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ABSTRACT

Ten years ago, industry and academia have set an ambitious vision to bring down the lot

numbers of mass production to size one. This would enable highly configurable and individualized

products. The vision has eventually become known as the fourth industrial revolution. For a long

time, mass production of highly customized products was associated with high costs and resource

inefficiency. A solution for these issues would open up entirely new possibilities. So far, setting up

the production lines for mass production has been a very expensive and time-consuming task. As

a result, only bigger companies could afford to bring up new products to the market through mass

production. In contrast, small companies and highly innovative startups can get easily pushed

out of the market by competitors who are able to leverage mass production to produce a similar

product cheaper.

To realize the vision of the fourth industrial revolution, four design principles have been

identified: interconnection, information transparency, decentralized decisions, and technical

assistance. Within this thesis, the technology stack from the World Wide Web is investigated

as a possible technology building block for the interconnection and information transparency

challenge of future Industry 4.0 applications. To ease the migration path of the industry domain

this thesis combines the web technology stack with the most promising Industry 4.0 technology of

the industry domain, which is OPC UA. For the integration of OPC UA into the World Wide Web

ecosystem, three main challenges have to be solved: (1) Providing access to OPC UA data through

web standards; (2) Transformation of OPC UA semantics to Semantic Web standards; (3) Provide

an efficient interface to access the data.

First, this thesis provides a mapping from OPC UA to REST, including a HTTP mapping, a

RESTful resource representation, a concept for stateless service calls (including the contribution

to the OPC UA standardization), as well as a full mapping of all OPC UA service sets. Second, a

full mapping from OPC UA semantics to Semantic Web standards is provided. This thesis defines a

concept to automatically transform the semantics of any OPC UA data model into an OWL ontology

also including type hierarchies as well as modeling constraints. Third, this thesis presents how

SPARQL can be used to query OPC UA graphs natively and also will present rules to transform

standardized OPC UA queries into SPARQL queries. Furthermore, some issues of the standardized

OPC UA query language are highlighted also including solutions to bypass them through native

SPARQL queries.

viii



KURZFASSUNG

Vor zehn Jahren haben sich Industrie und Wissenschaft die ehrgeizige Vision gesetzt, die Losgrö-

ßen der Massenproduktion auf die Größe eins zu senken. Dies würde hochgradig konfigurierbare

und individualisierte Produkte ermöglichen. Diese Vision ist schließlich als vierte industrielle

Revolution bekannt geworden. Lange Zeit war die Massenproduktion hoch individualisierter Pro-

dukte mit hohen Kosten und Ressourcenineffizienz verbunden. Eine Lösung für diese Probleme

würde völlig neue Möglichkeiten eröffnen. Bislang war der Aufbau von Produktionslinien für

die Massenproduktion eine sehr teure und zeitaufwändige Aufgabe. Folglich konnten es sich nur

größere Unternehmen leisten, neue Produkte durch Massenproduktion auf den Markt zu bringen.

Kleine Unternehmen und hoch innovative Start-ups können dagegen leicht von Konkurrenten

mit Hilfe von Massenproduktion aus dem Markt gedrängt werden, indem ein ähnliches Produkt

billiger hergestellt werden kann.

Zur Verwirklichung der Vision der vierten industriellen Revolution wurden vier Gestaltungs-

prinzipien identifiziert: Vernetzung, Informationstransparenz, dezentralisierte Entscheidungen

und technische Unterstützung. Innerhalb dieser Arbeit wird die Technologie-Plattform rund um

das World-Wide-Web, als möglicher Baustein um die Gestaltungsprinzipien Vernetzung und Infor-

mationstransparenz zu adressieren, genauer betrachtet. Zur Erleichterung des Migrationspfads

der Industriedomäne wird hierbei die vielversprechendste Industrie 4.0 Technologie der Industrie-

domäne, OPC-UA, mit der Technologie des World-Wide-Web kombiniert.

Für die Integration von OPC-UA in das World-Wide-Web Ökosystem müssen drei Herausforde-

rungen gelöst werden: (1) Bereitstellung des Zugriffs auf OPC-UA Daten durch Webstandards; (2)

Transformation der OPC-UA Semantik in Semantic Web Standards; (3) Einen effizienten Zugriff

auf die Daten zur Verfügung stellen.

Die erste Herausforderung wird in dieser Arbeit durch eine vollständige Abbildung von OPC-UA

auf das Architekturkonzept REST gelöst. Dies beinhaltet eine Abbildung auf HTTP, die Einführung

von RESTful Ressourcen-Repräsentationen, ein Konzept um zustandslose Service-Aufrufe auszu-

führen (inklusive den zugehörigen OPC-UA Standardisierungsbeiträgen) sowie eine vollständige

Abbildung aller OPC-UA Service-Sets. Die zweite Herausforderung wird in dieser Arbeit durch

eine vollständige Abbildung der OPC-UA Semantik auf Semantik Web Standards adressiert. Im

Rahmen der Arbeit wird hierbei ein Konzept zur automatischen Transformation der Semantik von

beliebigen OPC-UA Datenmodellen zu OWL Ontologien, inklusive Typ-Hierarchien und Model-

lierungsvorschriften, definiert und evaluiert. Die dritte Herausforderung wird durch ein Konzept

gelöst, das es erlaubt OPC-UA Graphen mithilfe der SPARQL Technologien abzufragen. Zusätzlich

werden Abbildungsvorschriften vorgestellt wie standardisierte OPC-UA abfragen auf SPARQL abge-

bildet werden können. Des weiteren werden einige Schwachstellen der standardisierten OPC-UA

Abfragesprache vorgestellt und aufgezeigt wie diese Schwachstellen durch die direkte Verwendung

von SPARQL behoben werden können.
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1I N T R O D U C T I O N

The term "Industrie 4.0" is well-known in Germany for nearly ten years now. The idea behind this

term is the introduction of the fourth industrial revolution, where the first industrial revolution

describes the transition from hand production to steam and water power-based production, the

second industrial revolution is entered through inventions like production lines and the usage of

electricity for manufacturing, and the third industrial revolution is founded on digitalization and

microelectronics like programmable logic controllers. In contrast to the third industrial revolution,

the fourth industrial revolution aims to provide mass production for highly configurable and

individualized products based on four design principles: interconnection, information transparency,

decentralized decisions, and technical assistance [67]. During the last years various academic

papers, technical articles, standardization bodies, and conferences focused on this topic [151, 152,

142, 140, 133, 22, 107, 21, 34, 96, 101]. Furthermore, the terms Internet of Things (IoT) and

Industrial Internet of Things (IIoT) can be considered closely related to Industry 4.0 and also are

discussed heavily in academia and industry [165, 166, 45, 131, 104, 170, 163]. Finally, the goal

of all these activities is to make use cases like dynamic reconfiguration of automation devices [70,

134, 167, 94], plug and produce [118, 122, 42], and analytics [89, 16, 106, 84, 64] feasible.

While the industry domain prefers well-understood and stable technology to provide high

stability and reliability to their customers, the customers of the consumer goods domain are

often very happy to be one of the first users of a new technology that might still contain some

flaws. Based on this observation, the consumer goods domain could be considered as a good

inspiration for possible future directions of the slower-moving industry domain. For challenges

like interconnection, this domain heavily uses web technology like representational state transfer

(REST), which can be considered the technological enabler for the World Wide Web. Furthermore,

the web technology stack also provides concepts to solve the information transparency challenges

through Semantic Web technology. Last but not least, web search engines like Google or Bing

demonstrate how web information can be accessed in a very efficient way. In summary, the web

technology stack provides solutions for some of the most important Industry 4.0 challenges and

1



1 Introduction

therefore might be an interesting migration path for industry-specific technology on the way

forward to the fourth industrial revolution.

The following Section 1.1 gives further insights into the challenges. Section 1.2 presents the

goal of this thesis, followed by Section 1.3, which provides the contributions of this thesis to

standardization and academia. Finally, Section 1.4 gives an overview of the further structure of

this thesis.

1.1 Challenges for efficient web access to OPC UA semantics

At the moment our society stands on the edge of a new era. As the connectivity and processing power

of industrial embedded devices increase more and more, a lot of new applications become feasible.

This phenomenon has different names in different domains, for example, SmartGrid, SmartHome,

Industrial-Internet-of-Things (IIoT), and of course the nowadays term for the automation domain,

Industry 4.0. It is possible that these new properties of industrial embedded devices will change our

lives in a similar way as the introduction of smartphones. The success of these new applications will

depend on the interoperability of the transport layer, to enable different devices to communicate

with each other, the interoperability of the semantic layer, to enable different devices to understand

the meaning of the communication, and to provide an efficient way to access this information.

These challenges can be considered enablers for typical Industry 4.0 scenarios.

(C1) Interoperability on the transport layer

One of the challenges in addressing interoperability on the transport layer is the huge number of

different protocols. Nearly every domain has developed its own protocol to solve similar problems.

In the end, the question arises if really a dedicated protocol for each domain is necessary, or if

a single protocol is sufficient to address most of the common use cases. With that in mind, the

starting point of this thesis is to identify the most promising Internet-of-Things protocol of the

automation domain, which seems to be OPC Unified Architecture [127, 95]. OPC UA [77] does not

only aim to solve the interoperability on the transport layer, instead, also the interoperability on

the semantic layer shall be addressed by OPC UA, through the introduction of so-called Companion

Specifications. However, to reach the level of a real Industrial-Internet-of-Things protocol, OPC UA

must be able to reach out to other domains too.

A communication technology, which everybody already knows and also is present in nearly

every domain, is the REST architecture [46]. REST is derived from the classic web, which is already

connected to each domain in one way or another. The basic idea of this work is to extend OPC UA

with REST capabilities to finally reach the status of an Internet-of-Things protocol and provide a

solution for the interoperability of the transport layer challenge.

(C2) Interoperability on the semantic layer

2



1.1 Challenges for efficient web access to OPC UA semantics

In the area of factory automation OPC UA is the new standard that is promised to lift field

device communication from low-level signal exchange schemes onto a semantic level, contributing

to the realization of flexible manufacturing scenarios within the Industry 4.0 vision. OPC UA is a

machine-to-machine communication protocol for industrial automation developed by the OPC

Foundation. However, despite all the improvements that OPC UA brings over conventional device

communication, it still exhibits certain problems when it comes to capturing the semantics of m2m

communication structures: much of the semantics of the OPC UA basic constructs are defined in

specification documents in an implicit way, only accessible to the human implementor. Moreover,

the relatively new OPC UA specifications also lack implementation in available tools, which now

just start to emerge.

On the other hand, Semantic Web [24] technology is state-of-the-art for representing and

processing explicit semantics for data models in information systems in general, and specifically

for the web. The standardized ontology languages RDF(S) and OWL provide a representation

framework for formulating semantically rich knowledge graphs. Being supported by an active

research community for some years now, it also offers an established set of tools that support

these standards. Hence, it appears to be natural to investigate the use of the already matured

Semantic Web technology stack for the relatively new OPC UA standard for capturing semantics

more formally.

(C3) Efficient querying of information

If the research challenges C1 and C2 are addressed properly, it can be assumed that sooner or

later the automation domain will be faced with huge standardized OPC UA information models

with detailed descriptions of the underlying physical devices. This introduces big opportunities for

a lot of use cases like analytics and human-machine interfaces (HMI), which can be programmed

against standardized information models, enabling the deployment on each machine independent

of the manufacturer without additional engineering effort. However, one important part to use

such information models is still missing. Without some kind of query functionality it will soon be

impossible to access the data points in an efficient way on the aggregating layers like edge and

cloud and bind them to apps (e.g., a predictive maintenance app for an engine which of course

needs some field values, like temperature/power/...). It is worth noting that OPC UA offers a

query language for searching OPC UA information models, but up to now there is no publicly

available implementation, as far as I know. Of course, it is not a practical solution to search the

graph node by node for each application (on the cloud level ten-thousands of OPC UA Nodes have

to be searched by hundreds of apps in parallel). Another problem is that the OPC UA-specific query

language is so complex that some industry researchers even introduced an internal domain-specific

language for constructing OPC UA Queries [59]. Rather than inventing a new query language from

scratch or directly implementing OPC UA Query, an already existing query language should be

used. Based on C2 and the proposed solution to use Semantic Web technology, SPARQL seems to
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1.1 Challenges for efficient web access to OPC UA semantics

be a promising candidate for an efficient OPC UA access API. Furthermore, SPARQL also offers an

HTTP API which allows to easily integrate it into the proposed C1 solution of this thesis.

1.2 Goal of this work

The goal of this thesis is a good integration into the selected technology ecosystems. For the

research Challenge 1 (C1) this means that the mapping also takes the main client for RESTful

applications into account (a web browser) and, therefore, also focuses on the support of the REST

paradigm hypermedia as the engine of application state (HATEOAS) as it is defined by Fielding

[46] and HTTP as the underlying communication technology. For the REST paradigm HATEOAS,

this implies, that this thesis provides a self-descriptive message format with embedded hypermedia

control elements. For the HTTP mapping, this implies, that the different semantics and functions

of the HTTP verbs are used properly. If necessary this also means that existing OPC UA services

could be modified or new services could be introduced to provide a more RESTful user experience

like the integration of the web redirection concept. Finally, the thesis should provide a consistent

concept for all the different OPC UA services. Only if all services can be executed through a REST

API a full integration into the REST ecosystem can be ensured.

The ecosystem integration of Challenge 2 (C2) can be addressed if the semantics of OPC UA

are transformed to the matching semantic concepts of OWL. To achieve this goal, it is necessary to

identify the different parts of OPC UA which are semantic meaningful. Additionally, the resulting

ontology should provide a good integration into the corresponding ecosystem. This can be achieved,

for example, through tools like Protégé which can be used to display OPC UA ontologies (including

subtype hierarchies) and ensure modeling constraints based on reasoning. Furthermore, the

ontology also has to be in such a form that query functionality can be provided through ecosystem

tools like SPARQL. Finally, the scope of this thesis is on the mapping direction from OPC UA to

OWL. The inverse mapping direction from OWL to OPC UA is not addressed within this thesis and

is out of scope. This also means that the concepts of this thesis might not be sufficient to translate

existing OWL ontologies back to OPC UA information models.

Finally, the ecosystem integration of an efficient OPC UA query API, Challenge 3 (C3) can be

quantified through the successful execution of the example queries of OPC UA Part 4 Annex B, which

can be seen as some kind of baseline for efficient access to huge OPC UA data models. Furthermore,

a mapping shall be provided which is able to translate the OPC UA specific query language into

SPARQL queries. Based on the fact, that there is no existing public available prototype for the

OPC UA query language, shortcomings of the OPC UA query language should be identified and if

possible alternative concepts to address the underlying problem shall be identified. Furthermore,
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the concept should also cover scalability requirements and concepts for data aggregation to also

address huge aggregated information models.

1.3 Contributions

This thesis contributes to the research areas of (Semantic) Web, OPC UA, and the Industrial Internet

of Things in general.

First, the thesis proposes a method for web access to OPC UA data through the introduction

of the representational state transfer (REST) paradigm into OPC UA. Within Section 3.1 the

evaluation metrics are derived and applied to the corresponding related work in this area. Based

on this evaluation the open research challenges are identified. The first sections of Chapter 4

highlight the solution proposal to address the open research challenges. Section 4.2 focuses on the

contributions to standardization while the other sections provide insights into the not standardized

parts of the solution proposal. Details of the prototypical implementation are presented in Section

4.7. Finally, Section 4.8 shows the evaluation results of the proposed solution concept and gives a

final statement of how well the open research challenges could be addressed through this thesis.

Second, a concept is introduced to automatically transform the semantics of OPC UA informa-

tion models to a formal OWL ontology. Also in this case Section 3.2 derives the evaluation metrics

and applies these metrics against related work in this area of research. Based on the evaluation

results the open research challenges are identified and the corresponding solution concepts are

presented within Chapter 5. Insights into the demonstrator of the transformation tool are given

in Section 5.12. Finally, the evaluation of the solution proposal is presented in Section 5.13 also

including a statement of how well the open research challenges are addressed.

Third, based on the OWL transformation a method is introduced how the OPC UA query

language can be translated into SPARQL and also how native SPARQL queries can be formulated.

Section 3.3 derives the corresponding evaluation metrics and evaluates the related work according

to these metrics. The result of this evaluation is used to formulate the open research challenges. In

Chapter 6 the first sections focus on the solution proposal for the open research challenge including

insights into the prototypical implementation of Section 6.1. Finally, Section 6.6 provides the

evaluation of the given solution proposal and concludes with a final statement on of how well the

open research challenges can be addressed by this thesis.

1.4 Overview

The remainder of this thesis is structured as follows (see also Figure 1.1):
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OPC UA web access the analysis for this research challenge is provided through Section 2.1,

Section 2.4 and Section 3.1. The first section highlights certain aspects of the OPC UA

technology like the different communication paradigms (Client/Server and PubSub) and the

Subscription model. In Section 2.4, a brief insight into the requirements of Representational

State Transfer (REST) according to Fielding [46] is given. Section 3.1 derives the evaluation

metrics, analyzes the related work, and formulates the research challenge. The synthesis

of the research challenge is provided within Chapter 4 and Chapter 7. Chapter 4 discusses

the solution concept, the demonstrator, and finally concludes with an evaluation of the

presented solution. Besides the presentation of the overall architecture, the contributions

to the OPC UA standardization, the mapping to HTTP, as well as selected service mappings

are presented in greater detail. Finally, Chapter 7 provides a summary, conclusion, as well

as an outlook for OPC UA web access.

OPC UA semantics presents the analysis for the research challenge through Section 2.1, Section

2.2, and Section 3.2. Within Section 2.1, the different modeling elements (nodes and

edges) of the information model of OPC UA are explained and a basic modeling example is

presented. The Web Ontology Language (OWL) is presented in Section 2.2, starting with the

different modeling elements and finishing with different concepts to make statements above

these modeling elements. The evaluation metrics, the evaluation of related work, as well

as the formulation of the open research challenge is summarized in Section 3.2. Chapter

5 and Chapter 7 provide the synthesis for this research challenge. Chapter 5 contains

a formal mapping between OPC UA information models and the OWL language. This

shows in particular how any OPC UA-based model can be represented in OWL as a basis for

automated transformation. The chapter concludes with a prototypical implementation and

an evaluation of the presented solution. Finally, Chapter 7 provides a summary, conclusion,

as well as an outlook for OPC UA semantics.

OPC UA query provides the analysis for this research challenge in Section 2.1, Section 2.3, and

Section 3.3. Within Section 2.1, the OPC UA query API is introduced also including the

example information model of OPC UA Part 4 and the corresponding query examples. In

the following, Section 2.3 focuses on the SPARQL technology. First, the basic concepts

are introduced like the different areas of a SPARQL query. Second, graph patterns and

expressions that are used within this thesis are explained in further detail. Section 3.3

analyzes the related work, derives the evaluation metrics, and formulates the research

challenge. The synthesis of the research challenge is provided in Chapter 6 and Chapter

7. The native SPARQL language is compared with OPC UA in Chapter 6. In addition, a

mapping from OPC UA query to SPARQL and the prototypical setup and architecture is

presented. The chapter closes with an evaluation of all example queries of OPC UA Part

4 Annex B (complex examples) and an assessment of the presented solution against the
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1.4 Overview

research metrics of Section 3.3. Finally, Chapter 7 provides a summary, conclusion, as well

as an outlook for OPC UA query.
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Figure 1.1 – Structure of this thesis.
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2B A C K G R O U N D

In this chapter, the basic concepts of OPC UA relevant to this thesis are presented and explained

(Section 2.1). Furthermore, overviews of OWL (Section 2.2), SPARQL (Section 2.3), and REST

(Section 2.4) are given to provide enough background to understand the mappings to OPC UA.

In the area of automation, OPC Unified Architecture (OPC UA) [77, 97] is one of the most

important standards for device communication and promises to lift low-level signal exchange

schemes onto a semantic level, contributing to the realization of flexible manufacturing scenarios.

To finally reach this goal the OPC Foundation was very busy building the foundation for future

Industry 4.0 scenarios in the last few years. Examples of recent activities are: a cloud interface

based on the PubSub pattern (finished)[111]; the introduction of domain-specific semantics

which mainly are developed by the VDMA (ongoing)[161]; real-time capabilities for OPC UA

(ongoing)[113]; the so-called Field Level Communication (FLC) which aims to unify the different

field bus stakeholders (ongoing)[110]; the support of dictionaries like ECLASS (ongoing)[112].

2.1 OPC Unified Architecture

Finally, all these activities resulted in the current OPC UA architecture of Figure 2.1. The main

architecture of OPC UA consists of two pillars (OPC UA client/server and OPC UA PubSub), which

are unified through a common data layer based on OPC UA information models. Each of these

pillars introduces different transport technologies. For example, in the case of client/server UA TCP,

HTTPS, and WebSocket communication can be chosen and in the PubSub case UDP, MQTT, and

AMQP. While UA TCP is mostly used by small embedded devices in the lower layers of a factory

network, transport protocols like HTTPS and WebSocket communication are more common in the

upper layers like edge and cloud. PubSub implementations mainly focus on the UDP and MQTT

variant. Furthermore, OPC UA provides an own security layer to encrypt messages and thus allows

end-to-end encryption (Secure Channel and Secure Message of Figure 2.1). The next higher layer

is the serialization layer. OPC UA offers different forms of serialization like a highly optimized

proprietary binary encoding (UA Binary and UADP) but also supports well-known serialization
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UA Binary

OPC UA Information Model
(e.g., NodeClasses, Attributes, References, ...)

OPC UA Client/Server - Services
(e.g., Browse, Read, Write)

Application-
Layer

Data-
Layer

JSON

Secure Channel

UA TCP WebSocketHTTPS

OPC UA PubSub - Message Model
(e.g., Message Reader/Writers)

UADP JSON

Secure Message

UDP AMQPMQTT

OPC UA Information Model Extensions
(e.g., Companion Specifications, Device Vendor, ...)

OPC UA Base Information Model
(e.g., BaseVariableType, ServerType, EngineeringUnits, ...)

Serialization-
Layer

Security-
Layer

Transport-
Layer

Figure 2.1 – OPC UA basic architecture overview (simplified).

formats like JSON. The top layer of the pillars is the application-layer. For OPC UA client/server

the application-layer is structured around a service-oriented design pattern consisting of several

services to introspect (e.g., Read service) and manipulate (e.g., Write service) the data-layer (see

also OPC UA Part 4). In contrast, OPC UA PubSub is built around the publish-subscribe pattern and

focuses on the definition of message streams (see also OPC UA Part 14). Nevertheless, regardless

of the application-layer, every information exchange of OPC UA is grounded in the extensible

graph-based OPC UA information model (data-layer of Figure 2.1).

Section 2.1.1 covers the data-layer in greater detail, while Section 2.1.2 provides details about

OPC UA client/server and OPC UA PubSub. Section 2.1.3 highlights some aspects around the

OPC UA Query service and Section 2.1.4 provides insights in OPC UA Subscriptions.

2.1.1 Data Layer

The main concept of OPC UA information models is a graph architecture. The nodes of the graph

are also called Nodes and the edges between the nodes are named References in OPC UA. Each

Node in OPC UA can be uniquely identified through a NodeId. Furthermore, OPC UA introduces

eight different NodeClasses, which can be categorized into a type and instance category (see also
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ObjectType-Node

Types

Variable-Node

ReferenceType-Node

VariableType-Node

View-Node

DataType-Node

Object-Node

Method-Node

Instances

(a) Graphical notation of Nodes.

Any symmetric 
ReferenceType

Any asymmetric
ReferenceType

Any hierarchical
ReferenceType

opc:HasComponent

opc:HasProperty

opc:HasType
Definition

opc:HasSubtype

opc:HasEventSource

(b) Graphical notation ReferenceTypes

Figure 2.2 – Graphical notation of OPC UA.

Figure 2.2a). View-, Variable-, Object-, and Method-Nodes are part of the instance category (left side

of Figure 2.2a). DataType-, VariableType-, ObjectType-, and ReferenceType-Nodes are part of the type

category (right side of Figure 2.2a). These two categories can be compared with object-oriented

programming languages, where types can be considered classes and the other category is used to

instantiate these classes. For example, a smart sensor typically offers several measurement values,

which could be exposed through a new ObjectType-Node. This ObjectType-Node would expose the

common structure for all smart sensors of a particular category and also offers the semantics

behind the values (e.g., a temperature value in degree Celsius). A sensor instance would then be

modeled through an Object-Node, which would refer to the newly introduced ObjectType-Node as

its type. Furthermore, OPC UA also introduces different types to describe the semantics of the

edges (see also Figure 2.2b). Also, edges are described through a NodeClass named ReferenceType.

In the following, a basic description for each NodeClass is given:

Objects are mainly used to introduce structures. For example, Objects can be used to expose

machines, components of the machine, software artifacts, and much more. The main difference

between Variables and Objects is, that Objects missing the possibility to expose actual values (e.g.,

the actual temperature value of a sensor). However, a smart sensor could also be exposed as an

object with several attached DataVariables and Properties. Furthermore, if an object is used instead

of a Variable it is also possible to attach Method-Nodes, which could offer functions like calibration.

Eventually, it depends on the use case what kind of NodeClass should be used.

Variables in OPC UA fulfill several aspects. The most important part is to offer process infor-

mation like the actual temperature value. However, besides process information Variables also

can be used to provide meta-data like the engineering unit of a specific sensor value. OPC UA

introduces two main concepts around Variables: (1) DataVariables are used to expose Variables

with substructures. For example, a smart sensor, which offers the value filtered and unfiltered; (2)

Properties are used to describe the referencing Node. For example, the smart sensor of the previous

example also has to provide the engineering unit of the value, which could be described through a
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2.1 OPC Unified Architecture

Property. The main difference between both concepts is, that Properties neither can be subtyped,

nor can be used to provide substructures, which also implies that a Property cannot have its own

Properties.

Methods in OPC UA have the exactly same semantics as their counterparts in object-oriented

programming languages. They have input- and output-arguments and can be executed through the

Call service of OPC UA. Nevertheless, because Methods always run to completion within OPC UA

several design guidelines exists around this concept. Methods in OPC UA should be lightweight,

which means it should never take several hours to execute a Method. If long-running processes

have to be modeled the OPC UA state-machine concept should be used instead (see also OPC UA

Part 10). In addition, a method always has an owning Object, similar to the corresponding class

instance in object-oriented programming languages.

Views are used in OPC UA to provide different aspects of the same information model. For

example, a machine may introduce an operator and a maintenance View. The former View is used

by the production personnel during operation, while the latter one is used by service-engineers to

carry out maintenance tasks. Each View provides only the essential information for the different

users and thus allows a much more efficient information extraction. Views can be used in two

different ways: (1) The View-Node acts as an entry point into a sub-graph; (2) The View hides

certain References on selected Nodes.

ObjectTypes are the Type-Nodes for Object-Nodes. Each Object-Node specifies exactly one

ObjectType-Node as its Type. Also in the case of ObjectTypes OPC UA defines several different

standard ObjectTypes like the BaseObjectType. However, it is also allowed to define user-specific

new ObjectTypes.

VariableTypes are the corresponding Type-Nodes for Variable-Nodes. Similar to Object-Nodes,

also Variable-Nodes specify exactly one VariableType-Node as its Type. OPC UA defines several

standard VariableTypes like the PropertyType and the BaseDataVariableType. All Types offer the

possibility to define abstract Types. Abstract Types cannot be instantiated but further subtyped with

concrete Types.

DataTypes: As previously mentioned, Variable-Nodes, as well as VariableType-Nodes, are able

to expose a value of a sensor. For example, a temperature value could be represented as an integer

but also as a floating point value. So, each Variable also specifies the corresponding DataType

to further specify the format of the value. OPC UA introduces several different DataTypes like

String and Double but also allows to define, for example, user-specific Structures, which consist of

several simple DataTypes. Furthermore, OPC UA also defines Enumerations in a similar way than

object-oriented programming languages. These DataTypes can also be further subtyped to refine

constraints and semantics. Finally, it is also possible to subtype simple DataTypes to add more

concrete semantics like a special encoding for pictures.
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ReferenceTypes are used to expose the semantics and constraints of the graph edges. Similar

to all other Type-Nodes ReferenceType-Nodes are organized in a Type hierarchy, including semantics

and restriction inheritance. To simplify modeling OPC UA defines several standard ReferenceTypes

and the corresponding graphical notation (see also Figure 2.2b). ReferenceTypes can be categorized

into two main groups, hierarchical- and non-hierarchical-ReferenceTypes. The former ones can

be used to expose tree-like structures in graphical tools, while the latter ones are used to expose

information, which cannot be organized in a hierarchically fashion.

Each NodeClass defines its own set of Attributes. While some Attributes are common across

several different NodeClasses (e.g., DisplayName, BrowseName, etc.), other Attributes are exclusive

for a single NodeClass (e.g., the symmetric-Attribute of the ReferenceType). Annex A.3.1 further

details the Attributes of each NodeClass. Finally, Figure 2.3 shows an example information model

in the graphical notation, which is used throughout this thesis. The opc:BName Variable-Node

is attached to an Object-Node through a HasProperty-Reference and specifies the PropertyType

as its TypeDefinitionNode. Within this thesis, BrowseNames are used in the graphical notation,

including a namespace-prefix (e.g., "opc:" and "rs:"). The samples shown in this thesis often hide

information that is unimportant in the concrete context. So, the rs:SampleObject also references

the BaseObjectType of the OPC UA Namespace with a HasTypeDefinition-Reference but this is left out

in Figure 2.3 for brevity.

However, to finally achieve interoperability on the semantic layer it is not enough to only

provide the syntax of a modeling language, instead, also the vocabulary must be provided. While

an abstract cross-domain vocabulary is provided by the OPC Foundation itself, domain-specific

vocabulary are added through a standardization process for OPC UA information models. The

resulting artifact of this process is a Companion Specification. In previous years most of the

Companion Specification were mappings from other already existing standards to OPC UA like

AutomationML, PLCopen, ISA-95, etc. [15, 121, 78]. Eventually, all these standards are rather

opc:BaseObjectType

rs:SampleObject

opc:PropertyType

opc:BName

Attribute
BrowseName = „opc:BName“
NodeClass = Variable
DataType = opc:Boolean
...

rs:Method

opc:PropertyType

Figure 2.3 – Example OPC UA graphical notation used throughout this thesis.

13



2.1 OPC Unified Architecture

abstract and define mainly generic semantics. However, in the last few years also Companion

Specification started to emerge with detailed descriptions of the underlying devices (e.g., machine

vision, robotics, powertrain, CNC machines, etc. [114]). These specifications are mainly driven by

the VMDA [160]. The VDMA can be considered the largest industry association in Europe and

represents more than 3200 companies within the manufacturing domain.

2.1.2 Application Layer

Since version 1.04 of OPC UA two main access patterns exist to interact with an OPC UA server.

The classic way, based on the client/server pattern (Section 2.1.2.1) and the new cloud interface,

which is based on a publish-subscribe pattern (Section 2.1.2.2).

2.1.2.1 OPC UA Client/Server

The OPC UA client/server architecture was the only available communication pattern until version

1.04 of OPC UA. Based on the client/server pattern, OPC UA introduces different services to define

the interaction between client and server. These services are logically grouped to Service Sets. Each

Service Set Description

Discovery Offers services to find servers and the corresponding end-
points.

SecureChannel Is used to establish secure connections between server and
clients.

Session Contains all services which are related to sessions (e.g.,
authentication).

NodeManagement Includes services to alter the graph-based information
model.

View Offers services to explore the information model.
Query Introduces a OPC UA query language and the necessary

services to execute queries against OPC UA information
model.

Attribute Can be used to read and write Attributes.
Method Exposes the Call service which is used to invoke OPC UA

Methods.
MonitoredItem Contains services for creation and modification of Mon-

itoredItems, which can be used in combination with the
Subscription Service Set to monitor, for example, sensor
values for changes.

Subscription Is used in combination with the MonitoredItems to create
notifications for events and value changes.

Table 2.1 – OPC UA Service Sets [77].
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Service Set comprises all services belonging to the same functionality (see also Table 2.1). Before

most of the services can be used the client has to execute several steps: (1) The client opens a

secure channel with the OpenSecureChannel service of the SecureChannel Service Set; (2) After the

secure channel is established the CreateSession service (Session Service Set) is used to create a new

session; (3) The next step is to activate the newly created session with the ActivateSession service,

which is also part of the Session Service Set; (4) If every service execution completed successfully

the client can now use the Read service from the Attribute Service Set to fetch the NamespaceArray

from the server; (5) Based on the content of the NamespaceArray, the client is now able to generate

Node addresses and use other services to interact with the graph.

2.1.2.2 OPC UA PubSub

The basic architecture of OPC UA PubSub is shown in Figure 2.4. The middle part of the picture

exposes the three main elements of the OPC UA PubSub communication pattern: MetaData, Data

Messages, and security key handling. A Data Message contains the data which is published by the

Publisher. Data Messages can be transmitted via broker-less or broker-based communication using

different transport protocols (e.g., MQTT or AMQP). The broker-less architecture is most famous

in environments like the factory shop floor, where tight time constraints have to be fulfilled. In

future scenarios, OPC UA PubSub UDP in combination with TSN might be able to address hard

real-time use cases. In the broker-based scenario, all Publishers and Subscribers are connected to a

broker. However, from an architectural point of view, the broker can also be realized based on

a distributed system, which allows scaling with the number of Subscribers and Publishers. The

content of Data Messages (syntax and semantics) is described within the MetaData. The exchange

OPC UA 
AddressSpace

Data
Messages

MetaData

Security Key
Server

Publisher

Subscriber

Transport

Figure 2.4 – OPC UA PubSub architecture overview (simplified).
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of the synchronous security keys is managed by the Security Key Server. Publishers, as well as

Subscribers, can request the keys for a given security group after successful authentication on the

Security Key Server. Normally, the keys have a limited lifetime and have to be refreshed regularly,

which allows to remove previously participating Publishers and Subscribers.

2.1.3 OPC UA Query

At the time of writing of this thesis, the OPC UA Query Service Set is probably the only OPC UA

Service Set that has no publicly available implementation up to now. Even the fact that a whole

annex was introduced in OPC UA Part 4 (see also Annex A.3.2 for the example type and instance

model of OPC UA Part 4), which added a lot of examples for this service, provided not enough

motivation for prototypical implementations. OPC UA Queries can be disassembled into two main

parts. 1) A filter part, which is used to select what kind of Instances should be returned. OPC UA

Query allows, for example, to filter on Views or on Types. However, also more sophisticated filter

arguments can be formulated like a greater than relation, or even a complete graph pattern that

has to be fulfilled. 2) The data which should be returned. Also in this case OPC UA Query allows

defining relations across several intermediate Nodes. This architecture allows formalizing a wide

range of queries. For example, it is possible to filter for the maintenance date of certain machines

and after that return the exact position of these machines. Based on these results an efficient

maintenance schedule could be generated. For the filter part, OPC UA defines several different

FilterOperator and FilterOperand parameters (see also OPC UA Part 4). Most of FilterOperators can

be easily understood only through the name like the "equals" FilterOperand and are not further

discussed in this thesis. However, the RelatedTo FilterOperator, which is used to model graph-

patterns, has very high complexity and is introduced in Annex A.3.2. In the case of FilterOperands,

the AttributeOperand is identified as the operand with the highest complexity and is also included

in Annex A.3.2. In the following, the focus is shifted to the QueryFirst service of OPC UA Part 4

(see also Table 2.2).

