulation
and control software, this model is further developed in two
ways: (i) the role of machine simulation within this framework
is discussed and (ii) applications of the resulting model for
automation control software and simulation are described.

A. Plant evolution model

Summarizing the basic idea and terminology of [42], brown
field drivers (e.g. market dynamics) force a requirement migra-
tion on the machine or plant (e.g. increased throughput of the
machine or plant), cp. Fig. 1, resulting into an adapted set of

requirements in a plant. To address the requirement migration,
a respective feature migration is triggered. Within the context
of this paper, we refer to a plant’s properties as features.
Moreover, as engineering is an interdisciplinary task, each
discipline of the system refers to specific parts of the system
forming the plant features. Hence, e.g. software, electrical
engineering and automation technology (platform), as well as
mechanical engineering (context), form the complete design of
a machine or plant. Within this work, we focus on software
features representing e.g. the control behavior, and simulation
features referring to parts of the system’s simulation.

In order to realize the feature migration, respective mod-
ification actions are necessary, e.g. to add respective soft-
ware or simulation modules or to correct respective parts by
modifying them. Examples for modification actions within the
plant’s software and simulation are the addition, deletion or
modification of pieces of code, functions, function blocks,
simulation modules, interfaces, etc. Within these modification
actions, each discipline comprises a specific set of possible
modification actions, which must in some cases be consid-
ered in parallel, i.e. by co-evolving simulation and software.
Nevertheless, these modification actions for co-evolving plants
have not been investigated sufficiently yet, making the detailed
analysis of simulation and control software necessary.

B. The Role of Simulation within the Evolution Model

Simulation is used to test control software implementations.
In a simulation experiment, the context and parts of the
platform of the physical plant form the functional behavior
model, which can be connected to a visualization model and
to the control software. In Fig. 2 the connection between the
control software and the simulation model is depicted.

Fig. 2. Interaction of control and simulation software



Both the software and the simulation model are connected
via the I/Os of the plant platform. These I/Os are configured
in an interface of the control and simulation software. The
simulation model is used to generate detailed information in
the plant evolution concepts and to validate them. Therefore,
new context and platform components have to be integrated
into the simulation model and parameters of the model have
to be variable in order to validate changes in the plant process.

C. Applications of the model

As can be seen, simulation and software are strongly
interconnected. Consequently, simulation and control software
evolve in parallel during the plant’s evolution. In the following,
the application of the evolution model proposed in Fig. 1 for
co-evolution of simulation and software is discussed.

In general, there are different applications of this model:
(i) a software implementation AS which was successfully used
with the physical plant (i.e. providing the expected software
features) can be used to verify whether the simulation ASim

of the settings of platform AP and context AC is correct. Fur-
thermore, (ii) before evolving the software setting AS a correct
simulation setting ASim can be used to derive the contribution
of the combination of platform and context settings AP and
AC features towards the plant features. Finally, (iii) when co-
evolving simulation and control software, simulation can be
used for virtual commissioning of the control software, i.e.
testing the correctness of the implemented software setting AS .
When applying simulation for virtual commissioning, software
executed against a simulation must provide the same feature
values as expected when evolving it.

When co-evolving both simulation and control software, an
eased reconfiguration for software and simulation is required.
According to the presented model, increasing the reconfig-
urability of control software and simulation can be formally
defined as minimizing the set of modification actions for
software MS and simulation MSim. Therefore, in order to
minimize these sets of modification actions, a classification of
these actions is necessary, which is analyzed in the following.

IV. CLASSIFICATION OF CHANGE IMPACT FOR FIELD
CONTROL SOFTWARE AND SIMULATION MODELS

In this section, the dependencies between classes of evo-
lution with respect to their impact on simulation and control
software adaptation is presented. The classification into four
Evolution Categories (ECs) is depicted in Table I.