The view parameter is used to select a View. A View in OPC UA typically contains only parts of

the AddressSpace. For example, a maintenance-view might only include Nodes and References which

are relevant for a service-engineer and hide all the other Nodes and References. The nodeTypes

array contains elements of the NodeTypeDescription structure (marked with indents). The type-

DefinitionNode selects the Instances for this service. Only Instances of this Type or subtypes (if

the includeSubtypes parameter is true) are considered as valid results. The dataToReturn array

(QueryDataDescription, marked with indents) is used to select the data which shall be returned and

consists of three sub-parameters: relativePath, attributeId, and indexRange. The relativePath

is used to define a path from the filtered Instances to a target Node or target Reference across several

intermediary Nodes. Moreover, the relativePath has slightly different behavior in OPC UA Query
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Request Response
Name Type Name Type

requestHeader RequestHeader responseHeader ResponseHeader
view ViewDescription queryDataSets[] QueryDataSet
nodeTypes[] NodeTypeDescription nodeId ExpandedNodeId

typeDefNode ExpandedNodeId instanceTypeDefNode ExpandedNodeId
includeSubtypes Boolean values[] BaseDataType
dataToReturn[] QueryDataDescription continuationPoint ContinuationPoint

relativePath RelativePath parsingResults[] ParsingResults
attributeId IntegerId statusCode StatusCode
indexRange NumericRange dataStatusCodes[] StatusCode

filter ContentFilter dataDiagnosticInfos[] DiagnosticInfo
maxDataSets Counter diagnosticInfos[] DiagnosticInfo
maxReferences Counter filterResult ContentFilterResult

Table 2.2 – QueryFirst Service Parameters [77].

than it has in the TranslateBrowsePathsToNodeIds service. To be able to address all use cases of OPC

UA Query it is necessary to specify sometimes the Type of the Node instead of the BrowseName. This

can be done by setting the NamespaceIndex to zero and the string part of the QualifiedName to the

XML representation of the NodeId. The attributeId and indexRange are applied to the target Node

of this path if a target Node exists. The filter parameter is one of the most complex parameters

within the complete OPC UA specification. A filter consists of several so-called filterOperators

(e.g., equals, greaterThan, and, or, relatedTo, ...) and so-called filterOperands, which are the input

parameter for the filterOperators. It is also possible to combine different filterOperators to build very

expressive filters. Additionally, OPC UA defines conversion rules, which introduce an additional

layer of complexity because of some unexpected implicit conversions (e.g., implicit casts from

String to Byte). The parameters maxDataSetsToReturn and maxReferencesToReturn are used

to limit the maximum number of results.

The response structure of a QueryFirst request starts with a queryDataSets array. Each array

entry consists of a nodeId, which is the NodeId (a unique identifier in OPC UA) of an Instance-

Node of the requested typeDefinitionNode with all restrictions (e.g., view and filter) applied. The

instanceTypeDefinitionNode is the corresponding TypeDefinition of the Instance. This parameter

is important because also subtypes of the TypeDefinition can be returned and it is also allowed

to define an array of nodeTypes in the request, which typically define different typeDefinitionN-

odes. Finally, the values array contains the requested results defined by dataToReturn. The

continuationPoint parameter is used if not all results can be returned in a single response. The

parsingResults parameter contains the list of parsing results for the QueryFirst service, while the
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diagnosticInfos parameter contains diagnostic information for the requested NodeTypeDescription.

Finally, the filterResult parameter contains information about filter errors.

In addition to the QueryFirst service, the OPC Foundation specified the QueryNext service to

retrieve further results if not all results could be returned in a single response (see also Table 2.3).

The releaseContinuationPoint parameter can be used to request the next results for the given

ContinuationPoint (if set to "false"), or to delete all further results (if set to "true"). A client shall

always use this service to free resources if a ContinuationPoint is returned by a QueryFirst, or

QueryNext call. The continuationPoint parameter is used to enter the ContinuationPoint of a

previous QueryFirst, or QueryNext call.

The response structure of a QueryNext request starts, identical to QueryFirst, with a query-

DataSets array. This array has the same content structure as the QueryFirst array. The revised-

ContinuationPoint parameter is used if not all results can be returned in a single response. If the

releaseContinuationPoint parameter is set to "true" this value is always "null".

2.1.4 OPC UA Subscriptions

OPC UA Subscriptions consist of several MonitoredItems. A MonitoredItem can be configured to

monitor Attributes or Events (see also Figure 2.5). A MonitoredItem has several parameters: The

ItemToMonitor parameter specifies the Node which shall be monitored, while the Monitoring-

Mode introduces three different states (disabled, sampling, and reporting). The RequestedParam-

eters parameter specifies, for example, the QueueSize, SamplingInterval, and Filter. OPC UA

defines three different Filter parameters for MonitoredItems: DataChangeFilter, EventFilter, and

AggregateFilter. This allows configuring the MonitoredItem very fine-grained. Subscriptions can also

be further parameterized. If the Subscription and the corresponding MonitoredItems are generated

and configured, the client starts to call the Publish service. With this service, new notifications can

be requested and old ones can be acknowledged. Besides the basic parameterization shown in Fig-

ure 2.5, OPC UA also defines a Triggering Model. In a nutshell, this concept allows defining several

MonitoredItems, which sample values but do not report these values to the underlying Subscription

(ItemsToReport). Furthermore, another MonitoredItem named TriggeringItem is configured and

assigned to the ItemsToReport. If now the TriggeringItem creates a notification the ItemsToReport

Request Response
Name Type Name Type

requestHeader RequestHeader responseHeader ResponseHeader
releaseContinuationPoint Boolean queryDataSets[] QueryDataSet
continuationPoint ContinuationPoint revisedContinuationPoint ContinuationPoint

Table 2.3 – QueryNext Service Parameters [77].

18



2.1 OPC Unified Architecture
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Figure 2.5 – OPC UA Subscriptions basic overview.

also reports their values to the underlying Subscription. This allows to efficiently collect data if

certain conditions are true.

In the following, the differences between both concepts are further explained. While in the case

of OPC UA client/server Subscriptions are client-specific and cannot be shared between different

clients, OPC UA PubSub allows different clients to use the same Subscription. In contrast, only

OPC UA client/server Subscriptions define the Triggering Model concept, which is not available for

OPC UA PubSub Subscribers.

2.2 Web Ontology Language (OWL)

Within this section, the basics of OWL [116] is presented (Section 2.2.1), followed by an overview of

further concepts, which can be used to express constraints and semantics of the main building blocks

(Section 2.2.2). Based on the formal definition of OWL, OWL Reasoners [68, 44] can automatically

perform reasoning tasks such as checking consistency and inferring implicit relationships.

2.2.1 Basic concepts

OWL Individuals denote objects in OWL. For example, a concrete person like Anna or John could

be described as an individual. OWL defines two groups of individuals: (1) Named individuals, which

can be identified through an IRI [41]; (2) Anonymous individuals, which can only be identified

based on a local node ID as an identifier rather than a global IRI and because of that cannot be
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referenced from an outside ontology. Each individual can be described through annotation property

assertions, class assertions, object property assertions, and data property assertions. Furthermore,

OWL allows specifying if individuals are identical or different.

OWL Classes denote classes of objects. The classes Person and Engineer are examples of

possible OWL classes. OWL already introduces two classes owl:Thing, which represents the set

of all individuals, while owl:Nothing is the empty set. Besides these two classes, further classes

can be introduced and organized in subsumption hierarchies. Finally, each class can be described

through annotation property assertions and further axioms like the subclass axiom. Similar to

individuals (owl:samesAs and owl:differentFrom) also for OWL classes concepts for equivalence

and disjointness exist.

OWL Object Properties relate objects to objects (e.g., relating a child to their parent with

hasChild). OWL introduces two object properties owl:topObjectProperty, which connects all

possible pairs of individuals, while owl:bottomObjectProperty does not connect any individual at

all. Similar to classes also object properties can be organized in a subsumption hierarchy. Each

object property can be described with annotation properties and characteristics like functional,

inverse functional, transitive, symmetric, asymmetric, reflexive, and irreflexive. Furthermore,

inverse object properties can be specified as well as domain and range restrictions. Finally, equal

to classes also object properties have a concept for equivalence and disjointness.

OWL Data Properties assign data values to objects (e.g. relating a height to a person). Also

in this case two data properties are introduced by OWL. The owl:topDataProperty connects all

possible individuals with all literals, while the owl:bottomDataProperty does not connect any

individual at all. Similar to classes data properties can be organized in subsumption hierarchies.

Besides the usage of annotation properties for the description of data properties, domains, and

ranges can be defined. Furthermore, each data property also can be defined as functional and

identical to classes, a concept for equivalence and disjointness exists.

OWL Annotation Properties can be used to record ontology meta-information, such as the

author and creation date. OWL as well as RDFS defines several annotation properties like rdfs:label

and owl:versionInfo. Also, annotation properties can be organized in subsumption hierarchies and

also offer the possibility to be described through other annotation properties. Furthermore, range,

as well as domain restrictions, can be defined.

OWL Datatypes denote data values (e.g., the name John is of the datatype xsd:string). OWL

already defines several datatypes like owl:rational or owl:real and also makes use of several XML

schema datatypes like xsd:float. In addition, datatypes can be further described with annotation

properties and also allow to define datatype definitions.
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2.2.2 Expressions, Axioms, Assertions, and Data Ranges

The most important concepts of OWL used within this thesis can be categorized in OWL expressions,

axioms, assertions, and data ranges. In this section, the used concepts of each category are explained

in greater detail.

OWL Expressions: OWL provides constructs for building complex expressions on classes

and properties, such as: intersection (Mother and Female), union (Male or Female), existential

restrictions (a class of Persons who have at least one child), universal restrictions (a class of Persons

who have only male children), minimum cardinality restrictions (a class of Persons who have

at least 3 children), maximum cardinality restrictions (a class of Persons who have at most 3

children), exactly cardinality restrictions (a class of Persons who have exactly 3 children), literal

value restrictions (a class of Persons who have children with the name Anna). Notice, that most of

these restrictions can also be applied for OWL object properties and OWL data properties. For the

sake of simplicity, the examples are provided only for the OWL class concept.

OWL Axioms: OWL defines several axioms, for example, class subclass axioms (Female sub-

ClassOf Person), disjointness axioms (Female disjointWith Male), equivalence axioms (Person

equivalent (Male or Female)), property domain axioms (if a person relates to a child with a hasChild

property, this person is also of class Parent), property range axioms (if a child relates to a person

with a hasMother relation, this person is also of class Female), inverse object property axioms (the

childOf relation is the inverse object property to hasChild), functional axioms (a child can have

only one mother), irreflexive object property axioms (A child cannot be its own child), symmetric

object property axioms (if a man is married to a woman also the woman is married to the man),

transitive object property axioms (parents are related to their children and also to the children of

their children). Notice that, also in this case the restrictions and examples are only provided for

OWL classes and sometimes for OWL object properties if they do not apply to OWL classes but

also can be found on, for example, OWL data properties.

OWL Assertions: Individual axioms make statements about individuals like positive property

assertions (Anna has John as a child), negative property assertions (Jack is not a child of Anna),

class assertions (Anna is of class Female), individual equality assertions (Anna uses the pseudonym

Anna123 on Facebook), individual inequality assertions (Jack and John are different persons).

Data Ranges: The ranges of Datatypes can be restricted by concepts like DataType Restrictions

(the age of a teenager has to be below 20), enumeration restriction of literals (e.g., days of the

weekends can be named Saturday or Sunday).
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2.3 SPARQL Protocol and RDF Query Language (SPARQL)

The SPARQL Protocol and RDF Query Language (SPARQL)[147] is designed to query and manipu-

late RDF-based data sources and can be considered as the successor of other RDF query languages

like RQL, SeRQL, TRIPLE, RDQL, N3, and Versa [65]. Within this section, the basic concept behind

SPARQL queries is introduced first (Section 2.3.1), while the second section focuses on some

SPARQL graph patterns and expressions used throughout this thesis (Section 2.3.2).

2.3.1 Basic concepts

In the following section, the basic structure of a SPARQL query is explained, starting with the

introduction of prefixes for namespaces through Lines 1-2 of Listing 2.1. Also, SPARQL queries make

use of a triple like syntax based on RDF as shown in Line 6, where the subject is "ex:Hervey", the

predicate is "foaf:knows", and the object is expressed through "?friend". As mentioned previously,

subjects are addressed through IRIs, which could be very long and shortened through the SPARQL

PREFIX concept. For example, the full IRI of the subject in Line 6 is "http://example.org/Hervey".

Line 4 gives an example of a possible query form. SPARQL defines several different query forms

like SELECT, ASK, CONSTRUCT, and DESCRIBE. The SELECT form is used to return the results of

variables and their bindings directly, while the ASK form returns a boolean value indicating if the

defined query pattern matches or not. In the case of Line 6, the SPARQL query shall return all

bindings of the ?friend variable (SPARQL variables are identified through a preceding question

mark). Furthermore, the DISTINCT keyword is used to remove duplicates from the result list.

Lines 5-7 specify the query pattern enclosed in the WHERE section. Within the WHERE section,

SPARQL offers the possibility to formulate very expressive query patterns. Finally, Line 8 shows

a further example of how the results can be modified. In this case, the LIMIT modifier with the

value ten states that at most ten results shall be returned for the given query. This ensures, that

the client is not overwhelmed if the query returns a large number of results. In combination with

1 PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/>
2 PREFIX ex : <ht tp :// example . org/>
3

4 SELECT DISTINCT ? f r i e n d
5 WHERE {
6 ex : Hervey f o a f : knows ? f r i e n d .
7 }
8 LIMIT 10

Listing 2.1 – Example SPARQL query.
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the ORDER BY modifier it is also possible to formulate statements like: Find the ten largest cities

in Europe.

2.3.2 Graph patterns and expressions

Within this thesis, several SPARQL graph patterns and expressions are used. To understand the

concepts used throughout this thesis the most important SPARQL concepts are now explained in

greater detail:

Graph patterns: SPARQL provides constructs to formulate complex graph-patterns such as:

SequencePath (the grandchild of a parent, see also Line 1 of Listing 2.2), AlternativePath (the

parents of a child, see also Line 2), ZeroOrMorePath (offspring of a person including the person

itself, see also Line 3), OneOrMorePath (offspring of a person without the person itself, see also

Line 4), OPTIONAL graph patterns (return also the married partner of a given parent if such a

connection exists, see also Line 5), the "a" keyword (a shortcut for the IRI "http://www.w3.org/

1999/02/22-rdf-syntax-ns#type", see also Line 6), UNION (allows to evaluate different graph

patterns in one query, see also Line 7).

Expressions can be used to manipulate graph-patterns with SPARQL binary and unary operators

such as: equals (evaluates to "true" if variable A and variable B are equal), greater (evaluates to

"true" if variable A is greater than variable B), less (evaluates to "true" if variable A is less than

variable B), greater equal (evaluates to "true" if variable A is greater or equal compared with variable

B), less equal (evaluates to "true" if variable A is less or equal compared with variable B), logical

and (evaluates to "true" if variable A, as well as variable B, can be evaluated to "true"), logical or

(evaluates to "true" if variable A or variable B can be evaluated to "true"), not (evaluates to "true" if

the variable evaluates to "false" and vice versa). Furthermore, SPARQL defines REGEX expressions

(evaluates to "true" if variable A matches the specified REGEX pattern), FILTER expressions (if

evaluated to "false" the given graph pattern is removed from the result set), COALECSE expressions

(returns the first expression without error), EXISTS expressions (returns "true" if the specified

graph pattern exists), BOUND expressions (returns true if the specified variable is bound to a

1 ? parent ex : hasChi ld /ex : hasChi ld ? grandChild .
2 ? c h i l d ex : hasMother | ex : hasFather ? parent .
3 ? person ex : hasChi ld* ? o f f s p r i n g .
4 ? person ex : hasChi ld+ ? o f f s p r i n g .
5 OPTIONAL {? parent ex : married ? par tner } .
6 ? person a ex : PersonType .
7 {graph pat te rn } UNION {graph pat te rn } .

Listing 2.2 – Example SPARQL graph patterns.
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concrete value), CAST expressions (casts a value to a specified datatype), DATATYPE expressions

(returns the datatype IRI of the specified variable). Finally, SPARQL also defines aggregate functions

like COUNT (counts the number of times a given expression is bound) and also allows to assign

variables through a special BIND statement.

2.4 Representational State Transfer (REST)

Representational State Transfer (REST) was introduced by Fielding in [46]. In his work Fielding

derives the REST architectural style from the very successful web. Finally, the following rules were

identified for a RESTful architecture:

Client-Server: Andrews et al. [8] defined a server as a process that handles repeatedly requests

from clients. From that point of view, a client triggers actions on a server and so, can be considered

the active part, while the server is the passive part and reacts based on the client requests.

Cache: A cache is a component that is placed between client and server and is able to serve

previously cached responses from the server for identical requests. This reduces the server load

and message latency.

Uniform interface: Fielding et al. [46] stated out, that the uniform interface is the central

feature that distinguishes REST from other network-based styles. The four defined constraints

for the REST interface are: the identification of resources; manipulation of resources based on

representations; self-descriptive requests and responses; hypermedia as the engine of application

state (HATEOAS).

Layered system: Garlan et al. [54] defined layered systems as hierarchically organized systems

where each layer provides a service to the layer above and uses services from the layer below. If

the inner layers are hidden from all except the adjacent outer layer, the coupling between systems

can be significantly reduced.

Statelessness: Statelessness in the context of client-server interaction means, that no session

state is allowed. To be more concrete, a client cannot take advantage of previously stored informa-

tion at the server, like, for example, some language settings, instead, all necessary information to

process the request must be included in each message.

Code-on-demand: Fugeta et al. [53] introduced the code-on-demand style to be able to

extend the functionality of the client application, without deploying a new application on the

client. However, this is only an optional requirement for the REST architectural style, because not

each client may support the necessary runtime environment.

Notice that, HTTP is not mandatory for REST but, of course, can be used as building block for

a REST architecture. However, the REST design pattern can be applied also to other technologies

without the usage of HTTP. Nevertheless, HTTP or to be more concrete the World Wide Web
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architecture is one very successful example of this paradigm. Based on that, the combination of

REST and HTTP is very promising and also would allow using the resulting architecture for web

mashups.
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3S TAT E O F S C I E N C E A N D

T E C H N O L O GY

In this section, an overview of existing products, techniques, and approaches that may be used,

modified, and/or extended to reach the goal of this thesis is given. Whenever suitable, the

State-of-the-Art is presented in other chapters of this thesis.

3.1 Web access to OPC UA information models

As already explained in Section 2.4, REST has five mandatory rules and one optional rule. In the

following, a closer look is taken if all these rules already can be fulfilled by OPC UA, or if some

changes have to be introduced into the OPC UA standard.

Client-Server: As stated out in Part 1 of the OPC UA specification, the basic architecture of

OPC UA is based on the client-server pattern.

Cache: Support of caching in the classic web is typically done by special response headers,

which allow intermediary servers to determine if the response could be served again for an identical

request. However, the typical OPC UA use case is to serve data from field devices. This data often

changes on a millisecond base. In OPC UA the client is able to specify a so-called "maxAge"

parameter for the Read service. A server now is able to serve a cached sensor value to the client,

as long as the timestamp of the latest cached value is in the requested client range.

Uniform interface: Each OPC UA Node can be seen as a resource. Node representations can

be constructed in such a way that the manipulation of resources could be done based on the

representation. Self-descriptive requests can be achieved by introducing a way to express the kind

of message (e.g., based on HTTP headers like the content-type header). The HATEOAS requirement

can be achieved through the mapping of OPC UA References to the hypermedia concept of links.

Layered system: The typical application domain of OPC UA consists of several layers, for ex-

ample, ShopFloor-layer, MES-layer, and ERP-layer. Because of that, the layered system architecture

is also part of the OPC UA architecture.
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Statelessness: The last mandatory requirement of REST cannot be fulfilled with OPC UA

version 1.03 and earlier because a client always has to establish a session to access the information

model of an OPC UA server. This is even true for services like Read or Browse. A session in

OPC UA is used to store some information, for example, the authorization information and the

requested locales. However, it is not enough to just identify all information, which is stored at

the client/server during the session set up, it is also necessary to check what kind of additional

concepts in OPC UA depend on sessions.

Code-on-demand: Typically an OPC UA server offers interfaces to applications through the

OPC UA information model. However, it is also possible to, for example, exchange code snippets as

part of the Value-Attribute of a Variable-Node. Eventually, every architecture that allows exchanging

of self-defined content in combination with meaningful meta-data can be used to exchange code

snippets. For example, the Value-Attribute could contain valid HTML code also including JavaScript

code and thus this optional requirement for a RESTful architecture can also be fulfilled by OPC UA.

In the following, different research approaches will be analyzed and evaluated.

RESTful Industrial Communication [63]: The authors introduced a RESTful OPC UA archi-

tecture. The architecture covers Client-Server, Cache, and the Layered system through REST

patterns very well. Based on the standard Read service of OPC UA also the Code-on-demand

requirement can be fulfilled well but might lack the correct MIME types for an automatic inter-

pretation by a web browser. However, because the authors have not shown any solution for the

dynamic Namespace- and ServerArray problem, it is likely that the Statelessness concept is not

addressed. In addition, also one important feature of an Uniform interface, HATEOAS, is not part

of the concept. Finally, Figure 3.1 shows the supported services of the approach.
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Figure 3.1 – Services are defined in the OPC UA standard. Services that are inherently stateless
are marked with a star [63].

OPC UA over CoAP [164]: This draft is also working on an OPC UA REST interface. However,

the approach seems to build on the findings of [63], which are already discussed above. Because

of that, the same statements should apply.

Protocol interoperability [39]: Also, this proposal is inspired by [63] and therefore the same

statements should apply. However, this concept only maps 7 services from OPC UA to a REST API.

HyperUA [123]: HyperUA offers a very nice web-based interface (see also Figure 3.2). The

problem of OPC UA, that each service that uses the Namespace- and ServerArray needs an active

session, is solved by still creating sessions and encoding all necessary information into the URLs.

While this approach also includes the HATEOAS paradigm and therefore offers a RESTful feeling,

finally, each client still has to create a session and therefore the service cannot fully leverage all

benefits of REST and also does not support Statelessness. Besides that, HyperUA even introduces a

concept for RESTful Subscriptions. Nevertheless, in this case, the Subscriptions are exposed through

a proprietary REST interface, which makes it impossible for standard OPC UA session-based as well

as session-less clients to access the Subscriptions. Eventually, HyperUA covers the Client-Server,

Cache, Uniform interface, and Layered systems requirements very well. The Code-on-demand

requirement could be addressed in a similar way than already discussed above.

29



3.1 Web access to OPC UA information models

Figure 3.2 – HyperUA Example Server [123].

dataFEED OPC Suite [146]: The dataFEED OPC Suite introduces a so-called REST client API.

After taking a closer look at the documentation and at the evaluation version of the software

framework, the REST API is identified as some kind of data push API. Basically one can define

so-called "Actions", which can be invoked by user-defined conditions and after that send a message

to a user-defined REST endpoint. In the end, it can be concluded that the dataFEED OPC Suite

REST API has other goals than this thesis.

KEPServerEX [85]: Kepware published an IoT-Gateway plugin for their OPC UA software

framework KEPServerEX. This plugin also offers a REST interface to access OPC UA data. The

basic concept behind this REST API is three predefined URLs, which allow someone to execute

some kind of read, write, and browse service. However, these services only have the name in

common with the corresponding OPC UA services and therefore are completely disjoint with the

goals of this thesis. For example, the browse service returns all "tags", which are configured for the

given REST server interface and not the References of OPC UA Nodes.

OPC UA PubSub [77]: Since version 1.04 of OPC UA also supports the publish-subscribe

communication paradigm (see also OPC UA Part 14), which also can be considered as a form of

Group-Subscriptions. Based on the fundamental different communication paradigm the Client-

Server, Uniform interface, Code-on-demand, and Layered system concept of REST cannot be
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covered. In contrast, the Statelessness requirement, as well as the Cache requirement are covered

very well.

Industrial Middleware [61]: This paper discusses a linked data architecture for OPC UA, also

leveraging an OPC UA REST API. The concept also uses the HATEOAS concept for interconnecting

different Nodes and therefore the Uniform interface requirement is covered very well. Besides

that, the authors seem to use a similar concept as the authors of [63], for introducing REST to

OPC UA, and therefore the same statements should apply.

Table 3.1 shows the fulfillment of the above-introduced requirements for the discussed research

approaches.

Table 3.2 shows how much of the different OPC UA services are covered by the different

research approaches.

In conclusion, Table 3.1 and Table 3.2 show the evaluation results of the different research

approaches mentioned above. Based on this evaluation several results can be derived. First,

statelessness is not addressed correctly in the actual research and still is an open research challenge.

Second, most of the current research struggles with HATEOAS principles (Uniform interface).

Third, a lot of OPC UA services cannot be accessed with REST APIs. Finally, it can be derived that

a complete REST interface for OPC UA still is an unsolved and open research challenge.
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Client-Server ++ ++ ++ ++ NA NA - - ++
Cache ++ ++ ++ ++ NA NA ++ ++

Uniform interface - - - ++ NA NA - - ++
Layered system ++ ++ ++ ++ NA NA - - ++
Statelessness - - - - - - - - NA NA ++ - -

Code-on-demand + + + + NA NA - - +
Sum (18): 12 12 12 14 0 0 6 14

Table 3.1 – Requirements and evaluation for OPC UA web access.
.

Legend: ++ = very well (3), + = well (2), - = partly (1), - - = not possible (0), NA = Not
Applicable (0)
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OPC UA Services

Research approaches
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Discovery (3) X X X NA NA X
SecureChannel (2) X NA NA X

Session (4) NA NA X
CreateSession X NA NA X

ActivateSession X NA NA X
CloseSession X NA NA X

Cancel NA NA X
NodeManagement (4) X X X NA NA X

View (5) NA NA
Browse X X X X NA NA X

BrowseNext X NA NA
TranslateBrowsePaths X X NA NA

RegisterNode NA NA
UnregisterNode NA NA

Query (2) NA NA
QueryFirst X X NA NA
QueryNext NA NA

Attribute (4) NA NA
Read X X X X NA NA X

HistoryRead NA NA X
Write X X X NA NA X

HistoryUpdate NA NA
Method (1) X X NA NA X

MonitoredItem (4) NA NA
CreateMonitoredItems X NA NA
SetMonitoringMode X NA NA

SetTriggering NA NA
DeleteMonitoredItems X NA NA

Subscription (5) NA NA
CreateSubscription X NA NA
ModifySubscription X NA NA

Publish NA NA
TransferSubscriptions NA NA
DeleteSubscriptions X NA NA

Sum (34): 13 13 7 17 0 0 0 18

Table 3.2 – Coverage evaluation of OPC UA services for web access.
.Legend: X = mapped (1), " " = not mapped (0), NA = Not Applicable (0)
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3.2 Semantics in OPC UA information models

OPC UA offers the capability to store very rich and standardized semantics in form of OPC UA

information models. However, for the use cases analytics, validation, and query of OPC UA data

models a mapping to the OWL/RDF(S) ecosystem would introduce several benefits, as it would

allow applying relevant existing tools from this ecosystem, rather than having to re-invent them in

the OPC UA world. The mapping in Chapter 5 aims to be the first such comprehensive mapping

from OPC UA to OWL.

For an understanding of the mapping it is necessary to understand that OPC UA information

models are built in a modular way (see Figure 3.3), where the OPC UA meta-model (Meta-Layer)

provides the basic building blocks for information models, continuing with the OPC UA core

information model (Base-Layer), which is provided by the OPC Foundation itself, followed by

OPC UA companions (Companion-Layer), OEM-specific schema extensions (Extension-Layer)

of OPC UA companions, and finally OPC UA instance models (Instance-Layer) that describe

configuration and data items of individual devices based on schemas of the Base-Layer, Companion-

Layer, and Extension-Layer. The mapping transforms OPC UA information models by translation of

the modules (levels Base-Layer - Instance-Layer described above) into RDF/OWL ontologies that

OPC UA Base Information Model
(e.g., BaseVariableType, ServerType, EngineeringUnits, ...)

OPC UA Meta Layer
(e.g., NodeClasses, Attributes, References, ...)

Device Vendor Information Model (Siemens)
(e.g., SimaticDeviceType, ...)

Companion Spec.
(e.g., TopologyElementType)

Machine Vendor Information Model
(e.g., CncMachineVendorDeviceType, ...)

Machine User Information Model
(e.g., ProcessType, FactoryElementType, ...)
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(e.g., ProcessA, FactoryElementArea1, ProductionDeviceA ...)
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Figure 3.3 – Overview of OPC UA Information Modeling [136].
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import each other in the same way the respective OPC UA modules do. Once this transformation is

performed, the resulting RDF/OWL ontologies can be used for the purpose of validation, querying,

and analytics. Figure 3.3 also depicts the typical OPC UA information model layers for each use

case.

One essential requirement to map OPC UA to OWL is that OPC UA constraints and semantics

(implicit and explicit) are transformed correctly to a formal ontology language like OWL. Only if

the concepts match on both sides, all benefits of Semantic Web technology can be unleashed and

used to solve the identified use cases. In the following, a short analysis of OPC UA semantics is

presented, revealing some of the issues which are preventing a trivial mapping to OWL.

Figure 3.4 shows an example information model of OPC UA based on [162]. The left side

of the picture contains a small fracture of a typical OPC UA TypeModel, which is provided by

a Companion Specification. Several Type-Nodes are defined, for example, a "CncChannelType",

a "CncAxisType" and also a "DataItemType". These Types are defined with special NodeClasses

in OPC UA (e.g., ObjectType-Node and VariableType-Node). Each Instance-Node (Figure 3.4 right

side) References its TypeDefinition with a special ReferenceType named "HasTypeDefinition". While

Type-Nodes (e.g., VariableType, ObjectType, etc. ) can be subtyped and therefore inherit semantics

and constraints from the supertype, the same is not true for Instance-Nodes (e.g., Variable, Object).

cnc:CncChannelType

opc:DataItemType

cnc:ActGFunc

cnc:CncPositionVariableType

cnc:PosTcpBcsA

cnc:CncAxisType

<CncAxis>

cnc:CncChannelType

loc:localCncChannel

opc:Organizes

opc:DataItemType

opc:PropertyType

opc:ValuePrecision

opc:PropertyType

cnc:CncPositionVariableType

cnc:CncAxisType

opc:DataItemType

cnc:ActGFunc

cnc:CncPositionVariableType

cnc:PosTcpBcsA

cnc:CncAxisType

loc:X1

Object-Node

ObjectType-Node

Legend

Variable-Node

VariableType-Node

opc:HasComponent opc:HasTypeDefinition

opc:HasProperty

InstanceDeclarations

TypeModel Instances

InstanceDeclarations

opc:Organizes

opc:BaseVariableType

opc:HasSubtype

Figure 3.4 – An example OPC UA information model for CNC machines [136].
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However, surprisingly also Instance-Nodes can be part of an OPC UA TypeModel. These special

Instance-Nodes are also called InstanceDeclarations within OPC UA. An InstanceDeclaration is a

Node that is defined in the context of a Type-Node and is used to model the sub-structure of a Type.

The sub-structure of the CncChannelType is depicted in Table 3.3. Each InstanceDeclaration is

defined by several characteristics. (1) The ReferenceType interconnects the defining Type-Node with

the InstanceDeclaration. It is also allowed to use a subtype of the concrete ReferenceType. (2) The

expected NodeClass and BrowseName (a BrowseName is a string with a NamespaceURI assigned to

it, for example, "http://opcfoundation.org/UA/CNC/" or in short "cnc:", as NamespaceURI and

"CncChannelType" as string part), which must be identical on each Instance-Node. (3) The DataType

(if applicable) and TypeDefinition (if applicable). Also in this case subtypes are allowed. Finally,

the corresponding ModellingRule is assigned. OPC UA defines several ModellingRules and also

allows to define new ModellingRules, if necessary. The Mandatory-ModellingRule, for example,

enforces, that each Instance-Node of the CncChannelType must Reference a Node similar to the

corresponding InstanceDeclaration. Similar in this case means, the same NodeClass and BrowseName

combined with the same DataType and TypeDefinition or a subtype (if applicable), Referenced by

the defined ReferenceType or a subtype of it. Similarly, there are Optional-ModellingRules, stating

that InstanceDeclarations are not compulsory on the instance level. The Placeholder-ModellingRule

is used if the BrowseName of the Instance-Node is not defined within the Companion Specification

and can be freely chosen for Instance-Nodes (only in combination with Variables or Objects).

A typical Companion Specification describes the semantics of these InstanceDeclarations in

textual form and in machine-readable form (OPC UA NodeSet). In the case of the ActGFunc

InstanceDeclaration from CncChannelType this is done like [162]: ActGFunc: "Array of active G

functions; there can be several G functions active at a time (modal and non-modal G functions).";

As shown above, the semantics of such Companion Specifications is very rich and can be used for

use cases like monitoring applications, which are able to find the necessary data points automatically

based on standardized semantics. However, as also depicted in Figure 3.4, OPC UA has some

Table 3.3 – CncChannelType definition (see also [162]).

Attribute Value
BrowseName CncChannelType
IsAbstract False
References BrowseName DataType TypeDefinition ModellingRule
Subtype of the CncComponentType
HasComponent ActGFunc String[] DataItemType Mandatory
HasComponent PosTcpBcsA CncPosDT CncPosVarT Mandatory
... ... ... ... ...
Organizes <CncAxis> CncAxisType OptionalPlaceholder
NOTE: This row represents no Node in the AddressSpace. It is a placeholder pointing
out that instances of the ObjectType will have those Objects.
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special modeling practices. For example, just consider the fact that the semantics of the ActGFunc

Instance-Node (right side of Figure 3.4) is defined by the InstanceDeclaration (left side of Figure

3.4), but the Instance-Node specifies the DataItemType as its Type and not the InstanceDeclaration.

While the connections between InstanceDeclarations and Instance-Nodes are pretty obvious for each

OPC UA expert, a typical Semantic Web expert would probably not have guessed these implicit

connections. Note that, there is no other direct Reference between an InstanceDeclaration and an

Instance-Node, the connection is implicitly made through the identical BrowseName. Of course,

OPC UA defines further rules to ensure that this concept always can be applied. For example, it

is forbidden to define two identical BrowseNames for InstanceDeclarations in the context of the

same Type. In contrast, a Semantic Web expert would have probably expected a new VariableType,

which is a subtype of DataItemType and is Referenced by the HasTypeDefinition-ReferenceType of an

Instance-Node. Exactly such modeling artifacts have prevented a trivial mapping from OPC UA to a

formal language like OWL till now because, for each OPC UA design pattern, the corresponding

concept and transformation rule must be identified.

Besides the concepts which are mentioned above, several additional main concepts to express

semantics in OPC UA can be identified:

ReferenceTypes are used to interconnect Nodes with each other. There are several different

ReferenceTypes already defined for OPC UA, but it is also allowed to define new ReferenceTypes. As

all other Type-Nodes ReferenceTypes are organized in a subtype hierarchy with the inheritance of

semantics and constraints.

DataTypes in OPC UA are used to define semantics and constraints for the Value-Attribute

of Variable- and VariableType-Nodes. Like ReferenceTypes, DataTypes are organized in a subtype

hierarchy, which can be used to refine semantics and to add additional constraints. For example,

the ByteString-DataType can be used as DataType for representing images. However, to add further

semantics the OPC Foundation subtyped this DataType with an Image-DataType. Of course, there

are plenty of different formats for images and also constraints that correspond to these formats

(e.g., meta information, encoding, etc.). Because of that, the OPC Foundation subtyped the Image-

DataType again and added further DataTypes like ImageBMP-DataType and ImageJPG-DataType.