TABLE I. IDENTIFIED CATEGORIES IN PLANT EVOLUTION WITH
NECESSARY CHANGES IN PLANT DIMENSIONS

Evolution
Category Description of the evolution category Progress of

changes

EC 1 Changes in plant context, simulation model has
to be changed in case of possible collisions C, (Sim, S)

EC 2 Changes in plant context and platform involve
changes in software and simulation C, P, S, Sim

EC 3 Modifications in platform involve changes in
Software and Simulation P, S, Sim

EC 4 Plant process optimizing throughout Software
modifications S

C – Context, P – Platform, S – (Control) Software, Sim – Simulation

Evolution Category EC1 comprises modifications in the
context of the plant, e.g. replacing or extending mechanical
parts of the plant hence influencing the platform. An example
is the increase of the ramp capacity for production parts.
Only in case of a possible collision with moving parts, the
simulation model has to be modified. To avoid a collision, the
context or the software can be modified. The modifications
in EC2 concern the context analogously to EC1, but in EC2
besides the mechanical part of the plant also actuators and
sensors are changed or added, e.g. a new conveyor belt for
product transportation is installed. Therefore, the platform, the
software and the simulation model have to be modified. In
EC3 the context remains unchanged while modifications are
performed in the platform. In case of a modification of the
platform by replacing functionality with similar functionality
using the same interfaces, software and simulation model
remain unchained. In case of new interfaces or functionality,
the software and simulation model must be changed. The
Evolution Category EC4 is the plant process optimization by
modifying the software program. Without changes in context
and platform, an existing simulation model can be used for the
offline plant optimization by testing the new software.

The sequential category order from EC1 to EC4 relates to
the costs for plant evolution from high to low. Modifications
in the context discipline lead to down times even if the plant
process is not modified. Changes in EC4 are limited to changes
in the software, but can be managed with a minimum of down
time. In EC4, the existing simulation model can be used for the
software tests with the best cost : benefit ratio. The simulation
model is only modified in functional parameters, hence, the
modeling effort for validating and comparing software evo-
lution concepts is reduced. Consequently, a fast and simple
modification of model parameters is demanded. The costs
for the necessary changes in EC1 to EC3 spread widely and
depend on the parts of the simulation model being involved.
The interfaces can be modified quickly if the platform changes
in EC3. Changing the functional behavior of the model is
more laborious and the effort increases with a higher level
of detail. Therefore, the rapid and simple modification of the
model structure is required.

V. IDENTIFICATION OF MODIFICATION STRATEGIES FOR
CONTROL SOFTWARE AND SIMULATION

Former approaches define modification strategies by dis-
tinguishing between control software and simulation model
changes. These were combined to essential modification strate-
gies, which can be adapted both for control software and simu-
lation. Therefore, the necessary changes in the Evolution Cate-
gories (section IV) can be managed with a single modification
strategy or with a combination of them – e.g. by composing
the single-discipline modification strategies to multi-discipline
modification strategies as shown in the Evolution Categories
EC1–EC4. These modification strategies are depicted in Fig. 3
and represent modifications of modules or interfaces within
single plant disciplines, e.g. software and simulation.

A. Modification strategies for control and simulation software

Provided that simulation model and control software con-
sist of submodels and subprograms (henceforth referred to
as “modules”), the strategies show typical procedures for
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Fig. 3. Essential modification strategies for control software and simulation
model, extended from [47]

modifications. In Modification Strategy 1a, an entire module
with its functional behavior and the interfaces is implemented
or deleted to extend or reduce the functionality of the plant.
By that, major context modifications can be realized by adding
or deleting software or simulation models as e.g. depicted in
Evolution Categories EC1 and EC2.

Modification Strategy 1b involves the modification of a
module’s behavior, i.e. its specific implementation. Thereby,
minor modifications of the module’s behavior can be realized
as e.g. shown in EC3. These changes have to be validated and
verified and lead to extra costs for the modification. Depending
on the quality of the module documentation, major modi-
fications of the functional behavior, especially of extensive
modules, are complex and may lead to failures. In that case,
the module should be replaced by an appropriate alternative
module (Modification Strategy 1a).