Besides the normal use case of DataTypes described above, there exists a special DataType in

OPC UA, which is called Structure-DataType. This DataType can be used to combine several native

DataTypes into one single DataType. For example, a range can be described by two values. The

high-value for the upper limit of the range and the low-value for the lower limit of the range. In

some applications, it is crucial that both values can be read in one single transaction context, which

can only be reached in OPC UA by fetching a single Value-Attribute of a Node. However, in other

applications, this is not important and therefore the OPC Foundation introduced the notion of

ComplexVariables. ComplexVariables in OPC UA are based on Structure-DataTypes, which also define

the semantics of the fields (e.g., high-value and low-value). Single values (e.g., high-value) can also
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be exposed by additional Variable-Nodes, which only offer a single field of the Structure-DataType.

The connection between structure fields and the corresponding Variable-Nodes is done again based

on BrowseNames, similar to the InstanceDeclaration concept.

Attributes: There are several Attributes in OPC UA which can be considered semantic mean-

ingful like the Symmetric-Attribute of ReferenceType-Nodes.
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Namespaces - - - - - + ++ ++ ++

Attributes - - - - - - - +

DataType - - - - - - - - - - -

ReferenceType + - - - - + - + ++

ObjectType + + - - + + + -

VariableType + + - - + + + -

InstanceDeclaration - - - - - - - - - - - - - -

MethodInstanceDecl - - - - ++ - - - - - - - -

Instances (Object, Variable, ...) - + - + + + +

Sum (27): 9 7 5 12 11 13 12

Table 3.4 – Requirements and evaluation for OPC UA semantics.

.

Legend: ++ = very well (3), + = well (2), - = partly (1), - - = not possible (0), NA = Not
Applicable (0)

Table 3.4 shows the requirements for a full OPC UA semantics mapping. The Namespaces

requirement is used to identify if the layering of OPC UA information models is covered and

if the transformation can be done automatically. The Attributes requirement represents if all

semantic concepts of OPC UA Attributes (like the Symmetric-Attribute) are transformed correctly to
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3.2 Semantics in OPC UA information models

the corresponding semantic concepts within the Semantic Web. The DataType, ReferenceType,

ObjectType, and VariableType requirements represent how well these OPC UA concepts and the

corresponding semantics (like type hierarchy, inverse relations, constraints, etc.) are mapped to the

Semantic Web. The concept behind the InstanceDeclaration and MethodInstanceDeclaration

requirement is explained in great detail above and shows if the semantics are identified and

captured correctly. Finally, the Instances requirement (InstanceDeclarations are not included)

indicates if the semantics of Instance-Nodes is captured and transformed correctly to the Semantic

Web.

Industrial Middleware [61]: The paper describes a special OWL ontology for OPC UA. The

authors seem to define a new manual ontology for OPC UA and because of that the Namespace

requirement seems to be not covered. The Attribute and DataType requirement is covered high-

level but the paper does not provide details for concepts like domain, range, type hierarchy, mapping

to XML data types, structures, arrays, enumerations, etc. The ReferenceType, ObjectType as well

as the VariableType constraint seems to be covered well but no details on certain aspects like

inverse, type hierarchy, domain, range, OPC UA Properties, and cardinality are given. Concepts

for InstanceDeclaration and MethodInstanceDeclaration are not discussed at all in the paper.

Instances are modeled by the authors. However, no concepts for the correct typing (e.g., an

Instance is of type "opcua:Node") nor any constraints like mandatory and optional Attributes are

present in the publication.

Integrating OWL Ontologies in AML and OPC UA [31]: Bunte et. al. present an interesting

approach with a focus on the reversed mapping direction from OWL to OPC UA (see also Figure

3.5). Based on the published material it can be assumed that it is possible to translate OWL

namespaces to OPC UA and vice versa. However, the introduced way seems to be not compatible

to translate existing OPC UA Namespaces from Companion Specifications correctly to the namespace

concept of OWL. Attributes, DataTypes, ReferenceTypes, as well as InstanceDeclarations and

MethodInstanceDelcarations are not discussed at all by the authors. The ObjectType, Variable-

Type, and Instance concept is used heavily to map all OWL features to an OPC UA information

model. However, also in this case the mappings only should be able to correctly translate OPC UA

information models to OWL if they are modeled exactly as proposed by the authors, which is not

true for all OPC UA information models.
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Figure 3.5 – Transformed OPC UA information model from an ontology [31].

Semantics for OPC UA methods [82]: The authors developed a concept of how OWL-S[117]
can be introduced to OPC UA Methods. Regarding the MethodInstanceDeclaration concept the

proposed concept not only should be able to cover all features of the identified requirement,

moreover, the authors also found a way to introduce formalized concepts for pre- and postcondi-

tions of methods. Nevertheless, because the publication focuses exclusively on OPC UA Methods

other requirements that cannot be covered at all like Namespaces, DataType, ReferenceType,

ObjectType, VariableType, InstanceDeclaration. The Attributes and Instances requirement is

only covered partly.

OPC UA Reasoning [17]: Within this paper, the authors focus on an interesting transformation

of the OPC UA standard Namespace "http://opcfoundation.org/UA/" to an OWL ontology to show

some of the benefits of Semantic Web technology in several use cases like adaptable factories,

energy management, and human-machine-interfaces (see also Figure 3.6). The proposed mapping

of the standard OPC UA Namespace seems to be automatically generated. However, there seems

to be no concept for automatic import of other Namespaces like Companion Specifications. Table

3.5 shows the published transformation rules for the proposed approach. The Attributes and

DataType requirement is only covered partly and does not provide details for concepts like domain,

range, type hierarchy, mapping to XML data types, structures, arrays, enumerations, etc. The

ReferenceType is mapped well but without type hierarchy and constraints. ObjectTypes and

VariableTypes are mapped to a type hierarchy also in OWL but it seems that no constraints are

mapped like the mandatory and optional modeling rules as well as some PropertyType specific

constraints. The semantics behind InstanceDeclarations and MethodInstanceDeclarations is
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also not covered by the published content of the authors. Finally, Instances are typed correctly

but also seem to be modeled without constraints (e.g., Attribute constraints for each NodeClass).

Figure 3.6 – Example of an OPC UA information model (a) transformed into OWL DL (b) and
a SPARQL query asserting that all objects of type “BoilerType” have at least one temperature
sensor [17].
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OPC UA Concept OWL Concept

ObjectType, EventType Class HasSubType SubClassOf

HasProperty RDF Property

HasTypeDefinition RDF Type

HasComponent RDF Member

Object, Method, Reference, View Individual

Attribute “NodeId” Extended RDF resource uri

constructed with the namespace uri.

Attribute ”Datatype” Datatype or Class

Attribute “Value” DataHasValue

Attribute “Description” Literal

... ...

Table 3.5 – Excerpt of the transformation rules used to map OPC UA concepts into OWL concepts
[17].

OPC UA and the Semantic Web [98]: Majumder et. al. present a comparison between OPC UA

and the Semantic Web represented through RDF, RDFS, and OWL. The authors compare several

aspects of OPC UA with the Semantic Web like Views and Methods but in most cases do not provide

any details on a possible mapping. However, as also stated by the authors of [98], the paper is only

a first preliminary step in the journey for providing such a mapping. Table 3.6 shows the published

mapping elements of the authors. Namespaces of OPC UA are also mapped to namespaces

in OWL and Companion Specifications are also covered through the approach. Attributes and

ReferenceTypes are correctly mapped to the corresponding concepts in OWL but the paper does

not provide details for concepts like domain, range, type hierarchy, mapping to XML data types,

structures, arrays, enumerations, etc. ObjectTypes and VariableTypes are mapped to classes and

also the type hierarchy should be covered but also in this case no constraints (e.g., mandatory and

optional ModellingRules) are addressed. The concept behind DataTypes, InstanceDeclarations,

and MethodInstanceDeclarations is not discussed within the publication. Finally, Instances are

mapped to OWL individuals without constraints.
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OPC UA Semantic Web

OPC UA Semantic Web

ObjectTypes, VariableTypes owl:class

Instance of a type OWL Individual

HasTypeDefinition rdf:type

ReferenceTypes owl:objectproperty

Node attributes owl:datatypeproperty

HasSubtype owl:subClassOf

NodeID URI

query service SPARQL

Table 3.6 – Mapping Between OPC UA and Semantic Web modelling elements [98].

Ontology-Based OPC UA [150]: Steindl et. al. presents another interesting approach to

convert OPC UA information models into OWL ontologies. Within the publication the following

transformation rules are presented [150]:

• An rdfs:label is created for each resource from the OPC UA node’s DisplayName.

• All resources corresponding to an OPC UA node of node class ObjectType, VariableType, or

DataType are declared as owl:Class.

• All resources corresponding to an OPC UA node of node class ReferenceType are declared as

owl:ObjectProperty.

• All resources corresponding to an OPC UA node being the source of a HasTypeDefinition

reference are declared as individual of the corresponding class.

• All resources corresponding to an OPC UA node being the source of a HasSubtype reference

are declared as superclass of the corresponding class.

• All object properties, for which the corresponding OPC UA ReferenceType’s attribute Sym-

metric is set, are declared as symmetric property.

• For all object properties, for which the corresponding OPC UA ReferenceType’s attribute

InverseName is set, an inverse object property is created.

• All properties relating OPC UA nodes to their OPC UA attributes are declared as annotation

properties.
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Based on the published information it can be assumed that Namespaces are correctly mapped

to OWL namespaces and that Companion Specifications can also be translated automatically.

Attributes and DataTypes are mapped partly without details for concepts like domain, range,

mapping to XML data types, structure constraints, arrays, enumeration constraints, etc. Reference-

Types, ObjectTypes, and VariableTypes are mapped well but without constraints. Furthermore,

the type hierarchy of ReferenceTypes is only modeled in the OWL class concept. The publication

does not discuss InstanceDeclarations and MethodInstanceDeclarations. Eventually, Instances

are mapped also correctly to OWL individuals without constraints.

OPC UA NodeSet Ontologies [119]: The authors of this paper present OWL ontologies of

OPC UA information models for the integration of OPC UA semantics into semantic digital twins

of manufacturing resources. Furthermore, the authors describe a concept to further enrich these

ontologies with, for example, device and component skills, capability models, and geometry

models. Attributes are mapped well including range and domain constraints. DataTypes are

mapped partly but the paper does not provide details for concepts like type hierarchy, structures,

arrays, enumerations, etc. ReferenceTypes are mapped very well including type hierarchies and

characteristics like symmetric and inverseOf but no domain and range constraints. In contrast

to the very expressive ReferenceType mapping, the ObjectType and VariableType mapping is

quite simplistic as depicted in Figure 3.7. Neither types nor type hierarchies are covered but basic

constraints (e.g., Attribute constraints for NodeClasses) are modeled. The publication does not

present concepts for InstanceDeclarations and MethodInstanceDeclarations. Finally, Instances

are mapped well and even cover some basic Attribute constraints but based on the missing type

concept do not cover ModellingRule constraints of OPC UA types.

Figure 3.7 – Upper taxonomy of the OPC UA core ontology [119].

43



3.2 Semantics in OPC UA information models

In conclusion, Table 3.4 shows the evaluation results of the different research approaches

mentioned above. Based on this evaluation several results can be derived. First, the concept behind

InstanceDeclarations is not covered at all in actual research. Second, the modeling of OPC UA

constraints is only covered in parts by some researchers. Third, a complete translation of all

OPC UA semantics into the Semantic Web is not presented in one single concept. Eventually, this

leads to an open research challenge for the translation of OPC UA semantics to the Semantic Web.

3.3 Querying of OPC UA information models

Currently, a lot of activity around OPC UA information modeling can be observed. These activities

typically center around the enrichment of the OPC UA vocabulary, with the goal to describe

machines on a very detailed level. As more terms become available also the number of Nodes

per information model is raising. Furthermore, OPC UA becomes more and more popular on the

aggregating layers like edge and cloud. With this in mind, it can be assumed that sooner or later

the automation domain is faced with huge (standardized) OPC UA information models with very

detailed descriptions of the underlying physical devices. This introduces big opportunities for a

lot of use cases like analytics and human-machine interfaces (HMI), which can be programmed

against standardized information models, enabling the deployment on each machine independent

of the manufacturer without additional engineering effort. However, one important part to use

such OPC UA information models is still missing. Without some kind of query functionality it is

soon impossible to find the necessary data points on the aggregating layers like edge and cloud to

bind them to the apps (e.g., a predictive maintenance app for engines, which of course needs some

values from the engine itself, like temperature/power/...). It is worth noting that OPC UA offers

a query language for searching OPC UA information models, but up to now, there is no publicly

available implementation, as far as I know. Of course, it is not a practical solution to search the

graph node by node for each application (on cloud level ten-thousands of Nodes would have to

be searched by hundreds of apps in parallel). Another problem is that the OPC UA-specific query

language is so complex that some industry researchers even introduced an internal domain-specific

language for constructing OPC UA Queries [59].
As motivated above, some form of query capability is crucial for the further success of OPC UA

as Industrial Internet of Things protocol. Table 3.7 shows the main requirements for an useful

OPC UA query API based on OPC UA Query (see Section 2.1.3). The View row is based on the

view parameter of OPC UA Query in a similar way the NodeTypeDescription row is based on the

nodeTypes[] parameter and the Filter row is based on the filter parameter. The Limits row refers

to the concepts behind the maxDataSets and maxReferences parameter of OPC UA Query. Finally,
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the Part 4 Annex B row represents how many of the example queries of OPC UA Part 4 Annex B

Complex Examples can be correctly executed through the query API.

Industrial Middleware [61]: The paper mainly focuses on a Linked Data architecture and gives

insights into the mapping details. The authors also mention that it is possible to query the so-called

"LD cloud" with SPARQL. However, within the published content no concepts are presented for

Views, Filters, Limits, and Part 4 Annex B requirements. The NodeTypeDescription requirements

can be implicitly extracted out of the paper but also seems to not be covered completely (e.g.,

include subtypes feature is not mentioned in the publication).

OWL Ontologies in OPC UA [31]: Within the publication, a query feature is not mentioned at

all. Nevertheless, based on the presented transformation rules into the Semantic Web it should be

possible to cover certain aspects of the NodeTypeDescription requirement.

Semantics for OPC UA methods [82]: The authors developed a concept of how OWL-S[117]
can be introduced to OPC UA Methods. Based on the fact that only one OPC UA concept is covered

it should only be possible to cover parts of the NodeTypeDescription requirement.

OPC UA Reasoning [17]: This paper also discusses a concept to query OPC UA information

models. Nevertheless, the focus of the presented query features seems to be quite different

because no concepts are presented to address the View, Filter, Limits, and Part 4 Annex B

Requirements

Research approaches
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View NA NA NA NA - NA NA
NodeTypeDescription + + NA + + + +

Filter NA NA NA NA NA NA NA
Limits NA NA NA NA NA NA NA

Part 4 Annex B NA NA NA NA NA NA NA

Sum (15): 2 2 0 2 3 2 2

Table 3.7 – Requirements and evaluation for OPC UA Query.

Legend: ++ = very well (3), + = well (2), - = partly (1), - - = not possible (0), NA = Not
Applicable (0)
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3.3 Querying of OPC UA information models

requirements. In the end, the proposed query feature should be able to cover large fractions

of NodeTypeDescription requirement but a full coverage analysis is not possible based on the

published material.

OPC UA and the Semantic Web [98] also present first ideas on how SPARQL could be leveraged

to address certain aspects of an OPC UA query API like the View requirement. Furthermore,

the presented mapping between OPC UA and the Semantic Web should allow covering aspects

of the NodeTypeRestriction requirement. In contrast, the Filter, Limits, and Part 4 Annex B

requirements are not discussed in this publication.

Ontology-Based OPC UA Data Access [150]: Steindl et. al. present an interesting mapping

from OPC UA to the Semantic Web and also show how the resulting ontology can be queried with

SPARQL. Based on the published content the NodeTypeDescription parameter is covered well and

only small things like the ReferenceType hierarchy in form of object properties is missing to cover

all functions of the NodeTypeDescription. Furthermore, the authors present a very interesting

concept to query for historical data, which could be leveraged to provide a generic concept for

the History Services of OPC UA. The View, Filter, Limit, and Part 4 Annex B requirements are not

covered within this publication.

OPC UA NodeSet Ontologies [119]: The paper shows an approach how OPC UA information

models can be transformed into ontologies and also gives some insights into querying these ontolo-

gies. Based on the assessment of the published material it seems that the NodeTypeDescription

requirements can be covered well but full coverage is not shown. The View, Filter, Limit, and

Part 4 Annex B requirements are not covered within this publication.

In conclusion, Table 3.7 shows the evaluation results of the different research approaches

mentioned above. Based on this evaluation several results can be derived. First, certain features

of an OPC UA query language are not addressed at all like the Filter, Limits, and Part 4 Annex

B requirements or covered only in parts like the View requirement. Second, features like the

NodeTypeDescription can be covered well indirectly through the presented Semantic Web mappings.

However, also this feature is not covered completely by any of the presented research approaches

mainly due to the fact that a full-featured OPC UA query API is not the main goal for the presented

approaches. Finally, it can be argued that a full featured OPC UA query API still is an unsolved

and open research challenge. ´
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4W E B A C C E S S T O O P C UA

I N F O R M AT I O N M O D E L S

While OPC UA is very well suited as interoperability technology in the manufacturing domain,

up to now it can be considered only a niche technology in most other domains. In contrast, a

technology that is already present in nearly every domain is the REST architecture [46]. REST is

derived from the classic web, which is already connected to each domain in one way or another

and can be used to provide larger interoperability on the transport layer across different domains

for OPC UA. The basic idea of this work is to extend OPC UA with REST capabilities to finally

reach the status of an Internet-of-Things protocol. A lot of research was already done on this topic

[63, 164, 61, 39] but some challenges like the introduction of statelessness into OPC UA are still

not addressed in the research community. Parts of this chapter are also published in [137, 138].
The remainder of this chapter is structured as follows:

Section 4.1 introduces the basic design decisions behind the web architecture. Furthermore, the

section gives an overview of the different services of OPC UA and how these services are

mapped.

Section 4.2 summarizes the standardization contributions of this thesis, starting with an analysis

of OPC UA sessions and followed by details of the standardization proposal, which is now

part of the OPC UA specification since version 1.04.

Section 4.3 focuses on the mapping of services to the OPC UA information model. First, the

Discovery Service Set is discussed in greater detail. Second, a concept for RESTful batch

requests is presented.

Section 4.4 exemplifies how OPC UA can be mapped fully to HTTP. This includes the usage of

different HTTP verbs, additional HTTP headers, the usage of HTTP result codes, the URI

design, and the definition of resource representations.

Section 4.5 provides insights into how OPC UA Subscriptions are mapped to REST in an efficient

way.
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Section 4.6 gives an overview of REST design patterns, which can be used to add new features to

OPC UA like web browser support.

Section 4.7 introduces the prototypical implementation of the REST binding through examples.

Section 4.8 evaluates the findings and contributions of this chapter against the corresponding

research challenge. Furthermore, the section outlines further ideas and thoughts about the

web and OPC UA.

4.1 Overall Architecture

This section is structured into two main sections. In the beginning, the design decisions are

presented in greater detail (Section 4.1.1) followed by an overview of the mapped services (Section

4.1.2). The mapped services consist of newly introduced services to enhance the REST experience

of OPC UA, modified services to offer these services in RESTful environments, and unmodified

services that can be directly translated into the proposed REST design pattern. The mapping can

further be categorized into two main groups, HTTP based service implementations, and OPC UA

information model based implementations.

4.1.1 Design Decisions

In the following section, some insights into the architecture design goals, and the reasons why

they should be achieved are given.

Efficient SessionlessInvoke: As already discussed, OPC UA services which depend on NodeIds

and so on the Namespace- and ServerArray, need some further investigation. One goal here is to

introduce some new efficient service for session-less clients.

Uniform HTTP interface: For this approach, it is decided to use HTTP as the underlying

protocol, mainly because of huge client support (web browser/web server). To ensure compliance

with the REST rules, OPC UA has to be mapped to the uniform HTTP interface.

Batch support: Most OPC UA service sets already implement batch support. This feature

significantly reduces the overhead for clients and servers, if more than one value should be fetched

(the typical industry use case). Based on several expert discussions this feature is considered very

important for the industry domain to ensure the required request volume and because of that also

is one of the design goals of this thesis.

URI templates [49] are used to offer the client a recipe for URI construction. For example,

the URI template "https://host/{userName}{?knows}" could be used to construct the following

URI: "https://host/user?knows=sam", where the "userName" is "user" and the value for "knows" is

"sam". Besides the usefulness of such a concept for RESTful services, there is a lot of discussions

out there whether URI templates should be specified within some kind of document, or should only

48
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be discoverable during runtime [109]. However, there are several reasons, why the harmonization

of URI templates across OPC UA servers has more benefits than drawbacks. For example, most

actual OPC UA applications know exactly the NodeIds which they want to fetch from the OPC UA

server (e.g., the well-known NamespaceArray). These NodeIds are sometimes deeply nested in the

information model. The classical hypermedia approach, with only a single well-known entry-point,

would require that several "Browse"-Calls had to be made, which would yield a lot of overhead and

can be considered one of the major drawbacks of the HATEOAS approach [57]. Another reason is,

that a typical ExpandedNodeId OPC UA structure, which is the only way to link to server external

Nodes, could not be used as a link relation to another server if a common URI template is not

specified. Because of that, the benefits of harmonizing URI templates across servers outweigh the

drawbacks, in the case of OPC UA, and are also applied in the same way by a lot of very popular

web services like Amazon’s S3 [5], Google’s Gmail [60], Apple’s News API [13], and the Twitter

API [155].
Browser support: One of the greatest benefits of the classic web is, that it is not necessary to

install a special application for each web-application any longer. Instead, only one application

must be installed, also known as a web browser, and can be used for a lot of different applications

like webmail, online banking, shopping, and a lot more. It is reasonable to assume that this is

one of the main reasons, why nearly every device is shipped with a web browser or a web server

on board. This is also the main reason, why the REST-binding should also be compliant with a

simple web browser, similar to the Amazon S3 REST API [5]. In the end, this would enable the use

case to check a single OPC UA value without installing additional applications on most devices. It

would be also much easier to download the device documentation directly from the device’s OPC

UA server by simply tipping in a URL into a standard web browser.

Programming against the TypeDefinition is a concept in OPC UA, which allows someone

to find Nodes based on their BrowsePath. This is, for example, the preferred way to identify

Instance-NodeIds, based on their complex TypeDefinitions. For this use case, the TranslateBrowsePa-

thsToNodeIds service is introduced by the OPC Foundation. In a nutshell, this service allows you

to chain several Browse requests in one TranslateBrowsePathsToNodeIds request. If a common

URI template is introduced for that service, it would even be possible to apply this concept, in

combination with redirections, across several servers.

Resolution of ExpandedNodeIds: The last goal is to be able to resolve ExpandedNodeIds in a

simple way. This approach also depends on URI templates, because otherwise, it would not be

possible to construct a valid URL only based on the actual available OPC UA structures. Only if an

easy concept is introduced to link to other OPC UA servers, OPC UA is able to grow into a highly

distributed network of millions of connected devices like the web.
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4.1.2 OPC UA Service Overview

Table 4.1 shows all services of OPC UA and defines the mapping of these services to the REST

architecture pattern. The second column named IM marks if the given service is modeled with the

OPC UA information model (see also Section 4.3 for an example). The representation type for each

service is depicted in column three. Notice that, services with information model mapping depend

on the representation of other services like the Call-Service or the Read-Service. Furthermore,

services like OpenSecureChannel and CloseSecureChannel are directly mapped to the HTTPs binding

of OPC UA, while services like Cancel, RegisterNode, and UnregisterNode are mapped to RESTful

design patterns (see also Section 4.6.3 and Section 4.6.4). Finally, Table 4.1 contains also new

services. New services are introduced to allow, for example, a common concept for pagination.

OPC UA addresses pagination typically with designated *Next services (e.g., BrowseNext). However,

one exception from this design pattern can be found in the HistoryRead service, which integrates

the pagination directly into the HistoryRead-service. The benefit from introducing an uniform *Next

interface is explained in more detail in Section A.1.4.3. Another new service is the ModifyReferences

service. This service is introduced to make use of JSON-Patch [29] semantics for the modification

of OPC UA References (see also Section A.1.4.5) and, therefore, acts as a further example on

how accepted design patterns of the World Wide Web can be integrated into the OPC UA REST

binding. The ResolvePath service is used to simplify the BrowsePath concept in a RESTful way and

is explained in greater detail within Section 4.6.5. Eventually, this mapping also covers RESTful

subscriptions. Of course, subscriptions can be considered stateful by definition. However, it is also

possible to design RESTful subscriptions. An example of such a design is introduced in Section

4.5. As already mentioned above some of the services are discussed in the following sections,

while other services are not discussed at all. The main goal behind this work is to transport design

principles rather than doing direct standardization work. For this reason, the most challenging

and interesting services are selected to act as examples for the abstract mapping.

4.2 Standardization

The focus of the upcoming sections is all about contributions to the OPC UA standardization.

First, Section 4.2.1 details the session concept of OPC UA, which prevents the introduction of the

REST design pattern into OPC UA. Second, based on the analysis results of the previous section a

new OPC UA service is constructed and contributed to the OPC UA standardization to allow the

execution of OPC UA services without active sessions. Third, the standardized HTTP(S) API of the

OPC Foundation is explained in greater detail.
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Service IM Mapping Type

Discovery X OPC UA information model
SecureChannel

OpenSecureChannel OPC UA HTTPs binding
CloseSecureChannel OPC UA HTTPs binding

Session
CreateSession Mapped trough SessionlessInvoke (see Section 4.2.2)
ActivateSession Mapped trough SessionlessInvoke (see Section 4.2.2)
CloseSession Mapped trough SessionlessInvoke (see Section 4.2.2)
Cancel X Mapped to a TaskHandle concept (see Section 4.6.3)

NodeManagement
AddNodes X OPC UA information model
AddReferences X OPC UA information model
DeleteReferences X OPC UA information model
(new) ModifyReferences Direct HTTP Mapping (see Section A.1.4.5)
DeleteNode Direct HTTP Mapping

View
Browse Direct HTTP Mapping (see Section A.1.4.2)
BrowseNext Direct HTTP Mapping (see Section A.1.4.3)
TranslateBrowsePaths Direct HTTP Mapping
RegisterNode X Direct HTTP Mapping (see Section 4.6.4)
UnregisterNode X Direct HTTP Mapping (see Section 4.6.4)
(new) ResolvePath X Direct HTTP Mapping (see Section 4.6.5)

Query
QueryFirst Direct HTTP Mapping
QueryNext Direct HTTP Mapping (see Section A.1.4.3)

Attribute
Read Direct HTTP Mapping (see Section A.1.4.1)
(modified) HistoryRead Direct HTTP Mapping
(new) HistoryReadNext Direct HTTP Mapping (see Section A.1.4.3)
Write Direct HTTP Mapping
HistoryUpdate Direct HTTP Mapping

Method
Call Direct HTTP Mapping (see Section A.1.4.4)

MonitoredItem X OPC UA information model (see Section 4.5)
Subscription

CreateSubscription X OPC UA information model (see Section 4.5)
ModifySubscription X OPC UA information model (see Section 4.5)
Publish X OPC UA information model (see Section 4.5)
TransferSubscriptions X OPC UA information model (see Section 4.5)
DeleteSubscriptions X OPC UA information model (see Section 4.5)
(new) CreateGroup X OPC UA information model (see Section 4.5)
(new) DeleteGroup X OPC UA information model (see Section 4.5)

Table 4.1 – Service Set Overview.
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4.2.1 OPC UA sessions

As identified in the analysis chapter (Section 3.1), the OPC UA session concept is the final challenge

that stands between OPC UA and the REST architecture. A session has two major responsibilities in

OPC UA: First, storing some information on client and server. Second, guaranteeing the consistency

between the client and server state. All information of the first category can be identified as the

information, which is only transferred once during the session set up, for example, the locales.

However, identifying all information of the second category is a little bit more challenging. For

that, an analysis is necessary to identify what kind of information is only guaranteed to be stable

within a session. However, before the second category can be addressed, another OPC UA concept

must be introduced first.

The so-called NamespaceArray in OPC UA contains an array of URIs. In a nutshell, the Names-

paceArray is some kind of lookup table, which is used to replace long URIs through small indices.

Based on this concept, NodeIds and ExpandedNodeIds only contain the corresponding index value,

also called NamespaceIndex in OPC UA, for the URI, instead of a long URI. For example, the NodeId

with NamespaceIndex 2 (see also the top of Figure 4.1) refers to the third element of the Names-

paceArray (e.g., "http://opcfoundation.org/UA/DI"). OPC UA Part 5 defines the NamespaceArray

as dynamic, which means, that the content of this array can be changed during runtime (see

also Figure 4.1). NodeIds and ExpandedNodeIds are used in most of the OPC UA services (e.g.,

Read / Write / Browse / ...) and because of that, the content of the NamespaceArray has to be

cached during the start-up phase by each client. Stale client caches and the fact that changes of

the NamespaceArray during runtime are explicitly allowed, lead to the problem of Figure 4.1. The

example session-less client wants to display the temperature based on the red Node (previously

addressed through the NamespaceIndex "2" and the numeric identifier "1" - see also top of Figure

4.1), but fetches the value of the blue Node (after the updated NamespaceArray addressed through

the NamespaceIndex "2" and the numeric identifier "1" - see also bottom Figure 4.1) after the

NamespaceArray was changed. Of course, such behavior cannot be tolerated for any application.

So, Part 5 also restricts the way in which these arrays can be altered. For example, a server is not

allowed to change these arrays in such a way during an active client session. If a client has an

open session, the server can only add some new entries but is not allowed to alter existing entries.

But of course, such changes can be done during a reconfiguration, or a reboot, if all sessions are

terminated during the process. If the session of a session-based client is terminated, also the cached

values for the Namespace- and the ServerArray are not valid any longer and have to be re-fetched

if a new session is established. The problem here is of course, that a session-less client cannot be

sure if such a change happens during two subsequent calls.
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A B C D E F G H

Session-less client (2,1)

(2,1)

(2,1)
(3,1)

OPC UA Server

A B D C E F G H

Session-less client (2,1)

(3,1)

(3,1)
(2,1)

OPC UA Server

NamespaceArray

NamespaceArray

red blue

red blue

NamespaceIndex (2)

Identifier (1)

NamespaceIndex (3)

Identifier (1)

Figure 4.1 – Consequences of a changed NamespaceArray during runtime, without further
preparations [137].
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4.2.2 SessionlessInvoke

As previously stated, OPC UA cannot be considered stateless, even for services like Read or Browse.

This is mainly because of the fact, that the Namespace- and ServerArray are only guaranteed to be

stable within a session.

In Table 4.2 the service signature of the SessionlessInvoke service is shown. The (+) marks are

the contributions of this thesis to the standardized service. A client is able to use SessionlessInvoke

in two ways. One way is to specify the used namespaceUris and serverUris for each call and the

other way is to set a so-called urisVersion in each call. The idea behind the first approach is

straightforward and is not further discussed here. However, the second approach needs some

further explanation. The basic idea behind the urisVersion is to versionize the Namespace- and

ServerArray. Every time one of these arrays is changed, also the urisVersion must be altered. The

urisVersion is introduced as new Property of the OPC UA ServerObject. Of course, a server has to

ensure consistency between the UrisVersion Property and the Namespace- and ServerArray. This,

for example, could be ensured by using the same semaphore. With that in mind, the concept is

also straightforward. In the beginning, a client fetches the NamespaceArray, ServerArray, and the

corresponding UrisVersion. The value of the UrisVersion Property has to be unique across restarts.

This can be, for example, ensured through the usage of a time stamp in combination with time

synchronization. After that, a client assigns the NamespaceIndices based on the cached arrays

and sets the urisVersion field to the also cached UrisVersion value. An OPC UA server now only

has to check if the SessionlessInvoke urisVersion field matches the local UrisVersion Property of

the server. If this is not the case because, for example, the NamespaceArray was changed in the

meantime, the server discards the request and informs the client about the stale cache values with

a BAD_VersionTimeInvalid StatusCode. After that, a client has to refresh its cache and then is able

to retry the request. To ensure cache consistency on the client-side, the client should first fetch

the UrisVersion Property in a single request and after the response is received, try to fetch both

arrays. This is necessary because in general there is no transaction context and also no sequential

execution guarantee between different items in a batch request. However, it might be possible that

Name Type Name Type

Request Response
(+) urisVersion VersionTime namespaceUris[] String
namespaceUris[] String serverUris[] String
serverUris[] String serviceId UInt32
(+) localeIds[] LocaleId body *
serviceId UInt32
body *

Table 4.2 – SessionlessInvoke service parameters [77].
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some OPC UA servers support this feature within a single batch request, but this should not be

assumed in general. Besides the above mentioned contributions, more contributions are made to

correct some problems in combination with SessionlessInvoke, like the redefinition of the Method

description: "Each Method is invoked within the context of an existing session" (OPC UA Part 3

V1.03).

4.2.3 Standardized HTTP(S) API of OPC UA

Section 2.1 introduced the possibility to use HTTP(S) as a transport layer for OPC UA. The

initial main reason for this mapping is the now deprecated SOAP (Simple Object Access Protocol)

binding of OPC UA. However, it is also possible to use OPC UA in combination with HTTP(S)

without SOAP. Furthermore, in V1.04 of the OPC UA specification, the HTTP(S) section was

extended for the newly added SessionlessInvoke-Service. Part 6 of OPC UA V1.04 now also allows

invoking Session-less Services via HTTPS POST. In this case, the HTTP Authorization header shall

have a bearer token as an access token provided by the Authorization Service. In addition, the

content-type header shall be used to specify the encoding (e.g., "application/opcua+uabinary"

or "application/opcua+uajson"). Finally, this allows to leverage HTTPS POST to invoke OPC UA

services through the SessionlessInvoke-Service. However, this mapping cannot be considered a REST

mapping according to Fielding [46] because, for example, every service call is mapped to HTTP

POST and also the resource representation is not self-descriptive. Because of that, the following

sections provide further insights into a REST mapping derived from the guidelines of Fielding.

4.3 Information Model Mapping

In Section 4.1.2 two main categories for the service mapping are identified. In the following,

service mappings modeled with OPC UA information models are shown in an exemplary way

through the Discovery Service Set (Section 4.3.1). In addition, Section 4.3.2 focuses on the question

of how batch support can be introduced into a REST architecture for OPC UA.

4.3.1 Discovery Service Set

The Discovery Service Set acts as an example for all information model services of Table 4.1. Figure

4.2 depicts one part of the Discovery Service Set information model. The NodeManagement-Object

of RegisteredServersType-ObjectType is the entry point in a list of complex Variables of type

RegisteredServerType. Each registered server generates exactly one entry in the list with the

ServerId as BrowseName. The structure of the VariableType RegisteredServerType is based on the

RegisteredServer structure from OPC UA Part 4. In addition, the NodeManagement-Object also
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rs:FolderType

rs:Discovery

rs:RegisteredServersType

rs:NodeManagement

opc:Organizes

rs:FindServers rs:RegisterServer

rs:RegisteredServerType

<ServerId>

opc:BaseDataVariableType

rs:ServerUri

opc:BaseDataVariableType

rs:ProductUri

opc:BaseDataVariableType

rs:ServerNames

opc:BaseDataVariableType

rs:ServerType

opc:BaseDataVariableType

rs:DiscoveryUrls

opc:BaseDataVariableType

rs:SemaphoreFilePath

opc:BaseDataVariableType

rs:IsOnline

opc:BaseDataVariableType

rs:GatewayServerUri

Figure 4.2 – Discovery Service Set information model.