By involving the modules’ interfaces in modification ac-
tions, the interfaces are either modified (Modification Strategy
2a) or rewired, i.e. connections between interfaces are changed
(Modification Strategy 2b). The interface modifications therein
are suited for EC2 and EC3 as interactions in between sim-
ulation and software modules as well as among both are
thereby defined through interfaces. An In-Interface added to
the module may also represent an internal simulation interface,
which is used for the parameterization of the simulation’s
or software’s functional behavior modification in EC4. The
parameter interface should have a range that must be validated.
The modification of the functionality by implementation of
submodules through adding or deleting submodules (Modifica-
tion Strategy 3a) or through modifying submodules’ behavior
(Modification Strategy 3b) is a variation of Modification Strat-
egy 1a and 1b. Hence, these strategies are well-suited for major
modifications in platform that may also incorporate changes in
simulation and software.

B. Abstract automation control and simulation software model

The modification strategies introduced in the previous
section represent complex modifications, which are in turn
composed of atomic modification actions, e.g. add, delete
and modify [14]. For simplifying the parallel and multi-
disciplinary evolution of simulation and control software, an
automatic classification of sets of atomic modification actions

would be significantly helpful. Engineers from different plant
disciplines could therefore react more rapidly as these atomic
modification actions are provided in a more abstract manner
using modification strategies. If e.g. modules are added in the
context discipline (Modification Strategy 1a), respective mod-
ification strategies in parallel plant disciplines, e.g. simulation
or software, can be triggered more easily.

In order to reason on the set of changes for both simula-
tion and automation software, an abstract model for defining
modification actions is needed, which is introduced in the
following. In general, basic modification actions for software
(models) exist [14]: model elements can e.g. be added, deleted
or modified. These modification actions can be executed on an
existing (software) setting to derive a new setting.

An abstract meta model of simulation and control software
containing the elements relevant for reasoning on modification
actions is shown in Fig. 4, left. Therein, it is distinguished
between Modules, their Interfaces as well as Connections
between those Interfaces. Modules represent submodels or
subprograms of the software or simulation and are either
Atomic Modules containing a specific Implementation, or Com-
posite Modules consisting of further Modules. Each module
may provide Interfaces which are in turn distinguished into
In-Interfaces and Out-Interfaces. As each Implementation of
an Atomic Module may require respective interfaces to be
connected, Connections point from a Module’s Out-Interface
to another Module’s In-Interface. Using these meta elements,
the simulation and automation software can be described
regarding their module and interface structure. Moreover, these
main elements inherit from a base Element, cp. Fig. 4, right.
This base Element can further be annotated using respective
modified, deleted or added dates defining the time stamp of
a modification action. By that, respective modifications of the
automation and simulation software can be specified in the
model. Hence, all modification actions needed for a specific
modification strategy are captured within the model.

Composite

Module

Atomic

Module

ModuleInterface

Interface

Out

Interface

In

consistsOf

provides

Implementation consistsOf

requires

Connection

target source

Element

Interface

Module

Implementation

Connection

modified[0..*]: Date

deleted[0..*]: Date

added[0..*]: Date

Fig. 4. Abstract software model, excerpt from [48]. Left: Model elements.
Right: Modification actions. [48]

C. Reasoning on modification actions

For reasoning on these modification actions defined in
the meta model and for identifying respective modification
strategies, a formal semantics of the modification strategies
is needed. The aim of the classification mechanism is to
classify a set of modification actions within an instance of the
meta model according to the modification strategies defined



in section IV, i.e. whether an entire module was added,
deleted (Modification Strategy 1a) or modified (1b), whether
the module’s interfaces were changed (2a) or reconnected (2b),
or whether its submodules were changed (3a and 3b).

In order to capture the formal semantics of these modifica-
tion strategies, Web Ontology Language (OWL) is used. The
meta model elements defined in Fig. 4 are therein represented
as OWL concepts and instances of these meta model elements
as OWL individuals. Relations between these meta model
elements are represented as OWL object properties and anno-
tations as OWL data properties1. Therein, as add, delete and
modify define the basic change actions, the properties added,
deleted and modified are defined as subproperties of changed.
Hence, besides validating the correctness of the model in-
stances and checking the compatibility of two interfaces or
modules [48], two major features are enabled within OWL:
(i) by formalizing the modification strategies within additional
OWL axioms, modification actions can be classified using the
standard reasoning mechanism Instance Checking and (ii) by
using query mechanisms such as SPARQL Protocol and RDF
Query Language (SPARQL), the set of modification strategies
applied within a certain time interval can be identified.