1 Signature
2

3 FindServers (
4 [ in ] S t r ing endpointUrl
5 /* Loca l e Id s are moved to header */
6 [ in ] S t r ing [ ] p r o f i l e U r i s
7 [ out ] EndpointDescr ip t ion [ ] s e r v e r s
8 ) ;

Listing 4.1 – FindServers method signature.
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contains two Method-Nodes. Both Methods represent the corresponding services of the Discovery

Service Set. The signature of the FindServers-Method is shown in Listing 4.1. Line 5 of Listing 4.1

also shows that in some cases service parameters have to be modified. In this case, the parameter

localeIds is already present in the header of the SessionlessInvoke-service, which is used as an

envelope for all other services (see Section 4.2.2). Because of that, the localeIds parameter can be

omitted in the Method signature. Besides calling the RegisterServer-Method also the AddNodes-

service of OPC UA Part 4 can be used to achieve the same behavior. Notice that, OPC UA also

defines a concept of client-side Object creation in OPC UA Part 3. OPC UA Part 3 defines special

semantics for ObjectType-Methods with the BrowseName "Create". This special Method has to be

attached to an ObjectType and creates an instance of the given ObjectType during execution. In

contrast to the AddNodes-service, such a Method can also be used to set initial parameters for

substructures of the ObjectType-Instance. However, if it is assumed that the RegisterServerType

would be an ObjectType instead of a VariableType some usability problems in combination with

a RESTful architecture would arise. In the example of Figure 4.2 the Create-Method would

be attached to the RegisteredServerType instead of the NodeManagement-Object. While this

solution offers standardized semantics based on the OPC UA specification it still might be harder

for non OPC UA users to figure out the semantics on how new servers can be registered by just

browsing the AddressSpace. This can be explained through the violation of one REST paradigm

named self-descriptive representations. In this case, a client has to be aware of this OPC UA-specific

concept and has to look up ObjectTypes for "Create"-Methods. In contrast, the create function

(RegisterServer-Method) of Figure 4.2 is also part of the representation of the list object itself. In

this case, the description of how to manipulate the list object (e.g., adding new servers) is part of

the representation.

For endpoints, a similar structure is introduced with the Endpoints-Object of type EndpointsType

as the entry point in a list of the complex Variables of the EndpointType-VariableType. Also in this

case, the Endpoints-Object contains a Method with the BrowseName GetEndpoints to offer the

corresponding service of OPC UA Part 4. In conclusion, the design pattern can be summarized in

the following way:

1. Define Structures for complex service parameters (e.g., RegisteredServerType)

2. Find a representation of the service in the OPC UA information model (e.g., a list like

RegisteredServersType)

3. Expose the service based on the representation (e.g., FindServers-Method in combination

with structured Objects and/or Variables).
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4.3.2 Batch support

Most OPC UA services support batch requests. This feature allows specifying more than one item

per service request. The main reason for this feature is to reduce the data on the wire and the

necessary processing overhead in client and server applications. Classic REST APIs on the other

hand are often optimized to access single resources. This is mainly because of the different use

cases. For example, it often makes no sense to request all web-pages of a certain domain or all

objects from a given Amazon S3 bucket. Another reason is, that big web services are hosted by a

lot of servers, often with caches and load balancers in front of them. Because of that, it would

even make more sense to break down batch requests into single requests and distribute them to

different servers. In contrast, a typical OPC UA server runs on an embedded controller, which

is often the only source for the data. Having identified the necessity of batch requests, several

concepts are proposed, how batch requests can be mapped to this RESTful OPC UA API:

1. Definition of some kind of batch-Node, which can be configured through the client by adding

special References (see Figure 4.3a).

2. Definition of a Method, similar to the classic OPC UA Read service (see Figure 4.3b).

3. Definition of a special batch URL for receiving and processing concatenate REST requests,

similar as depicted in Listing 4.2.

The first concept is depicted in Figure 4.3a. In this case, a special VariableType named

BatchBucketType is introduced. With the AddReference-service a client can add HasBatchObject-

ReferenceType References. A HasBatchObject-ReferenceType is a subtype of the HasOrderedCompo-

nent-ReferenceType of OPC UA Part 3. The HasOrderedComponent-ReferenceType has the special

characteristic that for each Browse-service request the References are returned in the same order.

1 [
2 {
3 " h re f " : " / i=84/BrowseName " ,
4 " method " : " get "
5 } ,
6 {
7 " h re f " : " / i=2255/Value " ,
8 " query " : { " timestampsToReturn " : 2} ,
9 " method " : " get "

10 }
11 ]

Listing 4.2 – OPC UA RESTful batch request (inspired by [128]).
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opc:FolderType

opc:OPC UA Root

opc:FolderType

opc:Objects

rs:LightType

rs:KitchenLight

opc:PropertyType

rs:IsOn

opc:Organizes

rs:LightType

rs:KitchenLight

opc:PropertyType

rs:IsOn

opc:Organizes

opc:Organizes

rs:BatchBucketType
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(b) Method-based batch services.

Figure 4.3 – OPC UA information model concepts to expose batch requests.

Furthermore, the target Node of a HasBatchObject-ReferenceType must be of the NodeClass Variable.

The Value-Attribute of the BatchBucketType-Instance returns an array of DataValues with the size

of the number of HasBatchObject-References. Each entry of the array includes the Value-Attribute

of the corresponding target Node of a HasBatchObject-References. The order is based on the return

order of the Browse-service. After the creation of such a Variable a client is able to execute batch

reads and batch writes on the defined group by simply reading or writing the Value-Attribute of

the BatchBucketType-Instance.

The second concept is displayed in Figure 4.3b with an example information model of the

batch versions for the Attribute Service Set and the Node Management Service Set. This case is

similar to the concept of how the Discovery Service Set is mapped into the information model (see

also Section 4.3.1).

The third concept is exemplified through a concept which is inspired by [128] (see also Listing

4.2). In this case, a client can serialize several REST requests including the URI, the HTTP-verb,

headers, query arguments, etc. in a single JSON message and sends them with a POST request to

the server. Of course, it would also be possible to further optimize this concept with shared values

(e.g., the definition of one header-value for a group of objects).

While the first two approaches look more natural to an OPC UA client, the third one may look

more familiar to typical web clients. However, the second approach should be the approach with

the lowest implementation effort. In the end, all three approaches can be used to introduce batch

capabilities in a RESTful OPC UA API. For the prototype, the second approach is chosen because

this is, besides the lowest implementation effort, also a chance to show some Method NodeClass

related concepts of the design.
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4.4 HTTP mapping

Within this section, several aspects of the REST-based HTTP mapping are discussed. In the

beginning, Section 4.4.1 gives a brief overview of how different HTTP verbs are mapped to OPC UA

services and what kind of resource representation is exchanged during the service execution.

Followed by the overview, Section 4.4.2 provides the mapping of OPC UA parameters to HTTP

header and query arguments. Section 4.4.3 outlines the design rationale behind the mapping

of result codes, while Section 4.4.4 opens a discussion about URI generation schemes. Finally,

Section 4.4.5 introduces one of the most important resource representations of the REST mapping.

4.4.1 Mapping to HTTP verbs

Within Annex A.1.2 Table A.4 shows details of the basic approach of how some of the abstract

services from OPC UA can be mapped to HTTP. Of course, it is not enough to only specify how

OPC UA services should be mapped to HTTP, instead, one of the main topics of each REST-binding

is the description of the resource representations.

4.4.2 Header and Query Mapping

Within Annex A.1.3 Table A.5 provides details of the mapping between common OPC UA parameter

(the first column) and HTTP-Headers (the third column).

4.4.3 ResultCodes

In general, OPC UA also defines result codes for the different service requests similar to HTTP

return status codes. Also, these codes can be translated into each other. For example, the OPC UA

result code "Good" can be mapped to the HTTP status code "OK". The mapping could even be

improved further through the introduction of so-called sub status codes. An example of such a

code is the 403.2 for read access forbidden and 403.3 for write access forbidden as defined by

Microsoft’s IIS 7 [72]. However, most standard web clients would not be aware of OPC UA sub

status codes and OPC UA optimized web clients should use the StatusCode directly through the

corresponding header of Table A.5. Because of that, only a mapping between the well-known more

abstract status codes seems beneficial.

4.4.4 URI design

The basic design pattern of REST does not talk a lot about the design of URIs. In contrast, most so-

called "REST architectures" wrongly exclusively focus on the URI design and how certain functions
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and/or structures can be encoded in URI templates. As also explained previously, the idea behind

REST is much more than just the correct usage of HTTP and URIs. However, in practice it is often

beneficial to also think about URI patterns. The main reason for that is, that such a pattern also

forces the developers to consider the underlying resource structure, which in most cases leads to a

more RESTful design in the end. For this thesis, an URI generation schema is designed, which is

exemplified in Annex A.1.1 and is used to generate the URIs throughout this thesis. Notice that,

most of the REST designs discussed in this chapter do not depend on any URI generation schema

but could be easily combined with them. Furthermore, the definition of URI patterns also leads to

a closer coupling of client and server, which is typically the main reason why URI patterns should

not be provided/standardized in a RESTful design.

4.4.5 Resource Representation

In addition to the MIME-Types of Table A.4, Table 4.3 specifies the mapping for default OPC UA-

DataTypes. The generation schema can easily be guessed for the missing DataTypes.

Furthermore, also a new DataType-Property “DefaultMimeType” (see also Table 4.4) is intro-

duced. This Property is used in combination with the Read service. If a web client uses the Read

service to request the Value-Attribute of a Node and the DefaultMimeType-Property is present, the

server shall set the Value-Attribute of the DefaultMimeType-Property as Content-Type and serialize

the payload accordingly. In most cases, a web browser is able to directly display PDFs or image for-

mats like BMP. However, not each supported MIME type is also published through the Accept header.

For this case, a server shall always return the "DefaultMimeType" if not explicitly an OPC UA-specific

format is requested by setting the Accept header to, for example, application/opcua+json.

Besides the standard OPC UA DataTypes and some special features of the Read service in

combination with the Value-Attribute the most important resource representation is returned by

DataType MIME-Type

Boolean application/opcua.Boolean+json
application/opcua.Boolean+binary
application/opcua.Boolean+xml

SByte application/opcua.SByte+json
application/opcua.SByte+binary
application/opcua.SByte+xml

... ...
DiagnosticInfo application/opcua.DiagnosticInfo+json

application/opcua.DiagnosticInfo+binary
application/opcua.DiagnosticInfo+xml

Table 4.3 – OPC UA DataType to MIME-Type mapping.
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1 {
2 " a t t r i b u t e s " : {
3 " NodeIdValue " : {
4 " NodeId " : {
5 " namespace " : 1 , [ . . . ]
6 " h re f " : "<host>/1/s=1:Boolean "
7 } , [ . . . ]
8 } , [ . . . ]
9 " Value " : {

10 " h re f " : "<host>/1/s=1:Boolean/Value " , [ . . . ]
11 }
12 } ,
13 " re fe rencesSta tusCode " : 0 ,
14 " r e f e r e nc e s " : {
15 " ( ! i=0:47) s=1: S t a t i c V a r i a b l e s F o l d e r " : {
16 " nodeId " : { [ . . . ]
17 " h re f " : "<host>/1/s=1: S t a t i c V a r i a b l e s F o l d e r "
18 } , [ . . . ] } , [ . . . ]
19 } ,
20 " forms " : {
21 " DefaultRead " : { [ . . . ]
22 " h re f " : "<host>/1/s=1:Boolean /{ attr ibuteName }
23 {? opcuaAuthenticat ionToken } " ,
24 " method " : "GET" ,
25 " ur iTemplate " : t rue ,
26 " jsonschema " : {
27 " type " : " o b j e c t " ,
28 " p r o p e r t i e s " : {
29 " attr ibuteName " : {
30 " type " : " s t r i n g " ,
31 " d e s c r i p t i o n " : " The a t t r i b u t e name" ,
32 "enum" : [ " NodeId " , . . . ]
33 } , [ . . . ]
34 } ,
35 " requ i red " : [ " attr ibuteName " ]
36 }
37 } , [ . . . ]
38 }
39 }

Listing 4.3 – Example of application/opcua.NodeRepresentation+json (simplified).
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Name Use DataType Description

Standard Properties
DefaultMimeType O String The default MIME type of the DataType.

In the case of DataType ImagePNG the
Value-Attribute of this Property would be
"image/png" according to IANA [75].

Table 4.4 – Additional MIME type Property for DataTypes.

the Browse service (see also Listing 4.3). The basic structure of this representation consists of

three parts: attributes, references, and forms. In the attributes section all Attributes of a given

Node are summarized, while the reference section offers all References of the Node. However, the

form section might not be expected by an OPC UA user. One of the preconditions of a RESTful API

is, that a client should be able to explore all service functions without additional documentation

[47]. If this basic concept behind REST is taken into consideration, it is not enough to only display

somehow that there are additional resources, for example, the StaticVariableFolder resource,

instead, also all necessary information to access the resource must be provided to the client. This

is done by introducing a new field in the OPC UA NodeId structure with the name href. The value

of the href field is a valid URL to the target Node of the ReferenceDescription structure. The href

field "<host>/2/s=1:Boolean" references the NodeId with the string identifier Boolean defined in

NamespaceIndex 1. In addition, the SessionlessInvoke urisVersion 2 is specified in the URI (between

<host> and the NodeId). Notice that, this additional field does not force OPC UA architects to add

additional information to already existing information models, instead, it can be easily generated

automatically out of existing information. But expressing all possibilities with links would add a

large amount of data to each representation. For that reason, the form section is introduced. In

this section, it is possible to express the standard functions of the service based on URI templates

[49]. In the forms section of Listing 4.3 an example for a possible Read URI template is given. For

performance reasons, this section can also be suppressed through special filter settings.

A typical graphical OPC UA Client, like UAExpert [158], often offers some kind of template if the

OPC UA Call service is invoked by the user. This template is based on well-known OPC UA properties,

which are part of each Method-Node. However, a typical web client is not aware of these OPC UA-

specific conventions. Because of that, the form section also provides some additional information

if OPC UA Method-Nodes are involved. The most important part of such a representation is depicted

in Listing 4.4. The representation provides all necessary information, including the target URL, the

HTTP method, and the expected Content-Type. The section requestSchema and responseSchema

provide an URL to the corresponding schema description for the request/response Content-Type.

This is done to reduce the amount of data for clients which already know how to formulate a

valid request for this Method-Node. Nevertheless, a generic client still is able to request a schema
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1 {
2 " h re f " : "<host>/1/s=1: A t t r i b u t e S e r v i c e S e t " ,
3 " method " : "POST" ,
4 [ . . . ] ,
5 " accep t s " : [ " a p p l i c a t i o n /opcua . Ca l lReques t+j son " ] ,
6 " requestSchema " : {
7 " h re f " : "<host>/1/s=1:Read/RequestSchema "
8 } ,
9 " responseSchema " : {

10 " h re f " : "<host>/1/s=1:Read/ResponseSchema "
11 }
12 }

Listing 4.4 – Representation of Methods in the form section (simplified).

description by following the given URL. An example schema description can be found in Annex

A.1.5. This schema description is based on JSON schema [168] version 1.4, which is well-known

on the web and also offers client-side validation. Through HTTP content negotiation it is also

possible to serve other schema descriptions.

4.5 Group-Subscriptions

As previously mentioned, OPC UA Subscriptions belong to exactly one client. If this exclusive

relation is broken it becomes possible to share the same Subscription across several different clients

and thus safe resources. In the following, Section 4.5.1 gives an overview of the main architecture

behind group Subscriptions. Section 4.5.2 introduces the corresponding OPC UA information model

and finally, the evaluation is provided in Section 4.5.3. Parts of this section are also published in

[138].

4.5.1 Architecture

Figure 4.4 gives an overview of the architecture. On the left side, several clients are depicted,

which want to be informed about updates in the OPC UA server. The right part of Figure 4.4

depicts the application. For the core architecture, two goals are identified: (1) Introduction of

Group-Subscriptions in such a way that most parts of the existing OPC UA implementations do

not have to be altered. (2) Group-Subscriptions should be usable with session-less clients as well

as with session-based clients. Eventually, the decision is made to model Group-Subscriptions

within the OPC UA information model. The OPC UA information model itself consists of methods,

which can be used to recreate the Services of the MonitoringItem Service Set and the Subscription
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Figure 4.4 – Group-Subscriptions architecture [138].

Service Set, and further Nodes, which contain more information about the Group-Subscription

configuration. Based on this information model an internal client can be controlled, which creates

session-based Subscriptions through standard SDK calls. Nevertheless, normally Subscriptions

and some of the corresponding Services are designed for a single client only. For example, the

Publish-Service allows a client to acknowledge received sequence numbers. If a sequence number

is acknowledged the server is allowed to delete the message from the internal buffers. Of course,

if more than one client is using the same Subscription such behavior can lead to data loss for some

of the clients. Because of that, ring buffers are introduced. The size of the ring buffers can be

chosen during the creation of the Group-Subscription.

4.5.2 Information Model

Figure 4.5 shows parts of the developed information model. A lot of the elements should be

familiar to OPC UA experts. However, some of them are altered or newly introduced. For example,

the Publish-Method contains two input parameters: publishSeqNr and keepAliveTime. The first

parameter is used to request a certain sequence number. This sequence number is automatically

generated by the subscription client (see Figure 4.4) and incremented for each Publish response

with new values. The keepAliveTime is used for long polling and defines the maximum time the

call should be blocked. The second parameter is only important if the client requests a sequence

number which is larger than the latest available sequence number. In this case, the method call is

blocked for the given time amount. If during this time the requested sequence number becomes

available the call immediately returns with the new results, otherwise, the client is informed that

no results are available at the moment. A client can use this architecture to also request more than
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Figure 4.5 – Group-Subscriptions information model [138].

one future sequence number, which is equivalent to calling the standard Publish-Service several

times. Of course, not all sequence numbers can be requested because of limited memory resources.

The number of available sequence numbers can be configured through the queue size. However,

clients which are joining late typically have no information about the actual sequence number.

Because of that, a Property with information about the latest sequence number (LastSeqNr in

Figure 4.5) is introduced. The initial values can be fetched with the standard Read service of

OPC UA. The SubscriptionVersion-Property of Figure 4.5 indicates if the Subscription-Group is

changed. The actual value of the SubscriptionVersion-Property is also returned in the Publish

and Republish Methods and can be used by the client to check if the Group-Subscription is altered.

Figure 4.6 depicts the newly introduced ReferenceType.

The HasNotificationSource is defined in the following way: The HasNotificationSource Refer-

enceType is a concrete ReferenceType and can be used directly. It is a subtype of HierarchicalReferences.

The semantics of this ReferenceType is to bind a MonitoredItemType to the Object or Variable which

shall be monitored. The SourceNode of this ReferenceType shall be a MonitoredItemType Object. The

TargetNode of this ReferenceType shall be the Object or the Variable which shall be monitored by

the SourceNode. Each MonitoredItemType shall be the SourceNode of exactly one HasNotification-

Source Reference.

The HasTriggerLink is defined in the following way: The HasTriggerLink ReferenceType is a

concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences. The
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Figure 4.6 – ReferenceTypes of the Group-Subscription information model.

semantics of this ReferenceType is to bind a TriggeringItem to the corresponding ItemToReport (see

also OPC UA Part 4 triggering model for further explanation). The SourceNode of this ReferenceType

shall be the TriggeringItem. The TargetNode of this ReferenceType shall be the corresponding

ItemToReport.

4.5.3 Evaluation

The concept of Group Subscriptions is implemented with the C++ SDK from Unified Automation

(version 1.5.6) [157] to show the validity and the benefits of this architecture. Most of the features

like the information model and the usage of an internal client could be integrated very easily

into the SDK. However, for some obstacles, it is required to also change code deeper in the SDK.

For example, the original SDK does not allow to execute the Call Service on the same OPC UA

Method in parallel by more than one client. Instead, the next method call can only be executed

if the previous one is finished. This is not a requirement of the OPC UA specification but an

important implementation detail for the approach described above. To allow scenarios where

clients fetch previous results while other clients are blocked for new results the SDK is extended

with concurrency concepts for the Call service.

In the following, the memory consumption and CPU usage of Group-Subscriptions in comparison

to the respective characteristics of standard OPC UA Subscriptions are analyzed. In all cases, the

prototype runs on a machine with 4 logical cores, 2.6 GHz, and 8 GB RAM. Additionally, the

sampling interval for each MonitoredItem is set to 500 ms, the publishing interval is set to 1000

ms and all queue sizes are set to twenty. Each experiment runs for two minutes and data points

represent the average of three runs. If Group-Subscriptions are used, each client makes use of the

same Subscription, which can be accessed through the information model of the OPC UA server.
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In the case of standard OPC UA Subscriptions, each client creates its own Subscription and the

corresponding MonitoredItems.

In the first experiment, the average CPU load and memory consumption for different numbers of

MonitoredItems per Subscription is evaluated. In each experiment 100 clients connect to the OPC UA

server and establish the corresponding Subscription. Figure 4.7 represents the results for the CPU

load and memory consumption, respectively. As expected, the benefits of Group-Subscriptions

continue to grow with the number of MonitoredItems. This is true for the CPU load as well as for

memory usage.

In the second experiment, the average CPU load and memory consumption for different numbers

of Clients per Subscription with a constant number of 300 MonitoredItems is evaluated. Also, for

these experiments, 100 clients connect to the OPC UA server in each test run to minimize the

measurement distortion through a different number of client Sessions. However, in this experiment,

only 10 to 60 clients actively used Subscriptions, while the other clients were just on idle during

the experiments. Figure 4.8 represents the results for the CPU load and memory consumption,

respectively. For the average CPU usage as well as for the average memory consumption the benefits

of Group-Subscriptions increase with the number of clients. However, as also depicted in Figure

4.8b for very few clients the standard Subscription mechanism offers less memory consumption

than the Group-Subscription prototype. This is mainly due to the fact, that in the experiments

for the standard Subscription mechanism the clients never were late and acknowledged instantly

all sequence numbers leading to at most one publish item in the buffers. In contrast, in the

(a) CPU usage (b) Memory usage

Figure 4.7 – Constant number of 100 clients [138]
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Group-Subscription case, the buffer cannot be emptied, because the number of clients is unknown

and therefore, constantly twenty publish requests are kept in the queue. This also leads to the

fact that for Group-Subscriptions the memory-consumption is nearly constant regardless of the

number of clients (see Figure 4.8b). Nevertheless, the CPU usage still increases with the number

of clients. The explanation for this effect is based on the Call Service Set, which generates a higher

CPU load if more calls are made and therefore is responsible for the slight increase in CPU usage.

4.6 RESTful features

This section highlights several RESTful features, which are well-known to web clients and also can

be used to gain additional benefits for the REST mapping of OPC UA. In the beginning, Section

4.6.1 presents a concept to access OPC UA directly through a web browser. In the following, an

approach is introduced to ensure the generation of unique NodeIds across server restarts (Section

4.6.2). Section 4.6.3 outlines the design rationale behind the TaskHandle concept. This concept

allows a session-less client to execute long-running service calls and also offers the possibility

to cancel such calls. The next section explains the concept behind a RESTful implementation of

the RegisterNode optimization service and also highlights how every client can benefit from such

an optimization (Section 4.6.4). Finally, Section 4.6.5 presents the concept behind the newly

designed ResolvePath service and also the usage of this service in distributed environments.

(a) CPU usage (b) Memory usage

Figure 4.8 – Constant number of 300 MonitoredItems [138]
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4.6.1 Browser support

One major reason to use HTTP is the chance to make OPC UA compatible to a standard web

browser, without forcing a user to install additional plugins, or placing some gateway server in

front of the OPC UA server. This is, of course, no requirement for a RESTful architecture, but

might come in handy for use cases like documentation download via a web browser. It is also

possible to use this feature for delivering a full-featured OPC UA client based on JavaScript, to

gain full access to all features of OPC UA, without installing any plugin (also known under the

term code-on-demand).

To enable this feature in the first place, the Read service of the REST mapping must be examined

in greater detail, which is used to fetch the Value-Attribute. If an URL is typed into the browser a

HTTP GET request is sent to the specified URL. However, only mapping the Read service to HTTP

GET would not solve the issue. A browser also interprets the Content-Type HTTP header. If a browser

does not know the format, which is often the case for MIME-Types like "application/opcua+uajson",

of course, nothing useful can be displayed in the browser window. Because of that, a new optional

Property for DataType-Nodes with the BrowseName "MIMEType", containing a string value with

the MIME-Type (e.g., "application/pdf"), which shall be used as Content-Type HTTP header is

introduced. But again, this is not enough because some native OPC UA clients only understand

the MIME-Type "application/opcua+uabinary". To also cover this use case an OPC UA server shall

interpret the HTTP Accept header of the request message. If a client specifies some well-known

OPC UA MIME-Type as the highest priority, the specified type shall be used to encode the message

body. If not, the MIME-Type of the MIME-Type-Property shall be returned. Based on the above

rules an OPC UA server is now able to deliver, for example, PDFs, which can be directly displayed

in the browser, without any additional OPC UA-specific plugin.

Another useful optional feature is the possibility to encode all RequestHeader fields as HTTP

query parameters. Of course, it also makes sense to be able to encode the fields in HTTP headers,

as the OPC Foundation did for the HTTP authorization header (see also OPC UA Part 6 for further

information). However, if somebody wants to share a link to an OPC UA Node, it must also be

possible to encode this token in the URL, otherwise, there is no guarantee, that the value can

be fetched in each case. Just consider a simple dashboard web-application, which only allows

specifying a URL, but does not allow to set any kind of header like [38].

4.6.2 Unique Runtime Namespace

Some REST paradigms enforce the generation of dynamic nodes. For example, in Section 4.5 a

concept is introduced, which generates several Nodes for Group-Subscriptions in the information

model. During a restart of a typical OPC UA server normally all Subscriptions are deleted. In
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contrast to a session-less client, a session-based client takes notice of a server restart and can clear

cached NodeIds. Problematic behavior can now arise if dynamic NodeIds are reassigned to different

Nodes with the same NamespaceURI. This is, for example, often the case for NamespaceIndex one

(the local server URI). A session-less client with cached NodeIds could now get other entries as

expected (e.g., another Subscription). This issue can be addressed through different concepts: (1)

Ensure that NodeIds of dynamic Nodes are not reassigned. (2) Ensure that the NamespaceURI of a

Namespace with dynamic NodeIds can be versioned. However, approach one forces the OPC UA

server to keep track of the assigned NodeIds. In contrast, approach two frees the server from the

burden to keep track of dynamic NodeIds by simply introducing a new NamespaceURI. Based on

that this work recommends using approach two wherever possible. The key idea of approach two

is to introduce a so-called unique runtime Namespace, which can be used for dynamic generated

nodes. The Namespace is typically generated during runtime of the server and must be unique for

the server (including uniqueness across restarts). One way to ensure uniqueness is to generate a

GUID (e.g. based on a timestamp and additional information) and use this identifier as part of

the NamespaceURI. If the Namespace is full, or the server crashes, a server shall generate a new

unique runtime Namespace. Because the NamespaceURI contains a GUID, there are no collisions

with other or previous runtime Namespaces. The URI of an unique runtime Namespace could have

the following structure: “http://opcfoundation.org/UA/RuntimeNamespace/<GUID>”.

4.6.3 TaskHandles

The OPC UA Cancel service is mapped to a REST paradigm. If an operation takes a long time

and a client should be able to cancel the request, a server responds to the request with the HTTP

Statuscode 201 (Created). The Location header shall be set to the newly generated TaskHandle-

Object (see Figure 4.9).

A TaskHandle-Object can offer an event that informs the client if the task is done. In addition,

a client can also fetch the Boolean-Value-Attribute of the ResponseIsReady-Property to learn

about the status of the request. If the response is ready, a client can fetch the response from

rs:CancelTask

rs:TaskHandleType

opc:PropertyType

rs:RequestHandle
opc:PropertyType

rs:ResponseIsReady

opc:PropertyType

rs:ResponseValue

Figure 4.9 – TaskHandleType-ObjectType.

71



4.6 RESTful features

the ResponseValue-Property by using the Read service. To abort the request a client is able to

use the CancelTask-Method. The NodeId of the CancelTask-Method shall be standardized. This

ensures that a native OPC UA client is able to abort the task with preprogrammed knowledge. The

RequestHandle-Property is based on the RequestHeader and can also be used to cancel more than

one task (not further described in this work). A server shall always have a policy that includes the

maximum availability time for a response. After this time the server is permitted to free resources

by deleting the TaskHandle-Object. A successful delete request on the TaskHandle-Object shall

have the same effect as the CancelTask-Method execution.

4.6.4 Register Nodes

The RegisterNodes service was introduced by the OPC Foundation, to optimize the reoccurring

access to a given Node. One typical optimization on the server-side is to assign an additional

numeric NodeId to the Node if the canonical NodeId is, for example, a large string-based NodeId.

Of course, a client is already able to use the batch Methods of Section 4.3.2 to execute this service.

However, in large-scale distributed systems optimization is often the responsibility of the server.

For example, if the same Node is accessed by different clients it could make sense to optimize the

access to this Node even if for a single client this makes no sense. Of course, it can also happen

that a client that registered a Node for optimization is blocking optimization resources which could

be used better for other Nodes. Another drawback of the RegisterNodes-Service is the fact, that

Client Boiler

GET <Hostname>/1/s=1:NodeWithALongStringIdentifier/Value

HTTP 200 OK

Internal optimization algorithm or client triggers „RegisterNodes“

HTTP 307 Location <Hostname>/1/i=3:1/Value

GET <Hostname>/1/s=1:NodeWithALongStringIdentifier/Value

GET <Hostname>/1/i=3:1/Value

HTTP 200 OK

Figure 4.10 – Server-based RegisterNodes optimization.
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even if one client uses the RegisterNode service, all other clients still use the unoptimized NodeId

because there is no way for an OPC UA server to notify the other clients about the optimized NodeId.

Fortunately, the HTTP protocol offers redirect concepts, which can be used for this use case. If an

OPC UA server returns the 307 HTTP-StatusCode (temporary redirect), a client shall use the URL

which is specified in the Location header to access this Node. With this approach, the responsibility

for optimization can be transferred from the client to the server. Figure 4.10 shows the sequence

diagram of this concept. In the example the NodeId is a large String-NodeId, which is requested on

a regular basis by the client. An internal optimization algorithm of the server detects optimization

potential and triggers the RegisterNodes service internally. On the next client request, the server

answers with a temporary redirect request and specifies the new NodeId of the optimized resource.

After that, a client can access the Node with the new NodeId. If the server decides to rollback an

optimization procedure the optimized NodeId can simply be removed. If a client receives the 404

HTTP Error Code (not found), the canonical NodeId shall be used again to fetch the resource.

4.6.5 Resolve Path

ValveBoiler
opc:FolderType

opc:OPC UA Root

opc:FolderType

opc:Objects

rs:BoilerType

rs:Boiler

opc:Organizes

opc:Organizes

opc:FolderType

opc:OPC UA Root

opc:FolderType

opc:Objects

rs:ValveType

rs:Valve

opc:Organizes

opc:Organizes

Figure 4.11 – Usage of ExpandedNodeIds to build distributed information models.

The ResolvePath service is newly introduced to leverage the especially useful redirect feature

of the web. This service is based on the TranslateBrowsePathToNodeIds service of OPC UA Part

4 in combination with the RelativePath structure of OPC UA Part 4 Annex A. These definitions

are modified in such a way, that a RelativePath can be formulated as an URL. Figure 4.11 shows

an example information model. To fetch the NodeRepresentation of the Boiler-Instance with this

service a GET request has to be issued to "< Hostname > /1/Ob jects/2 : Boiler". The server

answers such a request with a HTTP 307 (Temporary Redirect) based on the first NodeId entry of
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Client Boiler

GET <HostnameBoiler>/1/Objects/2:Boiler/2:Valve

HTTP 307 Location: <HostnameValve>/i=1:100?opcuaNamespaceUris=<Namespace1>

Valve

GET <HostnameValve>/i=1:100?opcuaNamespaceUris=<Namespace1>

HTTP 200 OK

Figure 4.12 – Example of ResolvePath across different OPC UA servers.

the underlying TranslateBrowsePathToNodeIds service. This allows a very web-friendly usage of the

OPC UA paradigm programming against the type definition. However, the ResolvePath service can

also be easily applied to distributed OPC UA information models. For example, if the Valve-Instance

of Figure 4.11 should be reached the URL only has to be extended with an additional browse step

"/2 : Valve". In this case, the Boiler server constructs a redirect URL based on the ExpandedNodeId

and also includes not resolved steps of the RelativePath (see also Figure 4.12). In the end, these

concepts allows to automatically browse across several OPC UA servers with only one single

ResolvePath call.

4.7 Demonstrator

The demonstrator is based on the Java OPC UA stack implementation of the OPC Foundation. The

following features are available:

• Read and Write service (including batch support)

• Browse and BrowseNext service

• TranslateBrowsePathsToNodeIds service

• Call service

• SessionlessInvoke Base (NamespaceUris)

• SessionlessInvoke Optimized (UrisVersion)

• (+) MIME-Type handling

• (+) Content negotiation
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Figure 4.13 – Demonstrator - MIME-Type handling.

• (+) ResolvePath (Redirections)

• (+) ExternalReferences

Most of the services are well-known to the OPC UA community, but it should not be a surprise

that the access pattern is sometimes quite different from a standard OPC UA server. For example,

to collect all necessary information for a NodeRepresentation, more than one OPC UA service must

be invoked. The services which are marked with a (+) are explained in greater detail. The term

MIME-Type handling describes the feature to serve any arbitrary files with the correct MIME-Type,

based on the MIME-Type-DataType-Property (see also Section 4.6.1 and Figure 4.13). Content nego-

tiation is the standard way on the web for a client to request a certain representation of a resource.

To be more concrete, a client can specify the encoding, for example, "application/opcua+uajson"

or "application/opcua+uabinary". ResolvePath is introduced to offer a more comfortable way for

the OPC UA concept programming against the TypeDefinition. If the following URL is considered

"<host>/Objects/0:Server/NamespaceArray". Resolving the URL would lead to a redirect to the

URL "<host>/1/i=2255", based on the first entry of the TranslateBrowsePathsToNodeIds service

response. However, not every Node can be addressed by this concept because the BrowsePath is

not unique (see also OPC UA Part 3 for further details). ExternalReferences can be derived from

ExpandedNodeIds if certain additional restrictions hold. For example, a server-URI has to be a valid

URL to the REST endpoint of the OPC UA server.
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Figure 4.14 – Demonstrator - Read request including continuation point.

As already mentioned in Section 2.4, for a RESTful OPC UA server it is necessary to define

resources and their representations. Within this chapter, several representations are introduced.

Figure 4.14 depicts a representation of "application/opcua.NodeRepresentation+json" also includ-

ing the concept to express continuation points. The basic structure of this representation consists

of three parts: attributes, references, and forms. In the attributes section, all Attributes of a

given Node are summarized, while the reference section offers all References of the Node.

Figure 4.15 shows that also the optional REST feature code-on-demand can be implemented

with the current architecture. In the given example an HTML page is stored in the Value-Attribute

of a Variable-Node. The HTML page also contains a very simple JavaScript implementation for

the REST API to set a boolean value to different states. Notice that, it is also possible to embed a

standard JavaScript-based OPC UA client within such an HTML page like NodeOPCUA [108].
A typical graphical OPC UA Client, like UAExpert [158] (see also Figure 4.16a), often offers

some kind of template if the OPC UA Call service is invoked by the user. This template is based
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Figure 4.15 – Demonstrator - Code-on-demand example.

on well-known OPC UA properties, which are part of each Method-Node. However, a typical

web client is not aware of these OPC UA specific conventions. Because of that, the form section

also provides some additional information if OPC UA Method-Nodes are involved. The most

important part of such a representation is explained in Section 4.4.5. The representation provides

all necessary information, including the target URL, the HTTP method, and the expected Content-

Type. The section requestSchema and responseSchema provides a URL to the corresponding schema

description for the request/response Content-Type (see also Section A.1.4.4). The demonstrator

uses JSON schema [168] for this purpose, which is well-known in the web and also offers client-side

(a) UAExpert.

(b) JSON schema.

Figure 4.16 – Demonstrator - Call service
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validation. However, based on HTTP content negotiation it is also possible to serve other schema

descriptions. Several different libraries already exist to automatically generate templates out of

JSON schemas (see also Figure 4.16b) which can be used for easy development of REST clients to

generate OPC UA Call requests.

4.8 Evaluation

Within this section, the proposed approach is evaluated against the formulated research challenge

(C1) interoperability on the transport layer. Within Section 3.1 the evaluation metrics for the given

research challenge are formulated and existing research approaches are checked against these

metrics. Based on this evaluation three unsolved problems are identified in the existing research

approaches: First, statelessness is not addressed correctly in the actual research. Second, most of

the current research struggles with HATEOAS (uniform interface) principles. Third, a lot of OPC

UA services cannot be accessed with REST APIs.

Table 4.5 shows the evaluation results of the proposed approach in this thesis. Similar to

the existing research Client-Server, Cache, and Layered system is covered very well through

the usage of already existing functions within OPC UA. The Uniform interface requirement is

covered also very well through the introduction of an HTTP mapping (Section 4.4), a hypermedia

representation (Section 4.4.5), and further RESTful features (Section 4.6) like, for example, the

support of web browsers. Statelessness is solved through the introduction of a new standardized

service into OPC UA with the name SessionlessInvoke (Section 4.2.2). The optional Code-on-

Requirements

Research approaches

th
is

th
es

is

Client-Server ++
Cache ++

Uniform interface ++
Layered system ++
Statelessness ++

Code-on-demand ++
Sum (18): 18

Table 4.5 – Requirements and evaluation for OPC UA web access (this thesis).
.

Legend: ++ = very well (3), + = well (2), - = partly (1), - - = not possible (0), NA = Not
Applicable (0)
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demand feature is addressed also very well through the usage of correct MIME-Types, which can

be used to, for example, deliver HTML pages with JavaScript code.

Table 4.6 shows how many of the different OPC UA services are covered by this thesis. Besides

the services of Table 4.6, this thesis introduces also new services like ResolvePath, ModifyReferences

as well as a concept for group subscriptions (Section 4.5) to provide a more RESTful user experience

for web developers.

In conclusion, this thesis presents a solution for the research challenge (C1) interoperability on

the transport layer and contributed the necessary extensions of OPC UA to the OPC Foundation. The

three identified open research points: Statelessness, HATEOAS support, and service coverage are

successfully solved within this thesis. Some aspects of this work, like the Sessionless-Invoke service,

were contributed to the OPC UA standard as part of the V1.04 release. In contrast to the HTTP

API of the OPC Foundation, which maps all requests to HTTP POST with standard OPC UA-specific

serialization (see also Section 4.2.3), in this thesis a REST API is defined according to the work of

Fielding [46]. The REST API makes use of the correct semantics behind HTTP operations and also

introduces self-describing resource representations (including the HATEOAS concept). Finally, the

mapping of this thesis allows, for example, standardized web tools like web browsers to easily

access OPC UA. The same is not true for the HTTP API of the OPC Foundation. However, the REST

design pattern is most successful in the human web because human-controlled clients can easily

adapt to changes in the resource representations without the need to modify the codebase. The

OPC UA Services

Research approaches

th
is

th
es

is

Discovery (3) X
SecureChannel (2) X

Session (4) X
NodeManagement (4) X

View (5) X
Query (2) X

Attribute (4) X
Method (1) X

MonitoredItem (4) X
Subscription (5) X

Sum (34): 34

Table 4.6 – Coverage evaluation of OPC UA services for web access (this thesis).
.

Legend: X = mapped (1), " " = not mapped (0), NA = Not Applicable (0)
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same is not true for the classic machine web, which is the main use case of OPC UA. In this case,

a new link in a resource representation or a new step in a HATEOAS-based state machine could

also lead to problems for the clients. If, for example, Amazon introduces an additional step in the

order process to select a common delivery date for all products a human could easily complete

this additional step in contrast to a machine. In the future, AI-based machines might be able to

also execute such jobs in combination with the application of Semantic Web concepts and thus

REST might gain additional advantages in the Industrial Internet of Things. But as long as this

point is not reached one huge advantage of the REST design pattern cannot be used to gain all the

corresponding benefits. Another disadvantage of REST is large resource representations, which

are necessary for self-descriptive messages. Of course, such representations can be optimized but

some parts always have to remain to support new generic clients. In a highly optimized embedded

environment, each additional optional byte also generates higher hardware requirements and,

therefore, leads to higher prices. Nevertheless, also this issue might be solved in the future because

embedded devices become more and more powerful also in typical OPC UA domains.
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5S E M A N T I C S O F O P C UA

I N F O R M AT I O N M O D E L S

This chapter introduces a concept to translate OPC UA based semantics into the formal semantics

of the OWL universe. Similar to the REST architecture also formal semantics can be found in a

lot of different domains like healthcare [88], smart grid [120], building technology [149], and

life science [132]. Based on that it is not surprising that already several translation technologies

emerged to ease the transformation of arbitrary data formats into Semantic Web compatible

formats [103, 100, 102, 25, 14, 148]. In the area of manufacturing formal semantics could be

used to greatly simplify use cases like predictive maintenance [32], plug and produce [118, 42,

141], quality inspection [35], optimization of resource consumption [18, 79], documentation

/ knowledge management [171], and skill-based engineering [172, 91, 99, 69, 40]. However,

a typical factory consists of thousands of devices with sometimes hundreds of data points per

device, which leads to high requirements on data throughput. Luckily, also in the area of large

data processing different platforms have emerged [1, 74, 86, 169, 87]. Eventually, Semantic Web

technology can be considered suitable for the demands of the manufacturing domain. Parts of this

chapter are also published in [136].
The remainder of this chapter breaks down the OPC UA to OWL mapping into smaller building

blocks:

Section 5.1 presents parts of the OPC UA Meta-Layer and the corresponding translation into OWL

classes. All further classes and generation schemes are subtypes of the classes introduced

in this section.

Section 5.2 exemplifies the transformation of OPC UA Attributes into OWL data properties and

OWL annotation properties including, for example, the corresponding domain and range

restrictions.

Section 5.3 provides the mapping of basic OPC UA DataTypes to OWL data types. Furthermore, a

concept is outlined how OPC UA Structures and OPC UA Enumerations can be translated.
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5 Semantics of OPC UA information models

Section 5.4 introduces the relation between OPC UA ReferenceTypes and OWL object properties. In

addition, the section outlines the concept of OWL object properties for OPC UA BrowseNames.

Sections 5.5 - 5.6 summarize the transformation rules for OPC UA ObjectTypes and OPC UA

VariableTypes. Both OPC UA concepts are transformed to OWL classes including general

restrictions of OPC UA Attributes and type-specific ModellingRule restrictions.

Sections 5.7 - 5.8 focus on the mapping of Object InstanceDeclaration and Variable InstanceDecla-

ration. Similar to OPC UA Types also InstanceDeclarations are mapped to OWL classes with

restrictions.

Section 5.9 presents how OWL classes with restrictions can be generated from OPC UA Methods.

The concepts are similar to Object InstanceDeclarations but also cover some details, which

are only valid for OPC UA Methods.

Section 5.10 exemplifies the mapping of OPC UA Instances to OWL individuals. In this section all

the previously defined concepts are instantiated and used to generate an OWL graph out

of OPC UA information models. In addition, the usage of concepts like OWL punning is

further explained.

Section 5.11 provides a concept to model restrictions in the context of the OPC UA ValueRank-

Attribute through OWL. This part of the mapping is mainly addressing the validation use

case and could be omitted for most other use cases.

Section 5.12 gives a brief overview of the Java-based Prototype, which transforms OPC UA

NodeSet-Files into OWL ontologies.

Section 5.13 evaluates the findings and contributions of this chapter against the corresponding

research challenge. Furthermore, the section outlines further ideas and thoughts about

OPC UA semantics.

5.1 Class Meta-Layer

A Protégé view of the class meta-layer OWL ontology is shown in Figure 5.1. The underlying

technical details for URI generation can be found in Annex A.2. The class hierarchy depicts

the results of transforming the basic concepts of the meta-layer such as Base, Object, Variable,

Method, View, VariableType, ObjectType, DataType, ValueRankHelper; and the Base-Layer and

Companion-Layer (sub-concepts of the respective meta-layer concepts). The lower right corner

of Figure 5.1 shows the results for transforming parts of the Mandatory VariableInstanceDeclara-

tion restrictions. Notice, that in the transformation process also OWL object properties for the

BrowseName and classes for the InstanceDeclarations are generated (e.g., "actPos" and "cmdPos" of

Figure 5.1). InstanceDeclarations with the "CncPositionVariableType" as Type are depicted in the

lower left corner (e.g., "CncChannelType_PostTcpBcsA"). Type-Attributes are displayed at the upper
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0: Meta-L.

2: Companion-L.
1: Base-L.

Figure 5.1 – Protégé-View [124] of the generated OWL ontology [136].

right corner of Figure 5.1. Some of the Type-Attributes are directly mapped to some well-known

annotation properties, for example, the OPC UA NodeId to rdfs:isDefinedBy.

Figure 5.2 exemplifies the restrictions of the Object OWL class meta-layer concept. OPC UA

introduces several distinct restrictions around the eight different NodeClasses. In the case of

the Object-NodeClass, the usage of certain Attributes is restricted. Furthermore, in OPC UA it

is also possible to define restrictions on what kind of References can be used in combination

with NodeClasses. It is even possible to define such restrictions on Types instead of NodeClasses.

An example of such a restriction is visible in Figure 5.2 based on the inverse Reference of the

HasComponent-ReferenceType. Notice, that even due to the fact that restrictions on References are

modeled partly on OWL classes, most of these restrictions are attached to the ReferenceType and

not to the Object-NodeClass by OPC UA.
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Figure 5.2 – Restrictions on the Object-meta-class.

5.2 Attribute mapping

OPC UA-Attributes are mapped to annotation and data properties depending on the underlying

OWL concept. For example, VariableTypes are mapped to OWL classes with OWL annotation

properties, while most of the Variables are be mapped to OWL individuals in combination with

OWL data properties. Table 5.1 defines the mapping in the following way: The Attribute column

contains the name of the Attribute. Column AP marks if this Attribute is exposed as OWL annotation

property (Namespace prefix TA of Table A.22) and DP marks OWL data properties (Namespace

prefix IA of Table A.22). Notice, that most of the Attributes are modeled as OWL annotation and

data properties. The F column shows if the given annotation or data property shall be functional.

Most of the Attributes are functional and, therefore, exactly one value for the given Attribute exists

for each Node. In contrast, the DisplayName-Attribute is not functional because there might be

several different statements for different languages. Another interesting Attribute is the NodeId.

Even due to the fact that the NodeId is defined as functional, one Node could have several different

NodeIds assigned. This might come as a surprise because one characteristic of OPC UA is, that the

NodeId is the only unique address within an OPC UA graph. One use-case can be extracted out of

OPC UA Part 4, where the RegisterNode-Service is introduced. This service optimizes access to a

given Node and also provides an optimized numeric NodeId. The Read-Service of OPC UA always

returns the canonical NodeId. This results in the fact that it is not possible to retrieve information

about additional NodeIds for the same Node and because of that the NodeId is defined functional.

However, in the OWL mapping additional NodeIds could be reflected through an additional OWL
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Table 5.1 – OPC UA Attributes to OWL mapping.

Attribute AP DP F Domain Range
AccessLevel X X X Var xs:unsignedByte
AccessLevelEx X X X Var xs:unsignedInt
ArrayDimensions X X X Var or VarT xs:string
AccessRestrictions X X X All NodeClasses xs:unsignedShort
BrowseName X X X All NodeClasses xs:anyUri
ContainsNoLoops X X X View xs:boolean
DataType X X X Var or VarT xs:anyUri
DataTypeDefinition X X DataT xs:string
Description X X All NodeClasses rdf:PlainLiteral
DisplayName X X All NodeClasses rdf:PlainLiteral
EventNotifier X X X Obj or View xs:unsingedByte
Executable X X X Met xs:boolean
Historizing X X X Var xs:boolean
InverseName X RefT rdf:PlainLiteral
IsAbstract X X VarT or ObjT or RefT or DataT xs:boolean
MinimumSamplingInterval X X X Var xs:double
NodeClass X X X All NodeClasses xs:int
NodeId X X X All NodeClasses xs:anyUri
RolePermissions X X X All NodeClasses xs:string
Symmetric X X RefT xs:boolean
UserAccessLevel X X X Var xs:unsignedByte
UserExecutable X X X Met xs:boolean
UserRolePermissions X X X All NodeClasses xs:string
UserWriteMask X X X All NodeClasses xs:unsignedInt
Value X X X Var or VarT
ValueRank X X X Var or VarT xs:int
WriteMask X X X All NodeClasses xs:unsingedInt
NOTE: Var = Variable, VarT = VariableType, DataT = DataType, Obj = Object,
Met = Method, RefT = ReferenceType

data and annotation property. The Domain column defines the permitted NodeClasses for each

Attribute, while the Range column defines the OWL data type. Notice, that while a reasoner is

able to validate Domain and Range restrictions for OWL data properties the same does not apply

for OWL annotation properties.

5.3 DataType mapping

Within this section, several aspects of the DataType mapping are discussed. The technical details

for the XML data type mapping can be found in Annex A.2.3. In the beginning, Section 5.3.1

provides the basic mapping of OPC UA-DataType hierarchies to OWL class hierarchies. Section
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5.3.2 focuses on the special handling for Structure-DataTypes of OPC UA, while Section 5.3.3

explains the mapping rules for the Enumeration-DataType.

5.3.1 Basic concepts

DataTypes are exposed as own class concepts for several reasons: (1) DataTypes are one place

where semantics is stored (e.g., for complex Variables, see also OPC UA Part 3); (2) DataTypes

restrict the Value-Attribute of Variables and VariableTypes; (3) The DataType hierarchy is used

for restriction inheritance. The basic concept behind the transformation of DataTypes to OWL

is depicted in Figure 5.3. The OWL SubClass axioms on the right side of Figure 5.3 are some

examples of possible validation restrictions. If, for example, a Variable has the DataType Int16

the value of the DataType-Attribute is defined as well as the range of the Value-Attribute (in this

case xsd:short). Furthermore, more complex restriction patterns are also possible based on RegEx

patterns or on number ranges. To also cover the semantics of the IsAbstract-Attribute the union

concept of OWL can be used (see also Figure 5.3 right side - SubClass Of (Anonymous Ancestors)).

This concept only works if the DataType-Attribute is not defined for abstract DataTypes. However,

if the DataTypes are further subtyped the OWL union concept is also necessary on the DataType-

Figure 5.3 – Class concept for DataTypes.

86



5.3 DataType mapping

Attribute. In conclusion, while the restrictions on the Value-Attribute proofed to be very useful

the restrictions on the DataType-Attribute in combination with the IsAbstract-Attribute concept

increases the complexity of the ontology by a significant amount and could be more efficiently

validated with simple SPARQL queries.

5.3.2 Structures

Besides simple DataTypes like Int16, OPC UA also defines more complex DataType like Structures.

Structures can be used to combine DataTypes to a more complex structure. For example, the CncPo-

sitionDataType of [162] consists of three values: The ActPos, which contains the current position

value; The CmdPos, which contains the setpoint position value; The RemDist, which contains

the remaining distance. This Structure-DataType can be used to easily access all three values in

one single transaction context. However, for some use cases, it might be enough to only retrieve

the ActPos without the other values. Such a use case is addressed through complex Variables

like the CncPositionVariableType of Table 5.2. The CncPositionVariableType introduces several

InstanceDeclarations with BrowseNames, which are identical to the Structure element names of

the CncPositionDataType. These InstanceDeclarations are all subtypes of the very generic Base-

DataVariableType without further semantic refinement. The reason for that is another implicit

Figure 5.4 – Class concept for CncPositionDataType.

87



5.3 DataType mapping

Table 5.2 – CncPositionVariableType definition (see also [162]).

Attribute Value
Browse-Name CncPositionVariableType
IsAbstract False
References BrowseName DataType TypeDefinition MRule
Subtype of the BaseDataVariableType
HasComp. ActPos Double BaseDataVariableType Mand.
HasComp. CmdPos Double BaseDataVariableType Mand.
HasComp. RemDist Double BaseDataVariableType Mand.
... ... ... ... ...

concept of OPC UA. In the case of complex Variables, the semantics of the element InstanceDecla-

ration is defined by the Structure-DataType and is assigned through the identical element name.

This concept is reflected in the OWL mapping through the generation of InstanceDeclarations

classes for each Structure-DataType (see also Section 5.8). These InstanceDeclarations classes

are referenced by the corresponding Structure-DataType with an optional ModellingRule (see also

Figure 5.4). The ModellingRule can be easily overridden and set to, for example, mandatory by

the CncPositionVariableType. In addition, also OWL object properties are generated for each

structure field name in the corresponding Namespace.

5.3.3 Enumerations

Another special DataType in OPC UA are Enumerations. Enumerations in OPC UA restrict the

Value-Attribute to a set. This restriction can be easily modeled with the OWL axioms of Table

5.3. However, as already stated in Section 5.3.1 the union concept should be used with caution

and typically leads to a very high computational complexity in combination with several other

properties of the OPC UA ontology generation rules. Of course, also in this case, the OPC UA

subtyping rules for Enumerations are reflected by the OWL reasoner. In the end, also these rules

could be checked more efficiently with SPARQL statements.

Table 5.3 – Enumeration axioms.

Concept name Extract of the axiom
Enumeration SubClassOf((uaValueDP value 0) or (uaValueDP value 1) or

(uaValueDP value 2))
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5.4 ReferenceType mapping

Figure 5.5 shows the basic concepts behind how ReferenceTypes are translated to OWL object

properties. As URI the BrowseName is used to simplify the tool-based ontology handling. OPC UA

enforces that BrowseName of ReferenceTypes shall be unique, which guarantees that no naming

conflicts arise in the ReferenceType hierarchy. However, in OWL the coding guidelines recommend

that OWL object properties start with lower case. This can be easily achieved during transformation

and further reduces possible naming conflicts with other Type hierarchies if for OWL class concepts

upper case is enforced (see also Section 5.5 and Section 5.6). In OPC UA one ReferenceType

can be used to define two directions. For example, the HasChild-ReferenceType defines also the

inverse direction ChildOf. This is done through the Symmetric-Attribute in combination with the

InverseName-Attribute. If the Symmetric-Attribute is set to "true", this automatically implies that the

ReferenceType has the same meaning in both directions, for example, "connectedTo". In this case,

the InverseName-Attribute shall be omitted. In the other case, the Symmetric-Attribute is set to "false"

and an InverseName shall be provided for non-abstract ReferenceTypes (e.g., HasChild and ChildOf).

In OPC UA each edge instance in the graph can be annotated with additional information like the

direction of a given ReferenceType. RDF does not support to annotate object properties for edge

instances on an individual basis. In RDF all object properties share the same information. In contrast

to RDF, labeled property graphs would also allow to annotate instances of edges. However, also in

OPC UA the triple SourceNode, ReferenceType, and TargetNode is unique. Furthermore, the properties

Figure 5.5 – Object property concept for ReferenceTypes.
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for edge instances are only specified through the OPC UA specification and cannot be extended. In

the end, this allows the introduction of a generic mapping to RDF triples for OPC UA. The basic

concept to map ReferenceTypes to RDF is to generate two object properties for all Non-Symmetric

ReferenceTypes. Furthermore, an inverse hierarchy named inverseHierarchicalReferences (see

Figure 5.5 left side) has to be introduced. The inverse hierarchy has the same structure as the

original hierarchy. Symmetric References are part of both hierarchies, mainly due to the fact that

OPC UA does not forbid to subtype Symmetric ReferenceTypes with Non-Symmetric ReferenceTypes.

In general, Symmetric references are defined only in the forward direction according to OPC UA

Part 4. Furthermore, the two distinct OWL object properties of non Symmetric ReferenceTypes

shall be connected through an inverse of axiom. It is also possible to assign further annotation

properties to easily identify the generated OWL object properties and based on that the direction

of the Reference on Instances.

Besides the ReferenceType hierarchy, OPC UA also defines further semantics for ReferenceTypes.

Sadly, most of the semantics is defined in a textual way and cannot be automatically extracted out

of the machine-readable OPC UA NodeSets. For example, OWL range and domain restrictions for

ReferenceTypes are modeled in a textual way only and have to be added manually to the ontology

(see also Figure 5.5 right side). Furthermore, OPC UA defines semantics for ReferenceTypes similar

to OWL functional, inverse functional, irreflexive, and symmetric axioms. Also in this case, only

the symmetric axiom is machine-readable. OPC UA also defines the notion of loop freedom (see

also OPC UA Part 3 HasChild-ReferenceType). This means that if Node "A" is the starting point and if

only References with this characteristic are followed, it is not allowed to reach Node "A" again. The

reason for that are the roots of OPC UA in the embedded world, where devices might not have

enough memory to detect loops during graph navigation. OWL does not have a corresponding

axiom for such a characteristic on an OWL object property, but such a restriction could be modeled

through the combination of the transitive and irreflexive axiom. Nevertheless, certain feature

combinations are prohibited to ensure decidability of reasoning in general [58].
In addition to ReferenceTypes, also certain BrowseNames are translated into OWL object proper-

ties (see also Figure 5.5 browseNames OWL object property). As URI the BrowseName is used to

simplify the tool-based ontology handling. Similar than for ReferenceType OWL object properties

also the BrowseName OWL object properties shall start with lower case. Notice, that naming

conflicts between BrowseNames are not resolved as long as the semantics still apply. These object

properties have OWL functional and irreflexive characteristics. Of course, it would also be possible

to define domain and range restrictions. However, the generation rules for this concept can be

considered independent of the underlying OPC UA model and so violations can already be detected

during transformation. Further generation rules are introduced in Section 5.7.
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Figure 5.6 shows an example ObjectType after the mapping to OWL is applied. Each ObjectType

generates an OWL class and is integrated into the class hierarchy (see left side of Figure 5.6). As

URI the BrowseName is used to simplify the tool-based ontology handling (starting with upper case

according to OWL coding guidelines). In most information models the BrowseName of Types is

unique. However, Section A.2.1 also introduces an alternative URI generation schema if conflicts

are detected. The OWL class hierarchy can be automatically generated based on HasSubtype-

References of OPC UA. The Attributes of ObjectTypes are modeled with OWL annotation properties

(see right side of Figure 5.6). The main reason for modeling these Attributes as annotation

properties is grounded in the instantiation of OPC UA Types. Each Instance is allowed to change

most of the Attribute values and sometimes even has to change some of them (e.g., NodeClass-

Attribute). In the end, this does not allow to define the value of the Attributes as OWL value class

expression because in this case the value could not be changed any longer. This leaves annotation

Figure 5.6 – Class concept for ObjectTypes.
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properties as the last possible choice to store the values of the Type-Attributes. Besides values of

Type-Attributes, an ObjectType fulfills another purpose in regards of Attribute subtype restrictions.

For example, it is possible to define optional Attributes as mandatory and enforce this restriction on

each subtype instance (not shown in Figure 5.6). The lower right side of Figure 5.6 displays some

of the OWL subclass axioms. The main purpose of these axioms is to model InstanceDeclaration

restrictions based on OPC UA ModellingRules. OPC UA defines several different combinations

of ModellingRules in combination with the ObjectType. However, new ModellingRules could be

added through extensions of the specification. In the following, the ModellingRules of the core

specification are further investigated and classified into concepts (see also Table 5.4):

• Concept 1: ModellingRule-Mandatory for Variables, Objects, and Methods

• Concept 2: ModellingRule-Optional for Variables, Objects, and Methods

• Concept 3: ModellingRule-MandatoryPlaceholder for Variables and Objects

• Concept 4: ModellingRule-OptionalPlaceholder for Variables and Objects

• Concept 5: ModellingRule-MandatoryPlaceholder for Methods

• Concept 6: ModellingRule-OptionalPlaceholder for Methods

Concept 1 defines that the InstanceDeclaration is mandatory for all Instances of the given Type.

This is reflected through several axioms in Table 5.4. The first two axioms define mandatory

relations to the InstanceDeclaration through two different OWL object properties. One OWL object

property reflects the ReferenceType, which shall be used to connect both Instance-Nodes. Notice,

that it would also be possible to replace the ReferenceType with a subtype of the ReferenceType

on an Instance as specified by OPC UA (see also Section 5.4). The other OWL object property

reflects the BrowseName of the InstanceDeclaration. This is done to support the OPC UA concept

"programming against the TypeDefinitionNode" and is especially useful for SPARQL-based queries.

The last axiom is optional and ensures that an Instance has to reference the same OWL individual

with both OWL object properties. This axiom can also be used to ensure further constraints on

Instances (see also OPC UA Part 3 6.4.3 - Constraints on an Instance). The successful enforcement

of such a restriction depends heavily on OWL different individuals axioms and, therefore, might

not be very useful in practice.
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Concept 2 defines that the InstanceDeclaration is optional for all Instances of the given type.

The main difference to Concept 1 is that in this case a cardinality axiom is used. Notice, that a

ModellingRule-Optional can easily be overridden with a ModellingRule-Mandatory also in OWL

through subtyping (see also OPC UA Part 3 6.4.4.3 - Subtyping Rules for Properties of Mod-

ellingRules). In addition, the "min 0" restrictions of Table 5.4 (row three and four) add no

additional meaning to the ontology from an OWL point of view and are only introduced to reflect

additional information of OPC UA, this is true for all similar (min 0) restrictions of this thesis.

Concept 3 also defines that the InstanceDeclaration is mandatory for all Instances of the given

type. In contrast to Concept 1, Concept 3 does not restrict the BrowseName-Attribute of the

corresponding InstanceDeclaration. This is reflected in Table 5.4 through the introduction of only

one axiom. It is very important to notice the fact, that the semantics of Placeholder-ModellingRules

depends on the NodeClass of the InstanceDeclaration. The axioms of Concept 3 can only be applied

for Variables- and Object-InstanceDeclarations.

Concept 4 is identical to Concept 3 and differs only on the fact that the InstanceDeclaration is

optional for all Instances of the given type.

Concept 5 is identical to Concept 1 from an axiom perspective. For Methods the Placeholder-

ModellingRules defines that the InputArguments and OutputArguments are defined on an Instance or

subtype. InputArguments, as well as OutputArguments, are defined through Properties in OPC UA

and, therefore, are reflected as constraints on the Method-InstanceDeclaration.

Concept 6 is identical to Concept 2 from an axiom perspective and is introduced for similar

reasons than Concept 5 only with optional semantics. Besides InstanceDeclarations, Types can also

Reference other Nodes without ModellingRules. These Nodes are often used to expose additional

metadata for the Type-Node and, therefore, can be also covered in form of annotation properties.

Furthermore, if non-hierarchical References are used in combination with ModellingRules the

behavior is undefined according to OPC UA (see also OPC UA Part 3 6.4.4 - ModellingRules).

Because of that, such relations could be modeled through annotation properties or similar to

optional InstanceDeclarations regardless of the ModellingRule.

Table 5.4 – ObjectType axioms - M = Mandatory; O = Optional.

Concept Number
Extract of the subclass axiom 1 2 3 4 5 6

<BrowseNameObjectProperty> some <InstanceDeclClass> M M
<ReferenceTypeObjectProperty> some <InstanceDeclClass> M M M
<BrowseNameObjectProperty> min 0 <InstanceDeclClass> M M
<ReferenceTypeObjectProperty> min 0 <InstanceDeclClass> M M M
opcua:topOpcObjectProperty max 1 <InstanceDeclClass> O O O O
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5.6 VariableType mapping

Figure 5.7 shows an example VariableType after the mapping to OWL is applied. Identical to

ObjectTypes also VariableTypes generate an OWL class and the corresponding class hierarchy (see

left side of Figure 5.7). Equal to ObjectTypes also VariableTypes use BrowseName-based URIs

(starting with the upper case according to OWL coding guidelines). The OWL class hierarchy

can be automatically generated based on HasSubtype References of OPC UA. The Attributes of

VariableTypes are modeled with OWL annotation properties (see right side of Figure 5.7). Also

in this case the reason for the usage of OWL annotation properties is grounded in the behavior

during instantiation of Instances (see also Section 5.5). In contrast to ObjectTypes, some Attribute

restrictions are modeled through the subtyping of other OWL classes. The subtype and instantiation

restriction for the ValueRank-Attribute is reflected through subtyping the ValueRankHelper concept

(see Section 5.11). The restrictions of the Value-Attribute introduced through the DataType-Attribute

are reflected through subtyping the DataType concept of Section 5.3. Furthermore, the restrictions

of the ArrayDimensions-Attribute of OPC UA (see also OPC UA Part 3 6.2.7 - Attribute Handling

Figure 5.7 – Class concept for VariableTypes.
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of Variable and VariableTypes) could be modeled through RegEx-pattern restrictions. However,

RegEx-based rule enforcement is very expensive and might not scale very well for large graphs

in practice. Of course, also the VariableType OWL class concept can be used to define optional

Attributes as mandatory on subtypes or Instances (not shown in Figure 5.7). The lower right

side of Figure 5.7 outlines some of the OWL subclass axioms. The main purpose of these axioms

is to model InstanceDeclaration restrictions based on OPC UA ModellingRules. OPC UA defines

several different combinations of ModellingRules in combination with the VariableType. However,

new ModellingRules could be added through extensions of the specification. In the following, the

ModellingRules of the core specification are further investigated and classified into concepts (see

also Table 5.5):

• Concept 1: ModellingRule-Mandatory for Variables

• Concept 2: ModellingRule-Optional for Variables

• Concept 3: ModellingRule-MandatoryPlaceholder for Variables

• Concept 4: ModellingRule-OptionalPlaceholder for Variables

• Concept 5: ModellingRule-ExposesItsArray for Variables

Concept 1 defines that the InstanceDeclaration is mandatory for all Instances of the given type.

This is reflected through several axioms in Table 5.5. The first three axioms are already explained

for the ObjectType concept in Section 5.5 and can be skipped. The last two axioms are used to add

instantiation and subtype restrictions for the ValueRank- and Value-Attribute.

Table 5.5 – VariableType axioms - M = Mandatory; O = Optional.

Concept Number
Extract of the subclass axiom 1 2 3 4 5

<BrowseNameObjectProperty> some <InstanceDeclarationClass> M
<ReferenceType> some <InstanceDeclarationClass> M M
<BrowseNameObjectProperty> min 0 <InstanceDeclarationClass> M
<ReferenceType> min 0 <InstanceDeclarationClass> M M M
opcua:topOpcObjectProperty max 1 <InstanceDeclarationClass> O O
<DataTypeClass> M M M M M
<ValueRankClass> M M M M M
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Concept 2 defines that the InstanceDeclaration is optional for all Instances of the given type.

The main difference to Concept 1 is that a cardinality axiom is used.

Concept 3 defines that the InstanceDeclaration is mandatory for all Instances of the given

type. In contrast to Concept 1, Concept 3 does not restrict the BrowseName-Attribute of the

corresponding InstanceDeclaration. Table 5.5 reflects that fact through the introduction of only

one axiom.

Concept 4 is identical to Concept 3 and differs only in the fact that the InstanceDeclaration is

optional for all Instances of the given type.

Concept 5 introduces the ModellingRule-ExposesItsArray for usage in combination with Variables

only. The idea behind this ModellingRule is to expose the entries of an array also in form of single

Nodes. Of course, this concept could also be generalized in OWL for each array to ensure easy

access to the different array elements. Nevertheless, while this concept is very useful to access

different array elements in an easy way, the order of the elements (e.g., the first or third entry)

cannot be retrieved with this concept. In the end, Concept 5 is identical to Concept 4 from an

axiom point of view. Furthermore, Nodes without ModellingRules or Nodes which are connected

through non-hierarchical References can be addressed in the same way as already explained in

Section 5.5.

5.7 Object InstanceDeclaration mapping

An example of an Object-InstanceDeclaration after applying the OWL mapping is depicted in Figure

5.8. InstanceDeclarations are mapped to OWL classes because of the semantics attached to this

concept. In contrast to Types, InstanceDeclarations make use of NodeId-based URIs. This is mainly

due to the fact, that a typical OPC UA information model generates far too many naming conflicts

if the BrowseName would be used as an URI. For example, every time an InstanceDeclaration

is overridden or a Type is reused to construct another Type also the InstanceDeclarations are

duplicated in most of the cases. While OPC UA offers the possibility to reuse InstanceDeclarations

if the semantics and default-values should not be changed, most modeling tools automatically

generate new InstanceDeclarations during modeling instead of following a more restrictive policy

like "copy on write". From a semantic point of view, this is a very bad modeling practice because now

several semantic identical classes are introduced, which only differ in the URI. Of course, it would

be possible to analyze the graph and remove duplicates but this introduces other problems. For

example, if an OPC UA engineer searches for a particular NodeId of an InstanceDeclaration, which

is marked as duplicate and removed from the graph, the search would return empty. Of course, it

would be possible to assign more than one NodeId to a given InstanceDeclaration (see also Section

5.2). However, the fact that InstanceDeclarations can also be overridden introduces further checks
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Figure 5.8 – Class concept for Object-InstanceDeclaration.

on the graph transformation tool. Another more simple variant would be to introduce an additional

InstanceDeclaration super concept, which is shared by all similar InstanceDeclarations. In the end,

the best solution is if such kinds of semantic classifications are done through the OPC UA modeling

experts in the first place rather than with complex analytic and transformation tools in retrospect.

Most Attributes of InstanceDeclarations are modeled with OWL annotation properties (see right side

of Figure 5.8). Also in this case the reason for the usage of OWL annotation properties is grounded

in the behavior during instantiation of Instances (see also Section 5.5). In contrast to Types,

mandatory InstanceDeclarations also define restrictions on the BrowseName-Attribute (see also

Figure 5.8 right side). Figure 5.8 outlines some of the OWL subclass axioms in the lower right corner.

The main purpose of these axioms is to model additional InstanceDeclaration restrictions based on

OPC UA ModellingRules, which are not already covered by Types. OPC UA defines several different

combinations of ModellingRules in combination with the Object-InstanceDeclaration. However,

new ModellingRules could be added through extensions of the specification. In the following, the

ModellingRules of the core specification are further investigated and classified into concepts (see

also Table 5.6):

• Concept 1: ModellingRule-Mandatory
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• Concept 2: ModellingRule-Optional

• Concept 3: ModellingRule-MandatoryPlaceholder

• Concept 4: ModellingRule-OptionalPlaceholder

Concept 1 as well as Concept 2 are identical from an axiom point of view. Table 5.6 shows the

three axioms for the concepts. In both cases, an additional OWL object property is generated based

on the BrowseName (see also Section 5.4 for further information). This OWL object property shall be

used in addition to the ReferenceType OWL object property to Reference such InstanceDeclarations (see

also Section 5.5) or Instances of such InstanceDeclarations (see also Section 5.10). The main reason

for the introduction of this OWL object property is to support the OPC UA concept "programming

against the TypeDefinitionNode", which is especially useful for SPARQL-based queries. Besides the

BrowseName OWL object property concept also a BrowseName OWL data property restriction is

created (see also Table 5.6 and Figure 5.8). This axiom ensures that each Instance has the same value

for the BrowseName-Attribute. The second axiom is based on the HasTypeDefinition-ReferenceType

and ensures restriction inheritance of the Type because each Object-InstanceDeclaration always is

an Instance of an ObjectType. The third axiom of Table 5.6 imports the restrictions of the object

meta-layer class (see also Section 5.1).

Concept 3 and Concept 4 differ from the other concepts only in the fact that neither an OWL

object property nor an OWL data property restriction is introduced for the BrowseName. Of course,

it is possible that an Object-InstanceDeclaration itself References further InstanceDeclarations. In this

case, the generation rules for axioms of Section 5.5 shall also be used on Object-InstanceDeclarations.