Using respective OWL axioms, the modification strategies
defined beforehand can be formulated. For a module imple-
mentation’s modification, it must be distinguished between
adding or deleting some containing implementations and mod-
ifying implementations of a Module. Hence, respective con-
cepts STRATEGY 1A (axiom 1) and STRATEGY 1B (axiom 2)
are defined to be equivalent to the MODULE concept restricted
to contain some IMPLEMENTATIONS that – in turn – contain
some added, deleted or modified relations.

STRATEGY 1A EquivalentTo MODULE and contains some
(IMPLEMENTATION and ((added some Date) or

(deleted some Date))) (1)

STRATEGY 1B EquivalentTo MODULE and contains some
(IMPLEMENTATION and (modified some Date)) (2)

Regarding interfaces, modules can be adapted by changing
respective interfaces or by rewiring the interfaces, i.e. changing
their connection to other interfaces. Hence, axioms 3 and
4 define the respective modification strategies as concepts
STRATEGY 2A and STRATEGY 2B. The latter requires an
interface to be a source or target of a respective CONNECTION
(indicated by the inverse properties of source and target),
which contains some changed relations.

STRATEGY 2A EquivalentTo MODULE and provides some
(INTERFACE and (changed some Date)) (3)

STRATEGY 2B EquivalentTo MODULE and
(provides some (INTERFACE and (inverse(source) some

(CONNECTION and changed some Date))) or
provides some (INTERFACE and (inverse(target) some

(CONNECTION and changed some Date)))) (4)

Respectively, if submodules are changed, the strategies
3a and 3b apply as a variation of strategies 1a and 1b. By
defining the property consistsOf to be transitive, the module

1As OWL annotations have no semantics and, hence, cannot be processed
by a reasoner, data properties are used for capturing the semantics of the
modification actions.

hierarchy is flattened within the OWL ontology. Hence, the
OWL concepts STRATEGY 3A (axiom 5) and STRATEGY 3B
(axiom 6) can be defined as concepts equivalent to a MODULE
that consistsOf modules being subject to some STRATEGY 1A
or STRATEGY 3B, respectively.

STRATEGY 3A EquivalentTo MODULE and
consistsOf some STRATEGY 1A (5)

STRATEGY 3B EquivalentTo MODULE and
consistsOf some STRATEGY 1B (6)

Hence, each OWL individual matching the concept def-
initions is inferred to be an individual of the respective
concept(s). Moreover, these concepts can be formulated within
SPARQL queries [49] under OWL entailment regimes [50],
e.g. for checking, which modules were modified using a certain
modification strategy between two defined time stamps. Hence,
using the atomic modification actions add, delete and modify,
complex modification strategies can be classified.

By applying these definitions to each discipline of the in-
dustrial plant engineering process, e.g. context, platform, sim-
ulation and software, the Evolution Categories EC1–EC4 can
be defined formally. Therefore, co-evolution can be supported
by defining dependencies between modification strategies in
different disciplines and, hence, the user can be supported
in identifying modification actions to be undertaken. Another
feature provided by the formal model is the ability to formally
check model consistency and module compatibility [48].

VI. CONCLUSION AND OUTLOOK

In this paper, an abstract co-evolution model of simulation
and automation software is introduced. Based on typical evolu-
tion categories, complex modification strategies as composition
of atomic modification actions in order to support co-evolution
of automation control and simulation software. The modifica-
tion actions are formally described using description logics
axioms. By that, modification strategies can be identified from
modification actions applied to the plant model to support their
application for different evolution categories. Consequently,
using the proposed approach, engineers can be supported in
managing the co-evolution of control and simulation software
for industrial plant engineering.

Within future work, integrations of the presented classi-
fication methodologies into existing tool support is planned.
Moreover, the evolution categories and modification strategies
will be extended towards more complex application scenar-
ios. Finally, modeling support is aspired, which enables the
company-specific modeling of categories and strategies. By
that, the evolution categories’ and modification strategies’
reuse would be increased further.
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