If an InstanceDeclaration shall be overridden the overriding InstanceDeclaration must also be a

subtype of the overridden InstanceDeclaration. This ensures a proper inference of the restriction

axioms on super classes. Notice, that for only changing the ModellingRule-Optional to ModellingRule-

Mandatory it is not necessary to introduce a new InstanceDeclaration class.

Table 5.6 – Object-InstanceDeclaration axioms - M = Mandatory; O = Optional.

Concept Number
Extract of the subclass axiom 1 2 3 4

ia:browseName value <"browseName"> M M
<TypeDefinitionClass> M M M M
Object M M M M
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5.8 Variable InstanceDeclaration mapping

OPC UA defines two main concepts around Variables. The first concept is called DataVariables and

the second concept is called Properties. Both concepts differ in the way how semantics is exposed

and also offer different substructure and subtyping capabilities. While the semantics of Properties

is mainly defined through their BrowseName, the semantics of DataVariables are mainly defined

through the corresponding VariableType. Furthermore, the corresponding Types of DataVariables

can be subtyped and also used to expose complex Variables. In contrast, Properties can neither be

subtyped nor be used to expose complex Variables. Based on these large differences, two different

concepts for DataVariables (Section 5.8.1) and Properties (Section 5.8.2) are presented.

5.8.1 DataVariables

Figure 5.9 shows an example Variable-InstanceDeclaration after the mapping to OWL is applied.

Similar to Object-InstanceDeclarations also Variable-InstanceDeclarations are mapped to OWL classes.

Variable-InstanceDeclarations make use of NodeId-based URIs (see also Section 5.7 for further

arguments). Most Attributes of InstanceDeclarations are modeled with OWL annotation properties

(see right side of Figure 5.9). Also in this case the reason for the usage of OWL annotation

properties is grounded in the behavior during instantiation of Instances (see also Section 5.5).

Similar to Object-InstanceDeclarations also Variable-InstanceDeclarations define restrictions on the

BrowseName-Attribute (see also Figure 5.9 right side). Figure 5.9 outlines some of the OWL

subclass axioms in the lower right corner. The main purpose of these axioms is to model additional

InstanceDeclaration restrictions based on OPC UA ModellingRules, which are not already covered

by Types. OPC UA defines several different combinations of ModellingRules in combination with

the Variable-InstanceDeclaration. However, new ModellingRules could be added through extensions

of the specification. In the following, the ModellingRules of the core specification are further

investigated and classified into concepts (see also Table 5.7):

Table 5.7 – Variable-InstanceDeclaration axioms - M = Mandatory; O = Optional.

Concept Number
Extract of the subclass axiom 1 2 3 4 5 6

ia:browseName value <"browseName"> M M M
<TypeDefinitionClass> M M M M M M
Variable M M M M M M
<DataTypeClass> M M M M M M
<ValueRankClass> M M M M M M
<PropertyClass> O
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Figure 5.9 – Class concept for Variable-InstanceDeclaration.

• Concept 1: ModellingRule-Mandatory without Properties

• Concept 2: ModellingRule-Optional without Properties

• Concept 3: ModellingRule-MandatoryPlaceholder

• Concept 4: ModellingRule-OptionalPlaceholder

• Concept 5: ModellingRule-ExposesItsArray

• Concept 6: ModellingRule-Mandatory and -Optional in combination with Properties

Concept 1 and Concept 2 are identical in their axioms. Table 5.7 shows the five axioms

for the concepts. In both cases, an additional OWL object property is generated in combina-

tion with an OWL data property restriction based on the BrowseName. The generation rules
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are identical to Object-InstanceDeclarations and are discussed in Section 5.7. Similar to Object-

InstanceDeclarations also Variable-InstanceDeclarations inherit restrictions from the Type. In contrast

to Object-InstanceDeclarations, the variable meta-layer class is used for restriction import instead

of the object meta-layer class (see also Section 5.1). Of course, also Variable-InstanceDeclarations

inherit the restrictions for the DataType- and ValueRank-Attribute (see Section 5.6 for further infor-

mation). This is necessary because an InstanceDeclaration could further tighten the corresponding

restrictions by, for example, defining a more concrete DataType, which is a subtype of the DataType

specified in the VariableType.

Concepts 3, 4, and 5 also share identical axioms. The only difference to Concept 1 is that

neither an OWL object property nor an OWL data property restriction is introduced for the Browse-

Name.

Concept 6 is introduced because of the special semantics around the OPC UA PropertyType.

In contrast to DataVariables, where the semantics is defined through the TypeDefinitionNode, the

semantics of Properties in OPC UA is defined through the BrowseName (see also OPC UA Part 3

A.4.2 - Properties or DataVariables). This means if a Property is defined multiple times with the

same BrowseName also the semantics should be identical. This special construct is covered through

the introduction of an additional class concept, which is further discussed in Section 5.8.2. The

only difference between the axioms of Concept 1 and the axioms of Concept 6 is the inclusion of

this additional Property concept class. Furthermore, this axiom is also optional because a reasoner

is able to infer this relationship automatically. However, for use cases without reasoners, the

translation tool could easily insert such an axiom directly into the ontology. Of course, it is possible

that an Variable-InstanceDeclaration itself References further InstanceDeclarations. In this case, the

generation rules for axioms of Section 5.6 shall also be used on Variable-InstanceDeclarations.

As already discussed in Section 5.7, also for Variable-InstanceDeclarations the same concepts for

overriding apply.

5.8.2 Properties

As already discussed in Section 5.8.1 the semantics of OPC UA Properties are defined through

the BrowseName. If different Properties share the same BrowseName also the semantics should be

the same. Figure 5.10 shows how an additional OWL class concept for Properties is introduced.

Such a class is introduced for each unique BrowseName of a OPC UA Property. The general class

axiom of this concept (see Figure 5.10 lower right corner) ensures that each OPC UA Property is

automatically assigned to this concept based on the BrowseName-Attribute. As URI the BrowseName

is used to simplify the tool-based ontology handling. Due to the fact, that OWL object property

BrowseNames (see Section 5.4) URIs start with lower case and the OWL class Property concept

URI starts with upper case no naming conflicts are introduced. Notice, that this concept is only
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introduced to classify semantics and has no further additional restrictions attached to it. To reduce

the computing effort for any given ontology this axiom can also be directly introduced through the

transformation tool without the usage of a general class axiom.

5.9 Method InstanceDeclaration mapping

The Method NodeClass in OPC UA is one of the NodeClasses without a corresponding Type. This

means that the semantics of Methods are mainly defined by the owning Object or ObjectType.

However, OPC UA defines some exceptions in OPC UA Part 3 5.5.4 - Client-side creation of Objects

of an ObjectType. If a Method has the special BrowseName "Create" than the Method semantics is

that an Object of the given ObjectType shall be created on the execution of the Method. At the

moment this rule is unique in the OPC UA universe and could be covered similar to the OPC UA

Property concept of Section 5.8.2. An example of an Method-InstanceDeclaration after applying

the OWL mapping is depicted in Figure 5.11. Also Method-InstanceDeclarations are mapped to

OWL classes and use NodeId-based URIs (see also Section 5.7 for further arguments). Similar

to Object-InstanceDeclarations also Attributes of Method-InstanceDeclarations are modeled with

OWL annotation properties (see right side of Figure 5.11). Also in this case, the reason for the

usage of OWL annotation properties is grounded in the behavior during instantiation of Instances

(see also Section 5.5). Identical to Object-InstanceDeclarations also Method-InstanceDeclarations

define restrictions on the BrowseName-Attribute (see also Figure 5.11 right side). Some of the OWL

subclass axioms are depicted in Figure 5.11 in the lower right corner. The main purpose of these

axioms is to model additional InstanceDeclaration restrictions based on OPC UA ModellingRules,

which are not already covered by Types. OPC UA also defines several different ModellingRules and

restrictions for Method-InstanceDeclarations. However, also in this case new ModellingRules could

be added through extensions of the specification. In the following, the ModellingRules of the core

specification are further investigated and classified into concepts (see also Table 5.8):

Figure 5.10 – Class concept for Properties.
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Figure 5.11 – Class concept for Method-InstanceDeclarations.

• Concept 1: ModellingRule-Mandatory

• Concept 2: ModellingRule-Optional

• Concept 3: ModellingRule-MandatoryPlaceholder

• Concept 4: ModellingRule-OptionalPlaceholder

In contrast to Object- and Variable-InstanceDeclarations the axioms for Method-InstanceDeclarations

are identical for Concept 1, 2, 3, and 4. This is mainly due to the fact that OPC UA defines

ModellingRule-Placeholder* different on Method-InstanceDeclarations compared to the other In-

stanceDeclarations concepts (see also Section 5.5). In each case, an additional OWL object property

is generated in combination with an OWL data property restriction based on the BrowseName.

The generation rules are identical to Object-InstanceDeclarations and are discussed in Section 5.7.

In contrast to Object-InstanceDeclarations, Method-InstanceDeclarations do not have a Type (refer-

enced through a HasTypeDefinition-Reference) but also inherit restrictions from the corresponding

method meta-layer class (see also Section 5.1). Another difference to the other InstanceDec-

larations is the possibility to change a ModellingRule-OptionalPlaceholder to a ModellingRule-

MandatoryPlaceholder or a ModellingRule-Mandatory and a ModellingRule-MandatoryPlaceholder
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to a ModellingRule-Mandatory. Also in the proposed OWL transformation this is possible because

the BrowseName concepts are present in all four concepts. Notice, that in the case of Object- and

Variable-InstanceDeclarations it would make not much sense to allow such behavior because the

BrowseNames of the super class typically are defined in some placeholder syntax. Of course, it

is possible that an Method-InstanceDeclaration itself References further InstanceDeclarations (e.g.,

"InputArgument" and "OutputArgument" InstanceDeclarations). In this case, the generation rules

for axioms of Section 5.5 shall also be used on Method-InstanceDeclarations. As already discussed

in Section 5.7 also for Method-InstanceDeclarations the same concepts for overriding apply.

Table 5.8 – Method-InstanceDeclaration axioms - M = Mandatory; O = Optional.

Concept Number
Extract of the subclass axiom 1 2 3 4

ia:browseName value <"browseName"> M M M M
Method M M M M

5.10 Instance mapping

Figure 5.12 shows an example Variable-Instance after the mapping to OWL is applied. For every

Instance an OWL individual is generated. The URI for the individuals is based on the NodeId schema.

As depicted on the right side of Figure 5.12 an OWL individual of the OPC UA mapping consists of

OWL annotations, class assertions, object property assertions, and data property assertions. OWL

annotations are used to express certain meta information of the OPC UA Node in a standardized

manner. For example, the label and comment annotation are well-known in the OWL ecosystem an

can be mapped to the DisplayName- and Description-Attribute. Of course, both of these Attributes

are also reflected as data property assertions (see also Figure 5.12 lower right side). However,

also several other annotations are generated through the transformation to simplify the usage of

the resulting ontology and also to cover special OPC UA concepts. The nodeExists annotation

assertion of Figure 5.12 is introduced because in OPC UA it is possible to model a relation between

two Nodes even if one of the Nodes is not defined at all. In OWL this can be compared with the

fact that the subject or object of a triple has a URI but this URI cannot be resolved. The problem in

OPC UA is that even due to the fact that the Node may not exist, it is possible to store information

like BrowseName, DisplayName, NodeClass, and TypeDefinition on the edge. However, OPC UA

also states that if the Node is not part of the actual server some of the information may be not

provided or out of date. Nevertheless, in the proposed OPC UA to OWL mapping information like

DisplayName and NodeClass are modeled on the OWL class and not on the OWL object property. To

be able to cover this concept the solution is to introduce shadow Nodes. These Nodes are modeled
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with all the available information and are annotated with nodeExists OWL annotation properties

with the value set to "false". This allows to distinguish between generated Nodes and explicitly

modeled Nodes. References to other Nodes are expressed through OWL object property assertions

(see also Figure 5.12 right side). If the Reference is part of an InstanceDeclaration concept, which

also defines a BrowseName OWL object property, an additional OWL object property assertion is

inserted into the ontology (not shown in Figure 5.12). Notice, that there is at most one target OWL

individual for such an assertion. The OWL object property assertions highlighted in yellow are

automatically generated by the reasoner based on the OWL object property hierarchy of Section 5.4

and the corresponding axioms. In the middle of Figure 5.12 OWL class assertions are expressed.

Depending on the underlying modeling concept (e.g., Object, Variable, Method, and View) different

class assertions are present on an OWL individual. In the following, the differences between the

modeling concepts are discussed in greater detail.

Table 5.9 states the axioms for the different modeling concepts. An example for the Variable

concept of an InstanceDeclaration is depicted in Figure 5.12. In this case, several OWL class

assertions are generated. The first OWL class assertion imports semantics and restrictions of the

corresponding InstanceDeclaration class. Notice, that only if the Node is based on an InstanceDecla-

ration this OWL class assertion is introduced. In all other cases, this particular OWL class assertion

shall be omitted. The second OWL class assertion imports the TypeDefinitionNode. Every Variable

Figure 5.12 – Individual concept for Instances (not complete).
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Table 5.9 – Instance axioms - M = Mandatory; O = Optional.

Extract of the axiom Obj Var Met Views

ClassAssertion(<TypeDefinitionClass>) M M
ObjectPropertyAssertion( M M M M
<ReferenceTypeObjectProperty> <TargetNodeIndividual>)

ObjectPropertyAssertion( M M M
<BrowseNameObjectProperty> <TargetNodeIndividual>)

DataPropertyAssertion( M M M M
<AttributeDataProperty> "<AttributeValue>")

AnnotationPropertyAssertion( O O O O
<AttributeAnnotationProperty> "<AttributeValue>")

ClassAssertion(Object) M
ClassAssertion(Variable) M
ClassAssertion(Method) M
ClassAssertion(View) M
ClassAssertion(<InstanceDeclarationClass>) M M M
ClassAssertion(<DataTypeClass>) M
ClassAssertion(<ValueRankClass>) M

has exactly one TypeDefinitionNode and, therefore, this assertion is always present. Of course,

as mentioned in Section 5.7 the InstanceDeclaration class also is a subtype of the OWL TypeDef-

initionNode, resulting in the fact that the TypeDefinitionNode is already imported through the

InstanceDeclaration concept. However, also an Instance is allowed to further refine the InstanceDec-

laration (e.g., through the usage of a subtype). The third and fourth OWL class assertions import

the restrictions of the DataType- and ValueRank-Attribute. Also in this case the Instance is allowed

to further refine the restrictions of the TypeDefinitionNode and if applicable InstanceDeclaration

concept (see also OPC UA Part 3 6.4.3 - Constraints on an Instance). Last but not least, the variable

meta-class concept is imported through a class assertion. The main difference between Objects

and Variable axioms of Table 5.9 is that the meta-class object is used instead of the meta class

variable. Furthermore, an Object does not add any DataType or ValueRank axioms. For Methods

the axioms compared to Objects are reduced even further because a Method does not have a

TypeDefinitionNode. Views only introduce OWL data and object property assertions and, of course,

an OWL class assertion for the view meta-layer class. Besides the previously discussed generation

rules, Figure 5.12 also shows a HasTypeDefinition OWL object property with the PropertType OWL

individual as the target. However, in Section 5.8.2 the PropertyType is introduced as OWL class

and not as OWL individual. The idea behind this is grounded in OWL punning [115, 56], which

allows to model OWL classes also as OWL individuals to support meta modeling. In the case

of the OPC UA to OWL mapping punning is used to simplify queries and also can be used to

enable a better validation of the OPC UA type model. Finally, OWL punning has to be used if an
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5.10 Instance mapping

InstanceDeclaration (which is modeled as OWL class) is also referenced by other Instances, which

are mapped to OWL individuals. Notice, that OWL annotation properties are shared automatically

if punning is used. Other concepts like OWL data and object property assertions have still to be

added to the OWL individual.

5.11 ValueRankHelper

Figure 5.13 – Class hierarchy overview of ValueRankHelper.

The concept of ValueRankHelper is introduced for OWL-based validation purposes. Figure

5.13 depicts the OWL class hierarchy of the different restrictions and Table 5.10 lists the essential

restriction axioms for the different classes. The OWL subtype hierarchy in combination with the

axioms of Table 5.10 covers the rules for Variables used as InstanceDeclarations or VariableTypes if

they shall be overridden or instantiated according to OPC UA Part 3 6.2.7 - Attribute Handling of

Variable and VariableTypes. The constraint from OPC UA Part 3 6.2.7 c) “The ArrayDimensions

Attribute may be added if it was not provided or when modifying the value of an entry in the array

from 0 to a different value. All other values in the array shall remain the same.” can be mapped to

a RegEx expression (see also last entry of Table 5.10). In the end, RegEx-based validation can be

considered very expensive and the usage should be limited to small parts of the ontology or even

replaced with a more efficient way of validation.

Table 5.10 – ValueRankHelper OWL class axioms.

Concept name Extract of the axiom
ValueRankHelper SubClassOf(valueRank some xsd:integer)
ValueRankAny SubClassOf(valueRank some xsd:integer[>=-3])
ValueRankOneOrMoreDimensions SubClassOf(valueRank some xsd:integer[>=0])
ValueRankScalarOrOneDimension SubClassOf((valueRank value -1) or

(valueRank value 1))
ValueRankOneDimension SubClassOf(valueRank value 1)
ValueRankScalar SubClassOf(valueRank value -1)
Example for OPC UA Part 3 6.2.7 c) SubClassOf(arrayDimensions some

xsd:string[pattern "\\[1,[0-9]0,3,1\\]"])
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5.12 Demonstrator

In the following, the basic concept of the transformation tool is presented (see also Figure 5.14).

Starting at the upper left corner with an OPC UA information model, which is transformed into

the machine-readable XML format of OPC UA (lower left corner). This XML format is the input

for the OPC UA to OWL transformation tool (implemented with Apache Jena [11]). Within the

transformation tool, the recursive OPC UA to OWL transformation is applied and as result, an

OWL ontology is generated and serialized (lower right corner of Figure 5.14). After the generation

of the OWL ontology, this ontology can be imported into several tools from the Semantic Web

ecosystem like Protégé (upper right corner of Figure 5.14) for further processing of the formalized

semantics. Within this chapter, an OWL mapping is exemplified with the focus on the Instance layer

of OPC UA. This mapping is especially useful to work with the product-specific implementation

of different Companion Specifications and can be used for analytics, query, and validation. The

transformation rules presented in this thesis can generate ontologies with OWL 2 DL expressivity

and lower, which also allow inferring statements about the expressivity of OPC UA information

models. Notice, that OWL 2 DL expressivity is the maximum expressivity if all identified OPC UA

concepts shall be translated into the corresponding OWL concepts. The expressivity and the

corresponding complexity can be reduced by large amounts for use cases like query and analytics.

In contrast, the validation use case depends on nearly all the transformation rules if OWL reasoners

shall be used for validation. However, as already explained in Section 5.5 most Type-Attributes are

translated to OWL annotation properties and so cannot be validated with OWL reasoners. Instead

Figure 5.14 – Architecture overview OWL transformation tool-chain.
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of OWL reasoners, of course, also SPARQL could be used to validate OWL annotation properties.

Nevertheless, it is also possible to slightly alter the ontology generation and optimize it for the

target use case (e.g., validation of the Type model instead of the Instance model). The semantic

points identified in Section 3.2 are valid for each transformation and it is also possible to reuse the

transformation concepts introduced in this chapter in a slightly different manner (e.g., generation

of OWL individuals for Types and InstanceDeclarations). Furthermore, it is also possible to generate

SHACL shapes instead of OWL restrictions or insert further annotation properties for additional

use cases. Also in this case the identified concepts in OPC UA for OWL restrictions can be reused.

Figure 5.15 depicts parts of the Java-based implementation of the OWL transformation tool.

The project is structured in several packages.

The opcua.graph package contains classes and interfaces for the different NodeClasses. Fur-

thermore, an OPC UA graph implementation is part of this package. The implementation is able to

build graphs from different XML NodeSets including reindexing of, for example, NodeIds if more

than one NodeSet should be imported. In addition, the graph also offers further functions like the

identification of hierarchical ReferenceTypes and InstanceDeclarations.

Figure 5.15 – Demonstrator implementation.
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The opcua.graph.utils package contains classes and interfaces for filtering purposes like

InstanceDeclarations.

The opcua.nodeSetImport and opcua.nodeSetImport.xml contains classes and interfaces

which are used in the opcua.graph package to import NodeSets. The current implementation only

supports the import of XML-based NodeSets. In the future, it is also planned to import NodeSets

through an OPC UA client from running servers.

The packages opcua.triplestore, opcua.triplestore.mapping, opcua.triplestore.mapping.owl,

and opauc.triplestore.mapping.owl.elements contain the mapping from OPC UA to OWL. The

current architecture translates the graph step by step, starting with the generation of the meta

elements, followed by the transformation of ReferenceTypes, DataTypes, and the other NodeClasses.

Furthermore, the architecture allows chaining the different translation elements, which can be

used to generate different profiles of the OWL ontology (e.g., a smaller ontology without certain

Attributes for embedded devices).

Finally, the package opcua.examples contains examples of the tool usage. The first step is

always the import of the OPC UA core NodeSet (see also Figure 5.15 right side). After the core

NodeSet is imported, other NodeSets (e.g., Companion Specifications) can be also imported. If all

NodeSets are imported the graph must be prepared for the OWL transformation (e.g., labeling

InstanceDeclarations). As soon as the graph is properly annotated the OWL transformation chains

can be executed. The result of the complete process is an RDF file with an OWL ontology.

5.13 Evaluation

This section evaluates the proposed approach of this thesis against the formulated research challenge

(C2) interoperability on the semantic layer. Within Section 3.2 the evaluation metrics for the given

research challenge are formulated and existing research approaches are checked against these

metrics. Based on this evaluation three unsolved problems are identified in the existing research

approaches: First, the concept behind InstanceDeclarations is not covered at all in actual research.

Second, the modeling of OPC UA constraints is only covered in parts by some researchers. Third, a

complete translation of all OPC UA semantics into the Semantic Web is not presented in one single

concept.

Table 5.11 shows the evaluation results of the proposed approach in this thesis. Section

A.2.1 provides a concept of how Namespaces can be automatically translated into OWL also

including Companion Specifications based on the recursive mapping of Chapter 5. Furthermore,

Section A.2.2 even provides first ideas to improve the versioning of OPC UA information models.

Attributes (Section 5.2), as well as DataTypes (Section 5.3), are mapped well including restrictions

like domain and range but the proposed mapping of this thesis also has certain limitations.
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While Structures and Enumerations are mapped very well through Section 5.3.2 and Section 5.3.3

aspects like arrays and the handling of time series data could be improved further through other

researchers. ReferenceTypes are mapped very well including type hierarchies and characteristics

like symmetric, inverseOf, and even domain and range constraints (domain and range constraints

are added manually and cannot be extracted automatically). The ObjectType (Section 5.5) and

VariableType (Section 5.6) mapping is also very well and introduces mappings for types (including

type hierarchies) as well as constraints. Section 5.7 and Section 5.8 provides the very well

mapping for InstanceDeclarations with features like types, type hierarchies, constraints, as well

as specialized concepts to cover the semantics of DataVariables (Section 5.8.1) and Properties

(Section 5.8.2. MethodInstanceDeclarations are covered well through Section 5.9. In comparison

to the authors of [82] the proposed concept of this thesis does not cover pre- and postconditions

of methods. Eventually, Instances (Section 5.10) are mapped very well to OWL individuals also

including constraints.

In conclusion, this thesis presents a solution for the research challenge (C2) interoperability

on the semantic layer. The three identified open research points: InstanceDeclarations, OPC UA

constraints, and coverage of OPC UA semantics are addressed very successfully within this thesis.

An interesting finding of the mapping is that several semantic concepts in OPC UA can be mapped

to a single semantic concept in OWL. OWL prevents duplicate concepts through the underlying

mathematical model of the language. In contrast, OPC UA is not grounded in formal semantics,

Requirements

Research approaches

th
is

th
es

is

Namespaces ++
Attributes +
DataType +

ReferenceType ++
ObjectType ++

VariableType ++
InstanceDeclaration ++
MethodInstanceDecl +

Instances (Object, Variable, ...) ++
Sum (27): 24

Table 5.11 – Requirements and evaluation for OPC UA semantics (this thesis).
.

Legend: ++ = very well (3), + = well (2), - = partly (1), - - = not possible (0), NA = Not
Applicable (0)
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which makes it much harder to exactly define the boundaries between the different concepts and

thus leaves plenty of room for different interpretations.

A further difference between OWL and OPC UA is the underlying assumption about the

completeness of information. OWL is based on the open-world assumption (OWA) and does not

imply anything if information is missing because the information could just be modeled somewhere

else. This leads to the necessity to explicitly state in the ontology that a certain information is not

modeled in this ontology and also nowhere else. In comparison, OPC UA follows the opposite

philosophy and considers missing information by default as absent. Both approaches come with

benefits and drawbacks. While the OWL approach is especially useful in distributed loosely coupled

environments, the OPC UA approach is more useful if only a single device is considered. Of course,

also in the future OPC UA might shift to a more distributed paradigm and has to rethink some of

the initial design decisions.

Finally, the presented recursive mapping can be considered quite complex and also yields quite

expressive OWL ontologies. However, the differences between a very simple and the proposed

mapping become quite obvious if some of the other standardized OPC UA mappings are considered.

For example, the OPC UA UML mapping of OPC UA Part 3. This mapping introduces a base UML

class and defines inheritance relations between this base class and the eight different OPC UA

NodeClasses. Notice, that OPC UA Types (e.g., BaseObjectType) are not modeled as their own UML

classes, instead there are modeled as instances of the corresponding NodeClass UML class. While

this mapping is quite simple and allows a fast generation of UML models for OPC UA this comes

at a certain price. One drawback is the OPC UA HasSubtype-ReferenceType, which is modeled the

same way as a HasProperty-ReferenceType, even due to the fact that this particular ReferenceType is

the counterpart of the UML inheritance relation. While an UML modeling tool would be able to

offer some further support in displaying class hierarchies and features like restriction inheritance,

these features cannot be used for OPC UA Type hierarchies due to the simplistic UML mapping.

Another example is the XML-based OPC UA NodeSet file (see also OPC UA Part 6). While XML

offers concepts of how namespaces can be introduced and used in a standardized way, OPC UA

defines its own proprietary way to express namespaces. Of course, also this leads to problems in

the XML-based ecosystem because transformation tools are no longer able to identify namespaces

correctly. In the end, all these shortcuts allow to generate very simple mappings from an OPC UA

perspective but also restrict OPC UA from most of the benefits of the surrounding target ecosystems.
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6Q U E RY I N G O F O P C UA

I N F O R M AT I O N M O D E L S

Querying OPC UA information models is a dream of the OPC Foundation since the early days

of OPC UA. The dream also has the name "OPC UA Query Service" as part of OPC UA Part 4.

Finally, ten years later this chapter provides the first SPARQL-based prototype of such a service.

Two different concepts are presented. The first concept (Section 6.3) highlights how a native

SPARQL query executed against the OWL ontology of Chapter 5 could look like. In contrast, the

second concept provides transformation rules to translate the "OPC UA Query Service" into SPARQL

(Section 6.4). From an architectural point of view, the main targets of a query service are the

aggregating layers [62, 19, 144, 143, 76] on edge- and cloud-platforms. However, the underlying

technology also could be scaled down if necessary [26]. Besides practical considerations, like

available stable implementations and expressivity, the main challenge always is the user-facing side

of the interface. Only if queries can be formulated very easily the technology is used in practice.

Also in this area, the Semantic Web technology stack offers concepts to improve the usability

through visualization [129, 159, 105, 154, 3, 10] or even through concepts based on natural

language like [73, 153, 37], which can be used to implement, for example, chatbots [2, 145, 83].
Parts of this chapter are also published in [139].

The remainder of this chapter is structured as follows:

Section 6.1 gives a brief architecture overview of the Java-based prototype.

Section 6.2 focuses on the overall design decisions like Views, security, and the mapping of special

OPC UA concepts like programming against the TypeDefinitionNode.

Section 6.3 presents an example of how a native SPARQL query executed against an OWL ontology

based on the transformation rules of Chapter 5 looks like.

Section 6.4 exemplifies the transformation of the OPC UA query language to SPARQL. This

includes, for example, the mapping of OPC UA filters as well as scalability consideration of

the concept for very huge aggregated OPC UA information models.
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6 Querying of OPC UA information models

Section 6.5 provides an OPC UA information model based concept to implement efficient caches

on aggregating servers.

Section 6.6 evaluates the validity of the presented concepts against the example queries of OPC UA

Part 4 Annex B (complex examples) and against the corresponding research challenge. In

addition, the section outlines further ideas and thoughts about querying OPC UA information

models and also highlights some issues of the OPC UA query language.

6.1 Architecture and Demonstrator

In this section, an architecture to query OPC UA information models is discussed. Typically, an

automation device, like a CNC machine, has more than one OPC UA device (e.g., a PLC and some

drive controllers) which together form a machine. Even more important is the fact, that a factory

has not only one single machine, instead most factories have a lot of similar machines. This leads to

the question of how a potential query architecture must look like to also cover use cases like "Find

all machines which are currently low on material A". During the study two main requirements to

offer a simple and powerful query interface are identified: (1) Standardized semantics, which is

introduced through Companion Specifications in OPC UA. This simplifies the formulation of queries

by a huge amount because then the user does not have to formulate different queries for each

machine of a different manufacturer; (2) An edge-/cloud-layer which aggregates the underlying

OPC UA information models of the machines. This is necessary because an expressive query

language also needs a lot of resources, which might not be available on all OPC UA devices. Figure

6.1 shows such an architecture, which allows connecting devices without the necessary resources

for query to a device with a query-engine. On the left side of the picture several clients/apps are
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Figure 6.1 – Possible query architecture for the cloud-/edge-layer [139].
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depicted, which want to query the information model. The prototype (the middle part of Figure

6.1) offers two different query languages for clients: SPARQL and OPC UA Query. Internally only

the SPARQL query language is used and so OPC UA queries have to be translated to SPARQL

queries. The SPARQL-Query-Engine then executes the query against the triplestore. The triplestore

contains parts of the OPC UA information model in a triple format based on the OPC UA to OWL

mapping (see Chapter 5). OPC UA information models can be categorized into two parts: The static

part like the Type-Hierarchy, which is translated into triples and after that stored in the triplestore;

The dynamic part like the Value-Attribute of a VariableNode, which is fetched on-demand directly

from the aggregating OPC UA server. The aggregated OPC UA AddressSpace is synchronized with

the underlying devices (which could also be another query application, see also Figure 6.1 right

side) and offers access to the OPC UA graph, including live data for Node-Attributes. Nevertheless,

static in this context only means that the static data is transformed into triples and synchronized

with the triplestore. If the static data changes (e.g., the OPC UA graph structure is updated) also

the triplestore must be updated. This can be achieved by using the ModelChangeEvent concept of

OPC UA Part 3, instead of periodically browsing the whole graph for distinctions.

6.2 Design Decisions

In this section, the main design decisions of the native SPARQL interface is introduced. The native

SPARQL interface also acts as the basis for the transformation of OPC UA Queries to SPARQL

queries. Because of that, all design considerations of this section are valid for both approaches. The

main key for a good SPARQL query interface is the underlying data model. For example, it makes

a huge difference if OPC UA References are modeled as OWL object properties or as OWL data

properties. The same is true for BrowseNames of OPC UA InstanceDeclarations. If the OPC UA data

model is transformed in a certain way, it is possible to reduce the complexity to formulate queries

by a huge amount. For the prototype, OWL ontologies are used including inferred knowledge

based on OWL reasoners (see also Chapter 5 for a sketch of the transformation rules).

Views in OPC UA are introduced to offer different perspectives on a machine (e.g., for mainte-

nance or monitoring purposes). If a certain View is selected only the Nodes which are contained

in the View are be returned. In addition, it is also possible to restrict the visibility of References

based on the selected View. To cover all these use cases Views are modeled with named graphs in

SPARQL, which can be picked based on the View-NodeId. Nevertheless, introducing a new named

graph for every View comes with the price of high resource consumption. Because of that, there

exists also a more lightweight concept to introduce Views if different Views do not restrict the

visibility of References. In this case, it is possible to identify the Nodes within a View based on an
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additional "inView" OWL object property. This object property is automatically introduced between

the View-Node and all the Nodes which shall be contained within the View.

Furthermore, security is an integral part of the OPC UA specification and is, of course, also

part of OPC UA Query. The security features can be modeled in SPARQL similar to how Views

are modeled. For example, for each role an own named graph could be generated, containing

only the accessible Nodes and References for the group. Another idea is to automatically introduce

additional SPARQL statements in each Query to also evaluate the access permission of a given

client. However, these ideas are not implemented nor fully evaluated under the aspect of full

coverage of all OPC UA security requirements within this thesis.

Another specialty of OPC UA are References to non-existing Nodes. However, because Refer-

ences are modeled as OWL object properties in the OWL ontology the TargetNode must exist. To

also support References to non-existing Nodes, shadow Nodes are introduced into the ontology, if

the target Node is not defined. A shadow Node contains all Attributes which can be returned in a

ReferenceDescription. Normal Nodes can be distinguished from shadow Nodes based on an OWL

annotation property with the name "nodeExists" and the value "false" (see also Section 5.10).

OPC UA introduces a concept which is called programming against the TypeDefinitionNode.

In a nutshell, this concept is used to identify Instances of an InstanceDeclaration. Normally, such

Instances are identified by their BrowseName. However, OPC UA also allows defining of multiple

Nodes with the same BrowseName in the context of the same Instance-Node. In this case, the

TranslateBrowsePathsToNodeIds Service of OPC UA Part 4 returns the Node which is based on the

InstanceDeclaration as the first entry in a list. However, SPARQL does not offer a similar concept.

Because of that, an additional BrowseName OWL object property is introduced into the ontology

Figure 6.2 – OWL Punning for querying without subtypes on an inferred graph.
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for most InstanceDeclarations (see also Section 5.4). This OWL object property not only allows to

support the Programming against the TypeDefinitionNode concept, furthermore, it replaces three

SPARQL filter statements through only one statement.

OPC UA Query also allows to only return Instances of a certain Type without the inclusion of

subtypes. However, because the OWL ontology assigns up to five OWL classes per OWL individual

the extraction of the OPC UA Type without subtypes is somehow challenging. To simplify this use

case the OWL punning concept is used [115, 56]. Based on this concept it is possible to treat

classes as instances of meta-classes. This means an OWL class can also be expressed as an OWL

individual and so it is possible to introduce the "HasTypeDefinition" reference in OPC UA to allow

easy queries without subtypes on the inferred graph (see also Figure 6.2).

6.3 Native SPARQL example

Previously, the design decisions for a native SPARQL interface are discussed. If these design

decisions can be translated into a working prototype, SPARQL could be used to natively query

OPC UA information models in a similar way than promised by OPC UA Query. The usability

and expressivity of this mapping shall now be demonstrated based on Example B.2.6 of OPC UA

Part 4 Annex B. The corresponding Type hierarchy and Instances of OPC UA Part 4 Annex B are

presented in Annex A.3.2. Example B.2.6 outperforms all other examples in filter complexity

and thus can be used as a perfect example to show the usability of the mapping (see also Figure

6.3). The textual form of the filter can be formulated in the following way: Find all Instances

of PersonType, where a PersonType is connected to an AnimalType with a HasPet Reference and

additionally the AnimalType must be connected to a FeedingScheduleType through a HasSchedule

Reference. Furthermore, the PersonType Instance shall have a ZipCode-Property with the value

"02138". Finally, the FeedingScheduleType shall have a Period-Property with the value "Daily" or

"Hourly" and an Amount-Property with a value greater than "10" (Figure 6.3).

The corresponding NodeTypeDescription of example B.2.6 is shown in Table 6.1. The Query-

DataDescription (dataToReturn) can be formulated in the following way: Return the Lastname

Table 6.1 – OPC UA Part 4 Example B.2.6 - NodeTypeDescription (NodeTypes[]) [77].

Type- Include QueryDataDescription
DefinitionNode Subtypes Relative Path Att.
PersonType FALSE ".12:Lastname" value

"<12:HasPet>12:AnimalType.12:Name" value
"<12:HasPet>12:AnimalType<12:HasSchedule> value
12:FeedingScheduleType.12:Period"
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Figure 6.3 – OPC UA Part 4 Example B.2.6 - Filter [77].

Property of the PersonType Instance and the Name Property of the corresponding AnimalType

Instance and the Period Property of the FeedingScheduleType Instance.

Figure 6.4 depicts how this query is formulated in SPARQL natively. Lines 1-3 of Figure 6.4

define OPC UA Namespaces, where Namespace "12" of OPC UA Part 4 Annex B is mapped to "query"

(see also Section A.2.1). Line 3 defines the prefix for Attribute OWL data properties (see also

Section 5.2) of the OPC UA to OWL mapping and Line 2 stands for the standard OPC UA Namespace.

The filter statement is described with the Lines 7-12. The QueryDataDescription (dataToReturn)

is depicted with the Line 5 and Lines 14-15. Notice that, in SPARQL it is possible to reuse filter

statements in the result statement (e.g., the periodValue of Figure 6.4). The results (see the lower

part of Figure 6.4) are exactly as specified by the OPC UA specification. Nevertheless, this SPARQL

query is not totally equal to the corresponding OPC UA Query. For example, if the Lastname-

Property for JFamily1 is not defined the whole query would fail, while in contrast, OPC UA Query
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Figure 6.4 – Example B.2.6 - Native SPARQL Query with results (Apache Fuseki) [139].

would only return a null-value for the particular QueryDataDescription. The same behavior can

easily be modeled through adding an OPTIONAL statement in SPARQL (e.g., OPTIONAL{?person

query:lastname/ia:value ?lastnameValue.}). However, there are still some other major differences

between the OPC UA Query of Example B.2.6 and the native SPARQL query of Figure 6.4, which

are further discussed in Section 6.6.2.

6.4 OPC UA Query to SPARQL

In the previous section, insights are given on how some special aspects of OPC UA data models

can be addressed with SPARQL directly. However, because most OPC UA stacks already support
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the sending and receiving of OPC UA Query messages, the focus is now shifted to how OPC UA

Query requests can be translated into SPARQL queries, starting with the mapping of OPC UA

FilterOperands to SPARQL (Section 6.4.1). In the following, Section 6.4.2 introduces concepts

to translate OPC UA NodeTypeDescriptions to SPARQL, while Section 6.4.3 highlights scalability

considerations. Finally, Section 6.4.4 exemplifies how the mapping is applied based on an example.

6.4.1 OPC UA FilterOperands to SPARQL

The main focus of this section is the mapping of OPC UA FilterOperands to SPARQL expressions.

Table 6.2 contains the complete FilterOperator list of OPC UA Part 4 and the corresponding SPARQL

mapping. Notice that, most of the operators shall return "false" if the implicit conversion fails. This

is, for example, modeled through a COALESCE statement. However, OPC UA Query also implicitly

converts, for example, a String-value into a Byte-value (see also Annex A.3.2). This is not true

for SPARQL. Because of that, additional algorithms are necessary to cover all implicit OPC UA

FilterOperator Operands SPARQL Mapping
Equals 2 COALESC E((OP0= OP1), f alse)
IsNull 1 !BOUN D(OP0)
GreaterThan 2 COALESC E((OP0> OP1), f alse)
LessThan 2 COALESC E((OP0< OP1), f alse)
GreaterThanOrEqual 2 COALESC E((OP0≥ OP1), f alse)
LessThanOrEqual 2 COALESC E((OP0≤ OP1), f alse)
Like 2 COALESC E(REGEX (OP0, OP1), f alse)
Not 1 !OP0
Between 3 COALESC E((OP0≥ OP1)&&(OP0≤ OP2), f alse)
InList 2..n COALESC E(((OP0= OP1) || (OP0= OPn)), f alse)
And 2 (OP0&&OP1)
Or 2 (OP0 || OP1)
Cast 2 OP1(OP0) (not complete)
InView 1 See Section 6.2
OfType 1 Tar getNode a OP0.

F I LT ER(OP0= opc : Ob jectT ype ||
OP0= opc : VariableT ype || EX ISTS{
OP0 rd f s : subClassO f +
opc : Ob jectT ype} || EX ISTS{OP0
rd f s : subClassO f + opc : VariableT ype})

RelatedTo 6 See Section 6.4.1
BitwiseAnd 2 not mapped
BitwiseOr 2 not mapped

Table 6.2 – FilterOperator to SPARQL mapping.
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1 SELECT DISTINCT ? r e s u l t ? equal ? s t r i n g ? byte ? castOk ?op1Type ?op2Type ↘
?op1 ?op2

2 WHERE {
3 BIND( xsd : s t r i n g (10.0) as ? s t r i n g )
4 BIND( xsd : f l o a t (10.0) as ? byte )
5 BIND( IF (DATATYPE( ? s t r i n g )=DATATYPE( ? byte ) , true , f a l se ) as ? equal )
6

7 BIND( IF (DATATYPE( ? s t r i n g )=xsd : double ,0 ,
8 IF (DATATYPE( ? s t r i n g )=xsd : f l o a t , 1 ,
9 IF (DATATYPE( ? s t r i n g )=xsd : long ,2 ,−1) ) ) as ?op1Type ) .

10 BIND( IF (DATATYPE( ? byte )=xsd : double ,0 ,
11 IF (DATATYPE( ? byte )=xsd : f l o a t , 1 ,
12 IF (DATATYPE( ? byte )=xsd : long ,2 ,−1) ) ) as ?op2Type ) .
13 BIND(( ?op1Type>?op2Type ) || ( ?op2Type>?op1Type ) as ? castOk ) .
14 BIND( IF ( ?op1Type>?op2Type , ? s t r i n g ,
15 IF ( ?op2Type=0,xsd : double ( ? s t r i n g ) ,
16 IF ( ?op2Type=1,xsd : f l o a t ( ? s t r i n g ) ,
17 IF ( ?op2Type=2,xsd : long ( ? s t r i n g ) , ? s t r i n g ) ) ) ) as ?op1) .
18 BIND( IF ( ?op2Type>?op1Type , ? byte ,
19 IF ( ?op1Type=0,xsd : double ( ? byte ) ,
20 IF ( ?op1Type=1,xsd : f l o a t ( ? byte ) ,
21 IF ( ?op1Type=2,xsd : long ( ? byte ) , ? byte ) ) ) ) as ?op2) .
22

23 BIND( IF ( ? equal , ? s t r i n g=? byte ,
24 IF ( ? castOk , ?op1=?op2 , " " ) ) as ? r e s u l t ) .
25 }LIMIT 25

Listing 6.1 – Example SPARQL algorithm for implicit conversion of a String to Float.

Query conversion rules. An example of such an algorithm is depicted in Listing 6.1. This algorithm

converts a String-value into a Float-value. However, not all implicit conversions can be supported

by this algorithm. For a similar reason, the cast operator cannot be fully supported because the

data type model of OPC UA is extensible, while the OPC UA to OWL mapping is limited to certain

XSD types (see also Section 5.3). Finally, the BitwiseAnd and BitwiseOr filter operators also have

no direct counterpart in SPARQL.

The RelatedTo filter operator (see also Annex A.3.2) contains up to six operands, which

sometimes lead to large SPARQL representations (e.g., if Operand[3] is "0"). Table A.25 shows the

definition of the different operators. In Figure 6.5 an example is given how a complex RelatedTo filter

operator can be translated to a SPARQL expression. The left side of the figure depicts an example

filter in the OPC UA graphical notation of OPC UA Part 4. The filter of Figure 6.5a can be formulated

textual in the following way: Find all Instances of PersonType, where the Instances are connected to

an Instance of AnimalType with a HasPet ReferenceType. In addition, the AnimalType Instance must
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Operator
Element

Attribute
Element

RelatedTo

RelatedToPersonType HasPet

AnimalType ScheduleType HasSchedule

(a) Example B.2.4 - Filter [77].

1 ASK
2 WHERE {
3 ? person a query : PersonType .
4 ? animal a query : AnimalType .
5 ? sched a query : ScheduleType .
6 ? animal query : hasSchedule {1} ? sched .
7 ? person query : hasPet {1} ? animal .
8 }

Listing (6.2) Example B.2.4 - SPARQL Filter.

Figure 6.5 – Example SPARQL mapping for the RelatedTo operator.

be connected to a ScheduleType Instance with a HasSchedule ReferenceType. As the first step, the

lower RelatedTo operator shall be translated. Operand[0] is translated to the SPARQL expression of

Line 4 (Listing 6.2), while Line 5 contains Operand[1]. Line 6 specifies the relationship between

Operand[0] ("?animal"), Operand[1] ("?schedule"), Operand[2] ("quer y : hasSchedule"), and

Operand[3] ("{1}"). Operand[3] specifies the number of hops and is set to the value "1" in this

example. This means Operand[0] and Operand[1] should be directly related. Notice that, the

formulation of Operand[3] is not part of standard SPARQL but is supported by some of the SPARQL

engines like Apache Fuseki [12]. Based on the standardized COUNT expression it is also possible

to formalize an equal statement with standard SPARQL expressions. Furthermore, if the hop count

is set to "1" the "{1}" statement can also be omitted. If Operand[4] and Operand[5] are set to

"true". If Operand[4] would be set to "false" the predicate of Line 3 and Line 4 ("a") would be

replaced by the predicate "opcua : hasT ypeDe f ini t ion", or the pattern has to be executed on

a graph without inference. If Operand[5] is set to "false", Line 6 must be executed on a graph

without inference. Since SPARQL allows to combine patterns of different graphs within one query,

1 SELECT DISTINCT ? sn
2 WHERE {
3 {SELECT ? sn ? tn (COUNT( ? in t1 ) as ?hops1 ) (COUNT( ? in t3 ) as ?hops3 )
4 WHERE {
5 ? sn a query : PersonType . ? sn query : hasChi ld* ? in t1 .
6 ? in t1 query : hasChi ld ? in t2 . ? in t2 query : hasChi ld* ? tn .
7 ? tn a query : PersonType .
8 OPTIONAL{? in t3 a query : PersonType . FILTER ( ? in t1 = ? in t3 ) }
9 } GROUP BY ? sn ? tn }

10 FILTER ( ?hops1 = ?hops3 )
11 }

Listing 6.3 – Example mapping if the RelatedTo Operand[3] is set to "0".
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it is also possible to combine the inferred graph with another graph without inference. In the

next step, Operand[0] of the upper RelatedTo operator is expressed by Line 3, while Operand[1] is

based on the Instances of the lower RelatedTo operator ("?animal"). Finally, Line 7 expresses the

relationship between the other operands.

As specified in Annex A.3.2, if Operand[3] is set to "0" the semantics of the RelatedTo filter

operator change drastically. In this case, an undefined number of hops shall be followed in the

forward direction and each Node in the path shall be of the Type specified by Operand [0]. Listing

6.3 presents a concept of how such a RelatedTo filter operator can be translated into SPARQL. The

basic idea is to define intermediate SPARQL variables (e.g., ?int1 and ?int2 of Listing 6.3), which

allow checking for the corresponding Types of all intermediate Nodes on the path. The last open

point is now to count the number of intermediate Nodes and compare this number with the number

of intermediate Nodes of the specified Type. If both numbers are equal, each intermediate Node

has the correct Type and the Node can be added to the result set.

The Like Operator returns "true" if the pattern defined in Operand[1] matches Operand[0].
Furthermore, OPC UA defines its own language about how patterns should be specified. Table 6.3

describes the mapping of OPC UA wildcard characters to RegEx characters, which can be used in

SPARQL queries.

The Attribute Operand can be considered as some kind of super set of all operands supported

by OPC UA Query (see also Annex A.3.2). Some of the transformation steps can also be reused

for the QueryDataDescription (e.g., the transformation for the RelativePath). Listing 6.4 contains

an example of the mapping rules. Note that, the given query of Listing 6.4 contains only parts of

1 ?nodeId a query : AnimalType . # NodeId
2 BIND( ?node as ? alias_Name ) . # A l i a s
3 ? targetNode i a : value | ta : value ? v a l u e A t t r i b u t e . # A t t r i b u t e I D
4 # BrowsePath TargetName = TypeNodeId
5 ? targetNode a query : AnimalType .
6 # BrowsePath Re la t ion
7 ? sourceNode opcua : organ izes ? targetNode . # I s I n v e r s e = f a l s e
8 ? sourceNode opcua : organizedBy ? targetNode . # I s I n v e r s e = t rue
9 opcua : organ izes owl : inver seOf ? inverseRefType .

10 # BrowsePath TargetName = BrowseName
11 ? targetNode i a : browseName| ta : browseName ?browseNameValue .
12 FILTER ( ?browseNameValue = " browseName "̂ x̂sd : anyURI ) .
13 # BrowsePath TargetName = empty
14 ? sourceNode ? refType ? targetNode . # Graph without in f e r ence
15 FILTER ( ? refType = opcua : organ izes || # IncludeSubtypes = t rue
16 EXISTS{? refType r d f s : subPropertyOf+ opcua : organ izes }) .

Listing 6.4 – An example for the Attribute Operand.
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OPC UA SPARQL Meaning

% .* To ensure "String starts with main" also ˆmain.* can be
used, which does not match "something main something".

_ .{1}
\ Escape characters must be interpreted by the parser be-

fore the RegEx transformation. In addition, also reserved
RegEx chars must be escaped by the parser.

[] []
[ˆ] [ˆ]

Table 6.3 – OPC UA wildcard characters to SPARQL mapping.

a SPARQL query. The nodeId parameter is translated based on Line 1 of Listing 6.4, depending

on how the NodeId is expressed in the underlying OWL-mapping (see Chapter 5). Line 2 shows

how the alias parameter can be translated to the BIND concept of SPARQL. However, it would be

also possible to simply reuse the SPARQL variable. The attributeId parameter is mapped by Line

3 based on the predicate statement (e.g., "ia:value|ta:value"). This statement would return the

Value-Attribute in this particular case. If, for example, the BrowseName-Attribute should be returned

the predicate has to be changed to "ia:browseName|ta:browseName". Line 5 has to be introduced

in a query if the targetName is a NodeId (e.g., "query:AnimalType") instead of a BrowseName (see

also OPC UA Part 4). The Lines 7, 8, and 9 address the relation. The referenceTypeId parameter is

encoded in the predicate statement (e.g., "opcua:organizes"). As already introduced in Section 5.4

asymmetric ReferenceTypes are automatically generate two OWL object properties. In some cases,

the inverse name is well-known and can be directly entered (Line 8). However, it is also possible

to retrieve the inverse OWL object property for a given ReferenceType based on Line 9. Lines 11-12

are present if the targetName parameter is a BrowseName. The targetName parameter itself is

inserted in Line 12 (e.g., "browseName"). Finally, if the targetName is empty (only allowed in

some cases) the BrowseName is not important and is not used for filter purposes. Line 14 identifies

the modeled References and must be executed on a graph without inference. This is especially

important if later on ReferenceDescriptions shall be returned. The next step is to filter the References

based on the referenceTypeId parameter (Line 15-16). If subtypes shall be included Line 16 must

be present.

The other possible filter operand parameters Element, Literal, and SimpleAttribute can be easily

derived from the already discussed concepts and are not further explained in this thesis.

6.4.2 NodeTypeDescription to SPARQL

The NodeTypeDescription of the OPC UA Query service has two purposes: (1) Selecting the Instances

based on a Type (typeDefNode and includeSubtypes); (2) Specifying the data which shall be
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1 # TypeDefNode − Inc ludeSubtypes t rue
2 ? sourceNode a query : PersonType .
3 # TypeDefNode − Inc ludeSubtypes f a l s e
4 ? sourceNode opcua : hasTypeDef in i t ion query : PersonType .
5 # DataToReturn
6 {} UNION {
7 ? sourceNode opcua : aggregates ? targetNode1 .
8 ? targetNode1 ia : browseName| ta : browseName ? targetNode2 .
9 FILTER ( ? targetNode2 = " BrowseName "̂ x̂sd : anyURI ) .

10 ? targetNode1 ia : value | ta : value ? element0 .
11 } UNION {
12 ? sourceNode ? refType ? targetNode3 . # Graph without in f e r ence
13 FILTER ( ? refType = opcua : organ izes || # IncludeSubtypes t rue
14 EXISTS{? refType r d f s : subPropertyOf+ opcua : organ izes }) .
15 ? refType ta : nodeId ?rdNodeId .
16 ? refType ta : isForward ? rdIsForward .
17 ? targetNode3 ia : nodeId| ta : nodeId ? rdTargetNodeId .
18 ? targetNode3 ia : browseName| ta : browseName ?rdBrowseName .
19 ? targetNode3 ia : displayName| ta : nodeId ? rdDisplayName .
20 ? targetNode3 ia : nodeClass | ta : nodeClass ? rdNodeClass .
21 ? targetNode3 opcua : hasTypeDef in i t ion ? rdTypeDef .
22 }

Listing 6.5 – An example NodeTypeDescription.

returned (dataToReturn). Listing 6.5 exposes an example transformation. The typeDefNode is

expressed by the Lines 2 and 4. If includeSubtyes has the value "false" Line 4 must be inserted.

Lines 6-10 and Lines 11-21 depict two elements of a QueryDataDescription. Note that, each element

is encapsulated in an UNION statement. In the end, this ensures that not the complete query

fails if a single element in the QueryDataDescription fails. The former array element (Lines 6-10)

contains the mapping for a defined BrowseName. The later array element (Lines 11-21) shows the

transformation if the relativePath argument ends on a Reference. In this case, a ReferenceDescription

shall be returned as result. Line 12-14 are used to fetch the modeled References for the given path.

Line 12 must be executed on a graph without inference to ensure that only the actual modeled

references are returned. If subtypes of the defined ReferenceType shall also be included Line 14

must be added. The Lines 15 and 16 extract the referenceTypeId and the isForward parameter

based on an OWL object property. Line 17-21 are used to collect the remaining information for a

ReferenceDescription (browseName, displayName, nodeClass, and typeDefinition).
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1 SELECT DISTINCT ? subClas ses ? subPrope r t i e s
2 WHERE {
3 ? subClas ses r d f s : subClassOf* query : AnimalType .
4 ? subPrope r t i e s r d f s : subPropertyOf* opcua : h i e r a r c h i c a l R e f e r e n c e s .
5 }LIMIT 25

Listing 6.6 – SPARQL based graph inference.

6.4.3 Scalability considerations

In the examples of the previous sections sometimes the inferred graph and sometimes the native

graph has to be used. Normally, the inferred graph is the more useful graph and should also be

the preferred graph for standard queries. Nevertheless, the inferred graph is generated by an

OWL reasoner which might run into some limitations for very huge information models with high

complexity. Further research must be carried out to exactly determine the outer bounds of this

concept. However, it is also possible to slightly reformulate the SPARQL queries to get the same

results as for an inferred graph on a native graph. Line 3 of Listing 6.6 shows how all OPC UA

subtypes of the AnimalType, including the AnimalType itself, can be bound to the "?subClasses"

SPARQL variable. The result on an inferred as well as on the native graph would be: AnimalType,

CatType, DogType, and PigType for the information model of Annex A.3.2. Line 4 is the equivalent

statement to include subtypes for a given Reference. Based on this concept it is also possible to

easily formulate queries with subtype inclusion on a native graph (without inference) and thus

allows to restrict scalability considerations to SPARQL itself. Companies like Amazon Web Services,

for example, claim to be able to store billions of relations and access them on a millisecond basis

with SPARQL (see also Amazon Neptune documentation [4]). Therefore, it can be assumed that

the underlying technology stack, which supports SPARQL, is powerful enough to support even

cloud-based OPC UA scenarios, where a whole factory should be queried. Another idea would be

to distribute the work-load across several SPARQL endpoints through the standardized SPARQL

federated query concept.

6.4.4 Example mapping from OPC UA Query to SPARQL

In the former sections, the mapping from OPC UA Query to SPARQL is specified based on several

translations of the different service elements. In this section, an example is given how the single

parts of the mapping can be used to form complete queries based on Example B.2.4 from OPC UA

Part 4 (see also Annex A.3.2 for the definition of the OPC UA information model).

The Content-Filter of Example B.2.4 can be formulated in the following way: Find all Instances

of PersonType, where the Instances are connected to an Instance of AnimalType with a HasPet
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Table 6.4 – Example B.2.4 - NodeTypeDescription (NodeTypes[]) [77].

Type- Include QueryDataDescription
DefinitionNode Subtypes Relative Path Att.
PersonType FALSE ".12:Lastname" value

"<12:HasPet>12:AnimalType.12:Name" value
"<12:HasPet>12:AnimalType<12:HasSchedule> value
12:Schedule-Type.12:Period"

ReferenceType. In addition, the AnimalType Instance must be connected to a ScheduleType Instance

with a HasSchedule ReferenceType (see also Figure 6.5a).

The QueryDataDescription (dataToReturn) of Example B.2.4 can be formulated in the following

way: Return the Lastname Property of the PersonType Instance and the Name Property of the

corresponding AnimalType Instance and the Period Property of the ScheduleType Instance (Table

6.4).

1 SELECT DISTINCT ?nodeId ? typeDef in i t ionNode ? element0 ? element1 ? element2
2 WHERE {
3 ? sn a query : PersonType . ? sn opcua : hasTypeDef in i t ion query : PersonType .
4 ? sn ta : nodeEx i s t s ? e x i s t s . F i l t e r ( ? e x i s t s ) . BIND( ? sn as ?sn1 ) .
5 OPTIONAL{?sn2 a query : AnimalType . ? tn2 a query : ScheduleType .
6 ?sn2 query : hasSchedule ? tn2 . BIND(BOUND( ?sn2 ) as ? r e s u l t 1 ) . }
7 BIND( IF ( ? r e s u l t 1 , ? sn2 , " " ) as ? tn1 ) . OPTIONAL{?sn1 a query : PersonType .
8 ?sn1 query : hasPet ? tn1 . BIND(BOUND( ?sn1 ) as ? r e s u l t 0 ) . }
9 FILTER ( ? r e s u l t 0 ) .

10 ? sn i a : nodeId ?nodeId . ? sn opcua : hasTypeDef in i t ion ? typeDef in i t ionNode .
11 {} UNION {? sn opcua : aggregates ? tn3 .
12 ? tn3 i a : browseName| ta : browseName ? tn4 .
13 FILTER ( ? tn4 = " h t tp :// opcfoundation . org/UA/Ex/Lastname "̂ x̂sd : anyURI ) .
14 ? tn3 i a : value | ta : value ? element0 . # PersonType−LastName−Proper ty
15 } UNION {? sn query : hasPet ? tn5 . ? tn5 a query : AnimalType .
16 ? tn5 opcua : aggregates ? tn6 . ? tn6 i a : browseName | ta : browseName ? tn7 .
17 FILTER ( ? tn7 = " h t tp :// opcfoundation . org/UA/Ex/Name"̂ x̂sd : anyURI ) .
18 ? tn6 i a : value | ta : value ? element1 . # AnimalType−Name−Proper ty
19 } UNION {? sn query : hasPet ? tn8 . ? tn8 a query : AnimalType .
20 ? tn8 query : hasSchedule ? tn9 .
21 ? tn9 a query : ScheduleType . ? tn9 opcua : aggregates ? tn10 .
22 ? tn10 ia : browseName | ta : browseName ? tn11 .
23 FILTER ( ? tn11 = " h t tp :// opcfoundation . org/UA/Ex/Per iod "̂ x̂sd : anyURI ) .
24 ? tn10 ia : value | ta : value ? element2 . # ScheduleType−Period−Proper ty
25 }
26 }LIMIT 25

Listing 6.7 – Example B.2.4 - OPC UA Query to SPARQL mapping.
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Annex B of OPC UA Part 4 also specifies the results which should be returned for the query

executed against the information model of Figure A.4. In the following, the SPARQL representation

of Example B.2.4 (see also Listing 6.7) is highlighted. Notice that, the SPARQL COALESCE

statements of Table 6.2 are omitted for readability purpose because no implicit casts are necessary.

Line 3 expresses the typeDefNode parameter of the NodeTypeDescription. In this case Instances

of PersonType shall be returned without subtypes. However, because the PersonType defines no

subtypes the result includeSubtypes parameter has no effect at all. Line 4 is not discussed in

the previous sections and has to be introduced to exclude shadow Nodes from the results (see

also Section 5.10). The filter is translated in form of the Lines 5-9. It should be mentioned,

that the translation differs a little bit from the translation of the RelatedTo mapping definition

of Section 6.4.1. The lower RelatedTo operator is transformed to the Lines 5 and 6, while the

upper RelatedTo operator is marked by the Lines 7 and 8. Both operators are encapsulated by

SPARQL OPTIONAL statements, generate an additional boolean value ("?result0" and "?result1"),

and are interconnected through SPARQL BIND statements. Finally, the filter statement is evaluated

in Line 9. The reason for this is grounded in SPARQL and the fact that between each statement

automatically and And connection is inserted. If, for example, both RelatedTo operators would

be interconnected through an Or operator instead of the direct combination, the query should

succeed if any of the RelatedTo operators return "true". However, if the statements would not

be encapsulated in SPARQL OPTIONAL clauses the whole query would fail if only one RelatedTo

operator returns false. Line 10 assigns the nodeId and instanceTypeDefNode parameter for each

queryDataSets entry. The three dataToReturn elements of the nodeTypes parameter are depicted

by the Lines 11-24. Each of the elements is encapsulated in a SPARQL UNION clause because

OPC UA Query shall also return results if a single element fails. Finally, Line 25 shows how the

maximum number of results can be restricted in SPARQL. Notice that, this statement cannot be

directly mapped to the parameters maxDataSets and maxReferences because in SPARQL exists

no service similar to QueryNext. It would be possible to combine the SPARQL LIMIT statement with

the SPARQL OFFSET statement to implement some kind of pagination in SPARQL. Nevertheless,

this only works in combination with an additional SPARQL ORDER BY statement and a more or less

static graph. Figure 6.6 shows the result if the query is executed against the example information

model of Figure A.4. The results exactly match the results which shall be returned for query B.2.4

according to OPC UA Part 4 Annex B.

In conclusion, besides the few restrictions on some of the operators explained in previous

sections, most of the features of OPC UA Query could be covered and thus allows fast prototyping of

OPC UA Query. Moreover, SPARQL supports additional constructs like "IF"-statements, aggregation,

subqueries, and also federated queries, which are currently not available in OPC UA Query.
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Figure 6.6 – Example B.2.4 - Results (Apache Fuseki) [139].

6.5 Synchronization of OPC UA graphs

To synchronize two OPC UA graphs several steps must be executed.

The first step is the registration for ModelChangeEvents. ModelChangeEvents are introduced

by OPC UA Part 3 and can be used to notify clients about structural changes in OPC UA graphs.

A structural change is, for example, adding or deleting of References or Nodes. In addition, Mod-

elChangeEvents are also emitted if the DataType Attribute of a VariableType or Variable changes.

The second step is to copy the information model from the source OPC UA server to the target

OPC UA server. This can be done in several ways: (1) Browsing the whole OPC UA information

model with the Browse service; (2) Based on the NamespaceFile of the NamespaceMetadataType; (3)
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Using a proprietary manufacturer-specific protocol. Each approach has its benefits and drawbacks.

For example, the first approach can typically be applied to each OPC UA server but also comes

with higher resource consumption. The second approach is more resource-efficient than the first

one but is often not applicable to today’s OPC UA server. The third approach could offer more

performance as well as more functionality but offers the lowest interoperability. Especially the

synchronization of Views is very resource inefficient with standardized OPC UA concepts. The only

available standardized solution to synchronize Views is to traverse the whole OPC UA graph for

each View. It should be noted, that it is not possible to retrieve the View information from the OPC

UA XML NodeSet-File because there is no concept defined to express View-specific References for

Nodes.

The third step is to keep both graphs synchronized based on Events (e.g., ModelChangeEvent)

and Subscriptions. Nevertheless, according to the OPC UA specification, the synchronization is

very expensive. The reason for that is because in general each Attribute of OPC UA must be

considered as dynamic. For example, in most OPC UA information models the BrowseName and

the DisplayName are static (e.g., Type-Model). Up to now, OPC UA offers no standardized machine-

readable concept to express what kind of Attributes are dynamic (e.g., Value-Attribute) and which

ones are static (e.g., NodeId-Attribute). In the following, a concept is introduced how OPC UA

Attributes can be efficiently synchronized. The concept consists of two main parts: (1) A concept of

how static/dynamic Attributes can be expressed within OPC UA information models; (2) A concept

of how changes in the static Attributes can be communicated.

Static/Dynamic Attributes: Each Namespace in OPC UA has a corresponding NamespaceMeta-

DataType Instance to provide further information for the given Namespace. This standardized

opc:NamespaceMetadataType

opc:PropertyType [Mandatory]

opc:NamespaceUri

opc:PropertyType

...

opc:PropertyType [Optional]

opc:DefaultAccessRestriction

opc:PropertyType [Optional]

rs:DefaultStaticAttributes

opc:ServerType

opc:Server

opc:PropertyType

rs:StaticAttributes

opc:PropertyType

opc:ServerArray

Figure 6.7 – DefaultStaticAttributes-Property and StaticAttributes-Property.
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6.5 Synchronization of OPC UA graphs

ObjectType shall be extended with a new standardized "DefaultStaticAttributes" Property (See

Figure 6.7 left side). The Value-Attribute of this Property contains a bitmask, which marks what

kind of Attributes are static. The bitmask shall be defined identically to AttributeWriteMask of

OPC UA Part 3. The specified configuration automatically applies to all Nodes of the Namespace.

However, to override default values an additional standardized "StaticAttributes" Property can

be added to each Node (See also Figure 6.7 right side). If the "DefaultStaticAttributes" Property

shall be overridden for Properties, this could be done through a special "StaticAttributesType"

VariableType, which could be defined in a similar way.

Changes in static Attributes: The term static in this case means mostly static. For example,

it can be expected that in most cases the DataType-Attribute never changes or only very seldom.

Attributes which fall below this category shall also be marked as static, even if changes are possible.

Based on this concept it is possible to also cache such Attributes without additional synchronization

overhead. Nevertheless, because of this approach, an additional concept is needed to communicate

changes in static Attributes. Such changes shall be communicated with newly introduced Events,

which are similar to the ModelChangeEvent of OPC UA Part 3 (see also Figure 6.8).

BaseStaticAttributesChangeEvents are Events of the BaseStaticAttributesChangeEventType.

The BaseStaticAttributesChangeEventType is the base type for StaticAttributesChangeEvents and

does not contain information about the changes, instead, only indicates that changes have occurred.

Therefore, the client shall assume that any or all static Attributes of the Nodes may have changed.

GeneralStaticAttributesChangeEvents are Events of the GeneralStaticAttributesChangeEvent-

Type. The GeneralStaticAttributesChangeEventType is a subtype of the BaseStaticAttributesChange-

EventType. It contains information about the Node for which a static Attribute has changed. In the

most generic version of this Event only the NodeId shall be transmitted. In a more detailed Version

of this Event for each NodeId also a bitmask shall be transmitted, which marks the changed static

BaseEventType

BaseStaticAttributes
ChangeEventType

BaseStaticAttributes
ConfigChangeEventType

GeneralStaticAttributes
ChangeEventType

GeneralStaticAttributes
ConfigChangeEventType

Figure 6.8 – Default Event Types for static Attribute changes.
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Attributes. To also allow Event compression similar to the ModelChangeEvent, a StaticAttributes-

ChangeEvent contains an array of changes.

BaseStaticAttributesConfigChangeEvents are Events of the BaseStaticAttributesConfigChange-

EventType. The BaseStaticAttributesConfigChangeEventType is the base type for StaticAttributes-

ConfigChangeEvents and does not contain information about the changes, instead, only indicates

that changes have occurred. Therefore, the client shall assume that any or all Value-Attributes

(bitmask) of “StaticAttribute” or “DefaultStaticAttributes” Nodes may have changed.

GeneralStaticAttributesConfigChangeEvents are Events of the GeneralStaticAttributesConfig-

ChangeEventType. The GeneralStaticAttributesConfigChangeEventType is a subtype of the Base-

StaticAttributesConfigChangeEventType. It contains information about the Node for which the

Value-Attribute (bitmask) of “StaticAttribute” or “DefaultStaticAttributes” Nodes have changed. In

the most generic version of this Event only the NodeId shall be transmitted. In a more detailed

version of this Event for each NodeId also the new value of the bitmask (Value-Attribute of the

Node) shall be transmitted. To also allow Event compression similar to the ModelChangeEvent, a

StaticAttributesConfigChangeEvent contains an array of changes.

6.6 Evaluation

This section evaluates the validity of the presented concepts (including the OWL mapping of

Chapter 5) against the example queries of OPC UA Part 4 Annex B (Section 6.6.1) and against the

corresponding research challenge (Section 6.6.2).

6.6.1 OPC UA Part 4 Annex B

To demonstrate the validity of the approach all complex examples of OPC UA Part 4 Annex B are

now mapped with the native SPARQL mapping as well as the OPC UA Queries transformation. Table

6.5 gives an overview of the evaluation results. It should be noted, that it is possible to execute all

complex examples with both approaches without any problems. However, during the research of

this thesis, several faults within OPC UA Part 4 Annex B could be detected and had to be fixed first

before some of the queries could be executed. In addition, it is identified that not all examples

always return the expected results if the OPC UA Query service is used. This is mainly due to some

architectural decisions of OPC UA Query, which are discussed further in Section 6.6.2. Below, the

most important findings for each of the nine example queries are discussed including also some

details of the mapping itself. The details of the mapping are based on the native SPARQL mapping

and return the same results as the OPC UA Query service would return for the information model

of Annex A.3.2. Nevertheless, these queries are similar but not equal to the queries formulated

in OPC UA Part 4 and, for example, do not make use of further parameter checks or the implicit
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conversion algorithm of Section 6.4 to improve the readability of this thesis. The main purpose of

these queries is to show how certain concepts of OPC UA Query can be translated into SPARQL.

Example B.2.4: This example is already used in Section 6.4 to exemplify the OPC UA Query

to SPARQL transformation. The native SPARQL transformation is also straight forward and must

not be further discussed. The reason why this example is marked as not correct is based on some

typos in the RelativePath column (e.g., "12:Schedule" instead of "12:ScheduleType").

Example B.2.5 makes use of two different NodeTypeDescriptions and shows that an array can

be received. Different NodeTypeDescriptions are modeled through a SPARQL UNION statement.

Listing 6.8 depicts the native SPARQL query. The Lines 3-6 model the filter and the return data

for the PersonType while Lines 8-11 are responsible for the CatType. The transformation rules for

two NodeTypeDescriptions in the OPC UA Query to SPARQL mapping are based on the same basic

concept. However, the query would still look different because, for example, the filter cannot be

automatically divided into two UNION statements. Because of that, the full filter is present in both

UNION statements.

Example B.2.6 is already discussed in Section 6.3 for the native SPARQL mapping. Also in this

example, some copy and paste faults are identified. Furthermore, the usage of the alias concept

seems to differ from Example B.2.8. Finally, also this very complex filter can be translated with

the OPC UA Query to SPARQL mapping.

Table 6.5 – Evaluation based on OPC UA Part 4 Annex B.

Query Spec. Native OPC UA
Example Properties faulty SPARQL Query m.

B.2.4 • Combined RelatedTo operator No Yes Yes
• Several dataToReturn statements
• Multiple hops in dataToReturn statements

B.2.5 • Two NodeTypeDescriptions Yes Yes Yes
• More than one result is returned

B.2.6 • Very complex filter No Yes Yes
B.2.7 • Operand[3] of RelatedTo operator >1 Yes Yes Yes
B.2.8 • Usage of the alias concept No Yes Yes
B.2.9 • Return of a ReferenceDescription No Yes Yes
B.2.10 • Return of a ReferenceDescription No Yes Yes

• Inclusion of a previous Browse result
B.2.11 • Usage of the View concept Yes Yes Yes

• Otherwise identical to B.2.5
B.2.12 • Usage of the View concept No Yes Yes

• Similar to B.2.5
• Nodes are requested through relative paths
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1 SELECT DISTINCT ?nodeId ? typeNodeId ? lastnameValue ?nameValue
2 WHERE {{
3 ? person a query : PersonType . ? person2 a query : PersonType .
4 ? person query : hasChi ld ? person2 .
5 ? person i a : nodeId ?nodeId . ? person opcua : hasTypeDef in i t ion ↘

? typeNodeId .
6 ? person query : lastname/ i a : value ? lastnameValue .
7 } UNION {
8 ? ca t a query : CatType . ? schedule a query : FeedingScheduleType .
9 ? ca t query : hasSchedule ? schedule .

10 ? ca t i a : nodeId ?nodeId . ? ca t opcua : hasTypeDef in i t ion ? typeNodeId .
11 ? ca t query :name/ i a : value ?nameValue .
12 }}LIMIT 25

Listing 6.8 – OPC UA Part 4 Example B.2.5 - Native SPARQL Query.

Example B.2.7 specifies more than one hop for an RelatedTo operator. Section 6.4.1 explains

in great detail how Operand[3] of an RelatedTo filter operator shall be translated. Based on these

transformation rules this example can be translated very easily and is not further discussed within

this thesis.

Example B.2.8 shows the usage of the alias concept. In Section 6.4.1 the mapping of the

Attribute operand, also including the mapping of the alias concept, is explained. However, this

query should not return any result at all. The reason for that is based on the filter, which enforces

that a child has the same first name as a parent of theirs. OPC UA Part 4 Annex B specifies HFamily1

as a valid result for this query. Nevertheless, according to the definition of the Equals operator, the

operands have to match completely. As depicted in Annex A.3.2, the first name of HFamily1-3 is

"Paul", "Paul (Jr.)", and "Sara". Because the String-Value "Paul" cannot be considered equal to the

String-Value "Paul (Jr.)" the query is not allowed to return any result for this information model.

One solution would be to replace the Equals operator with a Like operator. However, the SPARQL

mappings return the correct results in both cases.

Example B.2.9: The main focus of this example is to return ReferenceDescriptions. A sketch of

how a NodeTypeDescription shall be translated is introduced in Section 6.4.2. However, Listing 6.9

provides more details based on Example B.2.9 of OPC UA Part 4 Annex B. Lines 4-5 model the

filter, while Line 6 fetches the relations of Lines 7-8 from a named graph without inference. Line 9

depicts how the inverse ReferenceType can be identified if it exists (SPARQL OPTIONAL statement).

Lines 10-13 are only to show how the same statement can be introduced in a generic way if the

inverse direction should be followed. The Lines 14-17 extract the necessary information for the

ReferenceDescription directly from OWL object properties or from the target Node. Notice that, this

query does not return the same results as specified for Example B.2.9 because it is only partly
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1 SELECT DISTINCT ? refTypeNodeId ? isForward ? targetNodeId ?browseName
2 ?displayName ? nodeClass ? typeDef
3 WHERE {
4 ? person2 a query : PersonType . ? animal a query : AnimalType .
5 ? person2 query : hasAnimal ? animal . ? person a query : PersonType .
6 ? person query : hasChi ld ? person2 .
7 GRAPH gr : na t i ve {
8 ? person2 ? refType ? animal . }
9 OPTIONAL{ query : hasAnimal owl : inver seOf ? inverseRefType . }

10 FILTER ( ? refType = query : hasAnimal
11 || EXISTS{? refType r d f s : subPropertyOf+ query : hasAnimal }
12 || ? refType = ? inverseRefType
13 || EXISTS{? refType r d f s : subPropertyOf+ ? inverseRefType }) .
14 ? refType ta : nodeId ? refTypeNodeId . ? refType ta : isForward ? isForward .
15 ? animal i a : nodeId ? targetNodeId . ? animal i a : browseName ?browseName .
16 ? animal i a : displayName ?displayName . ? animal i a : nodeClass ? nodeClass .
17 ? animal opcua : hasTypeDef in i t ion ? typeDef .
18 }LIMIT 25

Listing 6.9 – OPC UA Part 4 Example B.2.9 - Native SPARQL Query (not complete).

modeled to keep the focus on the most essential part of the mapping. However, based on this

example it should now be very easy to formulate a query which returns the same results as Example

B.2.9. Furthermore, also Example B.2.9 has several typos/copy and paste faults (including a wrong

result table).

Example B.2.10 is used to provide an example of information model browsing in the filter

statement. In general, this example does not really add new concepts which must be explained in

greater detail. Nevertheless, besides some typos and copy and paste faults (including a wrong

result table) the filter is also faulty (including the table as well as the graphical representation).

Figure 6.9 shows the original filter as it is specified in OPC UA Part 4 Annex B. The red color

marks the problem. According to OPC UA Part 4 the RelatedTo operator only accepts NodeIds or

RelatedTo

RelatedToBaseObjectType
Hierarchical

ReferenceTyp.

PersonType AnimalType HasAnimal

Equals

95

Literal
Element

Operator
Element

Attribute
Element

Figure 6.9 – OPC UA Part 4 Example B.2.10 - Filter [77].
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RelatedTo RelatedTo

BaseObjectType
„Base“

Hierarchical
ReferenceTyp.

PersonType
„Person“

AnimalType

HasAnimal

Equals
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Literal
Element

Operator
Element

Attribute
Element

And

BaseObjectType
„Base“

PersonType
„Person“

And

Figure 6.10 – OPC UA Part 4 Example B.2.10 - Corrected Filter.

ExpandedNodeIds of an ObjectType or VariableType as Operand[0] or Operand[1]. Furthermore,

other RelatedTo operators can also be accepted as Operand[0] or Operand[1]. In contrast, an Equals

operator returns a boolean value and, therefore, is not a valid operand neither for Operand[0]
nor for Operand[1]. For the evaluation the filter is corrected in the following way: (1) The upper

RelatedTo operator is deleted; (2) A new RelatedTo operator between the BaseObjectType and

the PersonType is introduced and connected through an Add operator with the lower RelatedTo

operator; (3) The Equals operator is connected to the And operator through another And operator;

(4) Aliases are introduced for the BaseObjectType and the PersonType. The final filter is shown in

Figure 6.10.

Example B.2.11 is besides the View parameter identical to Example B.2.5. As already explained

in Section 6.2 Views can be modeled with named graphs, or with the additional "inView" OWL object

property. The second approach is more lightweight but only works if the visibility of References is

not defined by Views. Based on the results of Example B.2.12 it is possible to infer that in OPC UA

Part 4 Annex B the Views do not hide References and because of that, the lightweight concept can

be applied.

Example B.2.12 is similar to Example B.2.11 but has a slightly altered NodeTypeDescription.

In this case, the RelativePath is used to traverse Nodes outside of the View (including the return of

data). Finally, also Example B.2.12 has some typos and copy and paste faults.

6.6.2 Research challenge efficient querying of information

This section evaluates the proposed approach of this thesis against the formulated research challenge

(C3) efficient querying of information. Within Section 3.3 the evaluation metrics for the given

research challenge are formulated and existing research approaches are checked against these

metrics. Based on this evaluation two unsolved problems are identified in the existing research
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approaches: First, certain features of an OPC UA query language are not addressed at all like the

Filter, Limits, and Part 4 Annex B requirements or covered only in parts like the View requirement.

Second, features like the NodeTypeDescription can be covered well indirectly through the presented

Semantic Web mappings. However, also this feature is not covered completely by any of the

presented research approaches mainly due to the fact that a full-featured OPC UA query API is not

the main goal for the presented approaches.

Table 6.6 shows the evaluation results of the proposed approach in this thesis. Section 6.2

presents different concepts to map Views to concepts like named graphs. Within Section 6.6.1

another concept for Views is shown. Eventually, Views are covered very well through the concepts

introduced by this thesis. The NodeTypeDescription parameter is covered very well through

Section 6.4.2. The Filter (Section 6.4.1), as well as the Limit (Section 6.4.4) parameter, are

covered well but certain features could not be mapped completely like bitwise filter operations

and the correct behavior of the Limit parameter for dynamic graphs. Finally, Part 4 Annex B is

covered very well through the concepts of this thesis and is extensively discussed in Section 6.6.1.

In conclusion, this thesis presents a solution for the research challenge (C3) efficient querying

of information. The two identified open research points: Missing query features and missing

coverage of certain query features are addressed very successfully within this thesis. It is shown

that with the introduced mapping it is possible to translate OPC UA Queries (with some restrictions)

automatically to SPARQL queries. This concept can be used for rapid product development of the

OPC UA Query service. Nevertheless, it is also highlighted how a native SPARQL query executed

against an OPC UA information model can look like. Furthermore, a concept is introduced to

synchronize OPC UA graphs. In the following, some crucial differences between the formulation of

OPC UA Queries and native SPARQL queries, starting with the query of Section 6.4.4 are highlighted.

Requirements

Research approaches

th
is

th
es

is

View ++
NodeTypeDescription ++

Filter +
Limits +

Part 4 Annex B ++
Sum (15): 13

Table 6.6 – Requirements and evaluation for OPC UA Query (this thesis).

Legend: ++ = very well (3), + = well (2), - = partly (1), - - = not possible (0), NA = Not
Applicable (0)
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In Example B2.4 of OPC UA Part 4 Annex B, the filter ensured that only TypeDefinitionNodes

are considered where a person has a pet and this pet has a schedule. As a result, two pets are

returned for Jones (Rosemary and Basil). Of course, both pets also have a schedule, which is

hourly for Rosemary and daily for Basil. However, because OPC UA Query does not allow to define

any dependency between two different dataToReturn statements, different result arrays must be

considered independent (including the order of the results within the array). This means, that

it is not possible to match the schedule period to the corresponding pet name, because it should

also be allowed to reverse the order of the second result array without violating the OPC UA

specification. This also becomes clearer if the fact is considered, that the Browse service of OPC

UA is allowed to return the References of a Node in a different order for each call as long as not

a special ReferenceType named "HasOrderedComponent" is used. If the assumption is made that

the Query service does not analyze the dataToReturn statement for equal intermediary Nodes the

BrowsePaths are evaluated separately and because of that, the result order might change.

Example B2.6 of OPC UA Part 4 Annex B (see also Section 6.3) has a very complex filter

statement. However, in OPC UA the filter statement and the dataToReturn statement are only

connected through the Instance of the TypeDefinitionNode. An example of the range of this ar-

chitectural decision can be given by only changing the filter of Example B2.6 (see Figure 6.3)

from FScheduleT.Amount > 10 to FScheduleT.Amount > 50. Surprisingly, the result would not

change for OPC UA Query. The reason for this strange behavior is a consequence of the chosen

OPC UA Query architecture. In the above case, the filter is no longer true for Rosemary, because

the amount is below 50. However, the Instance-Node Jones is still a valid Instance because Basil

fulfills all filter statements and so Jones is included in the result list. After the filtered Instances

are determined the dataToReturn statement is applied against these Instances. In this case, also

Rosemary is a valid target again, because the BrowsePath from Jones to Rosemary is still valid.

Nevertheless, most people probably would have assumed that only Basil would be returned as

result. In contrast, the native SPARQL query of Figure 6.4 would only return Basil, because

in SPARQL it is possible to interconnect the dataToReturn statement with the filter statement.

Furthermore, in Figure 6.4 also the period value can be mapped to the animal name because it is

also possible to define dependencies between different dataToReturn statements in SPARQL.

Based on the results of this chapter, it can be stated that the formulation of native OPC UA

Queries is not as easy as it looks. Several queries of OPC UA Part 4 Annex B probably have to be

refined to ensure the expected behavior in each case. If the assumption is made that this annex

was written by the only available experts for OPC UA Query, it can be inferred that new query

users, which are not familiar with OPC UA at all, probably have a hard time with OPC UA Query.

In addition, more than ten bugs within OPC UA Part 4 Annex B like the filter of example B.2.10,

where a RelatedTo operator assigns a Boolean-value to operand[0], which is forbidden according to

the RelatedTo definition are identified. In contrast, a concept is presented how OPC UA information
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models can be queried with SPARQL natively. With the presented approach the size of the queries

can be reduced (Example B.2.4 formulated in OPC UA Query based on the OPC UA C++ SDK of

Unified Automation needs about 100 lines of code (see also [59])), as well as, the complexity

of formulating queries because, for example, the filter statement can be directly interconnected

with the result statement. Finally, all nine example queries of OPC UA Part 4 Annex B (complex

examples) could be executed with the correct results for both approaches.

A further interesting research challenge for OPC UA based SPARQL is the handling of data

streams. In contrast to the typical static SPARQL, parts of an OPC UA information model often

represent senors values which are dynamic by nature. For example, in some use cases not only the

actual value of a given sensor might be interesting, instead, the historical data should also be part

of the SPARQL query. Several interesting concepts exist in this particular research area [93, 27, 20,

33, 9, 92, 90, 130, 28]. Another promising research area for OPC UA queries would be a better

integration of arrays into SPARQL [6, 7].
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7S U M M A RY, C O N C LU S I O N , A N D

O U T L O O K

In this thesis, the efficient web access to OPC UA semantics is investigated. This chapter summarizes

the findings presented in previous chapters and provides a conclusion for the underlying research

goals (Section 7.1). Finally, possible directions for future research in this area are outlined (Section

7.2).

7.1 Summary and Conclusion

The fourth industrial revolution promises to provide mass production for highly configurable and

individualized products based on four design principles: interconnection, information transparency,

decentralized decisions, and technical assistance [67]. Within this thesis, a concept is explored

how one of the most important key technologies for the fourth industrial revolution, OPC UA, could

be combined with web technology to provide solutions for some of the Industry 4.0 challenges like

interconnection and information transparency.

Web access to OPC UA information models: Within Section 3.1 several research challenges

are identified to enable the integration of OPC UA into the World Wide Web.

First, statelessness is not addressed correctly in the actual research and still is an open research

challenge. Second, most of the current research struggles with HATEOAS principles (Uniform

interface). Third, a lot of OPC UA services cannot be accessed with REST APIs.

These challenges are addressed throughout Chapter 4. In the beginning, the concept behind

OPC UA sessions is explained. In a nutshell, the OPC UA concept behind the NamespaceArray

always introduces a state between client and server. Based on the fact that the NamespaceArray

concept is used for addressing in OPC UA (NodeIds), most services cannot be considered stateless.

This challenge is addressed through a concept for session-less service calls which is also contributed

to the standardization (see also Section 4.2.2). Section 4.4 introduces the HTTP mapping and

the HATEOAS-inspired resource representation with embedded hypermedia control elements.
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In combination with Section 4.6 the second challenge, HATEOAS principles, is covered. This is

achieved through the correct usage of HTTP verbs for different services. For example the HTTP

verb "GET" is used for the Read service and the HTTP verb "PUT" is used for the Write service. Last

but not least, Section 4.6 presents features like web browser support for good integration into

the web ecosystem. The last identified research challenge, service coverage, is mainly tackled

through Section 4.3 and Section 4.5. These sections present concepts on how some of the more

difficult services can be mapped to REST paradigms. Section 4.5 even provides a concept of how

group-subscriptions can be introduced in a resource-efficient RESTful way. Eventually, the chapter

closes with a demonstrator and a detailed evaluation of the presented concepts.

In conclusion, the presented mapping can be considered the first REST mapping of OPC UA,

which covers all requirements of REST and OPC UA and can be used as a building block for

the design principle of interconnection. The validity of the approach is proven through several

implementations as well as in form of contributions to the OPC UA specification itself. Finally, the

evaluation results show that the identified research challenges, as well as the research goal, are

addressed very well through the concepts of this thesis.

Semantics of OPC UA information models: Section 3.2 presents the identified research

challenges to enable the integration of OPC UA into the Semantic Web.

First, the concept behind InstanceDeclarations is not covered at all in actual research. Second,

the modeling of OPC UA constraints is only covered in parts by some researchers. Third, a complete

translation of all OPC UA semantics into the Semantic Web is not presented in one single concept.

The first challenge is addressed through Section 5.7, Section 5.8, and Section 5.9. These

sections present concepts to identify InstanceDeclarations and concepts to cover and translate the

semantics in a generic way to an OWL ontology. The modeling of InstanceDeclarations as well as

the corresponding modeling constraints are quite complex and are not obvious for data modeling

experts without deep OPC UA knowledge. The complete mapping part of Chapter 5 from Section

5.1 to Section 5.11 also contains constraints for the different semantic concepts and thus provides

answers for research challenge two. The third challenge, complete translation, is also covered

through the mapping part of Chapter 5. However, the mapping also has certain limitations, for

example, aspects like arrays and the handling of time series data could be improved further by

other researchers. In summary, the mapping provides a huge coverage for the constraints as well

as for the semantic concepts. Furthermore, the presented mapping can be used to easily display

OPC UA ontologies within typical OWL ontology editors like Protégé (including the correct display

of type hierarchies) or can be imported into SPARQL-endpoints and searched with a powerful

query engine. In addition, the modeling constraints can also be validated with already existing

reasoners of the Semantic Web ecosystem like HermiT [68]. Eventually, the chapter closes with a

demonstrator and a detailed evaluation of the presented concepts.
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In conclusion, the recursive mapping of OPC UA semantics to OWL of this thesis can be used to

automatically translate the semantics of OPC UA information models (also including Companion

Specifications) to OWL ontologies and thus provides a technological building block for the second

design principle of Industry 4.0 - information transparency. The validity of the approach is proven

through the implementation of a Java-based mapping tool and also successfully used in the query

prototype of Chapter 6. Finally, the evaluation results show that the identified research challenges,

as well as the research goal, are addressed very well in huge parts through the concepts of this

thesis.

Querying of OPC UA information models: Within Section 3.3 several research challenges

are identified to provide an efficient web-based query API for OPC UA semantics.

First, certain features of the OPC UA query language are not addressed at all like the Filter (e.g.,

find only persons with pets), Limits (only the first 100 results), and Part 4 Annex B requirements

or covered only in parts like the View (e.g., maintenance or operation view) requirement. Second,

features like the NodeTypeDescription (e.g., return the name and the address of the student) are

only covered in parts but no complete mapping exists yet.

The two challenges are addressed throughout Chapter 6. The solutions of this chapter make

use of the concepts and transformation rules of Chapter 5. Within Chapter 6 two solution paths are

discussed and presented. The first one is the translation of OPC UA queries into SPARQL queries

while the second one focuses on native SPARQL queries. The first research challenge, the OPC UA

Filter parameter, is discussed in Section 6.4.1. Besides bitwise operations, all FilterOperands can

be mapped to SPARQL. The Limit parameter is discussed in Section 6.4.4 and can only mapped in

parts because the OPC UA concepts do not have a counterpart in SPARQL. Views are covered very

well in Section 6.2 of this thesis. The different example queries of OPC UA Part 4 Annex B can

be executed successfully with both approaches (OPC UA query and native SPARQL queries) and

are discussed in greater detail within Section 6.6.1. The second research challenge, a complete

mapping for the NodeTypeDescription parameter, is addressed very well in Section 6.4.2. Eventually,

the chapter closes with a detailed evaluation of the presented concepts and a discussion on some of

the identified problems around the standardized OPC UA query language and how these problems

could be solved through native SPARQL queries.

In conclusion, this thesis presents the first valid concept (including a prototypical implementa-

tion) to query OPC UA graphs with the OPC UA query language. In addition, some issues of the

OPC UA query language are presented and fixed with a novel concept to query OPC UA graphs

directly with SPARQL. Such a feature could be used to identify, for example, all machines with a

fault and detect if there is a configuration difference between the working machines (a possible

building block for technical assistance). The approach is validated through the successful execution

of all queries of OPC UA Part 4 Annex B (complex examples) with both concepts. Finally, the

evaluation results show that the identified research challenges, as well as the research goal, are
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addressed very well through the concepts of this thesis and only some small issues like bitwise

filter operators remain unsolved.

7.2 Outlook

One idea behind the Industrial Internet of Things and also the World Wide Web is a large number

of connected devices, which provide links to each other. In general, also the World Wide Web

itself can be interpreted as a graph, where the websites act as nodes and the links as edges

between the nodes. The main difference to today’s OPC UA information models is the fact that

ExpandedNodeIds are not used at all within most OPC UA information models. As long as this is

not changed most of the available OPC UA servers are not interconnected on the data layer. In

the future, it can be expected that this changes due to the fact that more and more Companion

Specifications emerge, which describe a whole machine or process consisting of several OPC UA

devices. This also increases the demand for cross-server browsing. Another interesting future topic

is the introduction of a JSON-LD serialization into OPC UA. This would allow to easily combine

RESTful node representations (Chapter 4) with the semantics of Chapter 5. Nevertheless, even if

all these changes are applied to the current state of OPC UA it will take several years until industry

products are adapted and used within factories. To speed up this process solutions have to be

considered how already existing machines can be enabled with all these new features [45, 70,

140].
Parallel to this thesis version 1.04 of the OPC UA specification was released (including some

contributions of this thesis already). However, the development of the OPC UA specification

did not stop after version 1.04. For example, several further amendments emerged during the

preparation of this thesis like the Interfaces and AddIns amendment or the Dictionary amendment.

The Interfaces amendment introduces a completely new paradigm into OPC UA. Based on this

concept each Object and ObjectType can now define several additional InterfaceTypes, including the

inheritance of the semantics and constraints of these InterfaceTypes. In contrast, the Dictionary

amendment defines concepts of how OPC UA can be used to include semantic tags from other

standardization bodies like ECLASS [43] without the need to define corresponding Companion

Specifications. Both of these amendments have a huge impact on how constraints and semantics are

expressed in OPC UA and can only be covered in the OWL mapping through additional mapping

rules. Furthermore, the presented query concept of this thesis could be further enhanced through

concepts like natural language to SPARQL transformations. In the future, it might be even possible

to combine speech recognition with query functionalities of OPC UA graphs. This would allow

several new use cases for factory operators. Finally, up to now OPC UA is mainly used in operations

use cases. Besides operation semantics, a lot of semantics is defined in the engineering toolchain
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[91, 133]. These semantics could also be used to further improve manufacturing in the operation

phase. One vision of academia and industry goes exactly in this direction and can be expressed

with the term Digital Twin [119, 151, 152]. One aspect of a Digital Twin is to provide access to

all information of an asset during the whole lifecycle and thus also includes information about

product design (e.g., materials for recycling), simulation models, information about the supply

chains, as well as even regulatory information (e.g., the CE sign or in the future the CO2 footprint)

to name only a few. Also in this case the integration of OPC UA data seems beneficial and therefore

should be investigated in further research.
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AA N N E X

This annex is structured as follows:

Section A.1 provides technical details for web access to OPC UA information models.

Section A.2 presents technical details for semantics of OPC UA information models.

Section A.3 presents some important parts of the OPC UA specification for this thesis.

A.1 Technical details for web access to OPC UA information

models

This chapter is structured as follows:

Section A.1.1 provides a definition and generation rules for OPC UA URIs.

Section A.1.2 presents the mapping to HTTP verbs.

Section A.1.3 focuses on the header and query parameters.

Section A.1.4 highlights the concept details of some basic OPC UA services.

Section A.1.5 introduces two JSON schema representations.

A.1.1 URI Definition

Figure A.1 – URI definition according to RFC 3986 [23].

Figure A.1 gives an overview of the generic URI definition of RFC 3986 [23]. Within Figure A.2

the definition of RFC 3986 is specialized for OPC UA. The pathPrefix is a vendor-specific prefix

without any restrictions (e.g. “/Siemens/opcua/rest/”) (optional). The apiVersion is optional
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and only acts as an example of how a version number could be introduced into an URI. The

apiVersion could, for example, start with a “/V” followed by a number. The uriVersion always

starts with a “/” followed by a number which represents the f the urisVersion Property of the OPC

UA server (optional). The OPC Foundation shall never connect a Node with a hierarchical forward

reference to the Root-Node and a BrowseName which starts with a number in the string part and

NamespaceIndex “0”. This ensures that the optional uriVersion can be distinguished from a valid

BrowseName. The opcPath is the entry point into the OPC UA information model.

In the following sections, the serialization schema for NodeIds within URIs is further detailed

(Section A.1.1.1) as well as the relation of the path structure to OPC UA Part 4 Annex A (Section

A.1.1.2). Finally, Section A.1.1.3 defines the Augmented Backus-Naur-Form (ABNF) for the OPC

UA URI definition and also introduces construction rules for the opcPath and query segment of

Figure A.2.

A.1.1.1 URI NodeId identifier types

The encoding of NodeIds within URIs is detailed in Table A.1. OPC UA defines four different NodeId

types: Numeric, String, GUID, and OPAQUE. While OPCAQUE NodeIds are mapped to a Base64

URL safe encoding [80] all other NodeId types are mapped to a string representation. The URL

safe Base64 encoding can be generated in two steps: (1) Apply Base64 encoding; (2) Replace "+"

with "-", "/" with "_", and "=" with "%3d".

IdentifierType Value id Description Encoding

NUMERIC_0 i Numeric String

STRING_1 s String String

GUID_2 g Globally Unique Identifier String

OPAQUE_3 b Namespace specific format Base64UrlSafeEncoded

Table A.1 – Encoding of NodeIds.

Table A.2 presents some example encoding for different NodeIds.

Figure A.2 – OPC UA URI definition for the REST mapping.
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ServerIndex node-id-type NamespaceIndex Identifier Example

0 i 0 100 i=100

1 s 0 test 1s=test

1 i 1 100 1i=1:100

0 s 1 test s=1:test

0 g 0 C496578A-0DFE- g=C496578A-0DFE

4B8F-870A- 4B8F-870A-

745238C6AEAE 4745238C6AEAE

0 b 2 C496578A b=2:C496578A

Table A.2 – Example NodeIds.

A.1.1.2 OPC UA RelativePath to REST RelativePath

OPC UA Part 4 Annex A defines a textual format for RelativePaths that can be used, for example, in

the documentation. Some of the special characters used in OPC UA Part 4 Annex A are not URL

safe and have to be replaced with URL safe characters (see Table A.3).

OPC UA REST Description

< ( Start of a Reference

> ) End of a Reference

# @ Exclude subtypes

! ! Follow inverse References

/ / Follow any hierarchical ReferenceType in a forward direction

& $ Escape character

. . Follow any subtype of the Aggregates ReferenceType in a forward direction

: : Separator for NamespaceIndex

= = Separator for NodeId

, , Separator for arrays

Table A.3 – Mapping of OPC UA Part 4 Annex A characters to URL safe characters.

A.1.1.3 URI syntax diagram

The terms of this section are defined according to RFC 3986 [23], RFC 7230 [50], and RFC

7540 [51] using Augmented Backus-Naur-Form (ABNF RFC 5234 [36]) (see Grammar A.1) in

combination with syntax diagrams.

The syntax diagrams of this section are constructed as follows:
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〈ALPHA〉 = A-Z / a-z

〈DIGIT〉 = 0-9

〈HEXDIG〉 = 〈DIGIT〉 / "A" / "B" / "C" / "D" / "E" / "F"

〈unreserved〉 = 〈ALPHA〉 / 〈DIGIT〉 / "-" / "." / "_" / "~"

〈gen-delims〉 = ":" / "/" / "?" / "#" / "[" / "]" / "@"

〈sub-delims〉 = "!" / "$" / "&" / "’" / "(" / ")" / "*" / "+" / "," / ";" / "="

〈pct-encoded〉 = "%" 〈HEXDIG〉 〈HEXDIG〉

〈opcua-reserved〉 = "(" / ")" / "@" / "!" / ":" / "=" / "/" / "$" / "," / "-"

〈sub-delims-query〉 = "!" / "$" / "’" / "(" / ")" / "*" / "+" / ";" / ":" / "@" / "/" /
"?"

〈id〉 = "i" / "s" / "g" / "b"

〈pathString〉 = 〈unreserved〉 / 〈pct-encoded〉 / "$" / "’" / "*" / "+" / ";" / "&" /
"=" / ","

〈key〉 = 〈unreserved〉 / 〈pct-encoded〉 / 〈sub-delims-query〉 / "," / "&"

〈value〉 = 〈unreserved〉 / 〈pct-encoded〉 / 〈sub-delims-query〉 / "="

Grammar A.1 – Definition of basic terms.

Construction Meaning
-- · · · Start of syntax diagram
· · · -� End of syntax diagram
- · · · Continued on next line
· · · - Continued from previous line

· · · � 〈option-a〉� 〈option-b〉 �� 〈option-c〉 �
� · · ·

Alternatives: choose any one

· · ·

� 〈separator〉 �� 〈repeat-me〉 � · · · One or more items, with separators

Grammar A.2 introduces the construction rules for the < rootPath> element and introduces

two possible branches: (1) If the < rootPath > is empty the path shall start on the OPC UA

Root-Node; (2) If a NodeId is specified the path shall start on the defined NodeId.

Grammar A.3 defines the construction rules for the < re f erence > element and introduces

three possible branches (see also Table A.3): (1) Any subtype of the Aggregates ReferenceType

shall be followed in a forward direction; (2) Any hierarchical ReferenceType shall be followed in a

forward direction; (3) The ReferenceType is specified in detail (including information about the
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-- -

- �� �
� � �� 〈DIGIT〉 � �

� 〈id〉 "=" �
� � �� 〈pathString〉 � �

� ��-
- -�

Grammar A.2 – Definition of <rootPath>.

direction and if subtypes shall be followed). Similar to OPC UA Part 4 Annex A the BrowseName of

the ReferenceType is used to specify the ReferenceType.

-- � "."� "/" �� "(" �� "@" ���� "!" ���
� � �� 〈DIGIT〉 � ":" �

��
� � �� 〈pathString〉 � �

� ")" �
� -�

Grammar A.3 – Definition of <reference>.

Grammar A.4 outlines the construction rules for the < browseElement > element, which

consists of a < re f erence > element followed by the BrowseName of the target Node.

-- 〈reference〉 �
� � �� 〈DIGIT〉 � ":" �

� -

- �
� � �� 〈pathString〉 � �

� -�

Grammar A.4 – Definition of <browseElement>.

Grammar A.5 presents the construction rules for the < quer yElement > element. The <

quer yElement > element can contain several key-value pairs. Furthermore, it is possible to

encode arrays in the value segment (separated through ",").

-- -

- �

�
� "&" �
� � �� 〈key〉 � "="

� �� "," �� �
� 〈value〉 � � �

�-

- -�

Grammar A.5 – Definition of <queryElement>.
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Grammar A.6 depicts the construction rules for the complete < opcPath > and < quer y >

element of Figure A.2. The < opcPath > is constructed with the < rootPath > and the <

browseElement >, while the < quer y > element is constructed through the < quer yElement >.

The < opcPath> and < quer y > element are separated through a "?".

-- 〈rootPath〉
� �� 〈browseElement〉 � "?" -

- 〈queryElement〉 -�

Grammar A.6 – Definition of <opcPath> and <query>.

A.1.2 Mapping to HTTP verbs

The services which are marked with (+) in Table A.4 are introduced in addition to the already

existing services. However, these services can be considered as an orchestration of OPC UA services

and so, the implementation effort is very low. Each HTTP verb (first column) is mapped to one

ore more OPC UA services (second column) with the correct semantics (e.g., the HTTP verb

GET with idempotent and safe semantics to the OPC UA services Read, Browse, BrowseNext, etc.).

Furthermore, for each OPC UA service the possible responses are analyzed and expressed through

(several) newly introduced MIME-Types (third column). For example, the Read service can be

used to return the Value-Attribute of a Variable-Node. In this case the content-type depends on the

DataType of the Variable-Node (e.g., Boolean, String, etc.) and because of that several different

MIME-Types can be returned.
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HTTP OPC UA Representation

Verb Service MIME-Type

GET Read app/opcua.Boolean+json

app/pdf

...

GET HistoryRead app/opcua.HistoryReadResult+json

PUT Write app/opcua.Boolean+json

app/pdf

...

PATCH HistoryUpdate app/opcua.HistoryUpdateResult+json

app/json-patch+json

GET Browse app/opcua.NodeRepresentation+json

GET BrowseNext app/opcua.NodeRepresentation+json

GET TranslateBrowse app/opcua.BrowsePathResult+json

PathsToNodeIds

GET (+) ResolvePath app/opcua.NodeRepresentation+json

POST Call app/opcua.CallRequest+json

app/opcua.CallResult+json

POST AddNode app/opcua.CallRequest+json

app/opcua.CallResult+json

DELETE DeleteNode app/opcua.StatusCode+json

PATCH (+) Modify app/json-patch+json

References app/opcua.ModifyRefsResponse+json

POST Query app/opcua.CallRequest+json

app/opcua.CallResult+json

GET QueryNext app/opcua.QueryNextResponse+json

Table A.4 – HTTP verbs and resource representations (app = application).

A.1.3 Header and Query Mapping

In some cases, HTTP already defines semantically identical headers marked with a "Yes" in the

fourth column. A "No" means that this header is newly introduced for OPC UA. Notice, that the

HTTP mapping of the OPC Foundation does not use all the headers defined in Table A.5 marked

in the fifth column named "Std." (e.g., Accept-Language is not used - see also Section 4.2.3). If

this column contains a "Yes" the header is part of the standardized HTTP mapping of the OPC

Foundation and in case of a "No" the header is not defined in the standardized mapping. Some of
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the most important HTTP headers are explained in greater detail, starting with the Accept header.

The Accept header can be used to specify the serialization format (e.g, OPC UA Binary, XML, or

JSON). The Accept-Encoding header can be used to request an additional encoding, for example,

gzip. The Content-Type header is well-known on the web ecosystem and provides web clients

with information about the transmitted content (e.g., a PDF document or an HTML webpage). In

addition to the Content-Type, the Content-Length header specifies the size of the content. The

Content-Encoding header is part of the response and specifies the applied additional encoding, for

example, gzip. A server shall only apply an additional encoding if it is requested by the client but

is not forced to do so. The Accept-Language header is used to specify the LocaleIds of the client.

In RFC 2616 [48] the Accept-Language header can be weighted with a so-called quantity value.

For example, the header value "de, en;q=0.9" requests a German representation but also accepts

an English one if no German is present. In OPC UA, the client also is able to specify more than one

LocaleId, where the most preferred one is the first entry in the array with descending order. This

can easily be mapped to quantity values of RFC 2616 and vice versa. The DataValue headers are

introduced to further enhance web browser support (the also Section 4.6.1). This ensures that the

Value-Attribute from Variables can be delivered natively without any OPC UA-specific information

and so can be interpreted by clients which do not understand OPC UA but understand how to

display the Value-Attribute (e.g. pdf, JSON, HTML, ...). This allows to use OPC UA as a web-friendly

transport protocol and thus enables new applications on top of OPC UA. An example use case

might be the delivery of web pages, or pdf files (see also use case scenarios of Amazon S3 service).

A webpage could also, for example, embedded a generic OPC UA client written in JavaScript.

Each header defined in Table A.5 can also be transferred as a query argument. This is especially

useful in combination with redirects (e.g., from a Single-Sign-On service) and for more simple web

applications that do not allow to set headers. If both parameters are present (query and header)

the header value shall be discarded.

Each key-value pair in the query path must encode not allowed characters as specified in

Annex A.1.1. If further links (e.g., href property) are part of the returned resource representation

the query arguments provided by the client shall be also part of href URLs. This allows simple

navigation with the web browser. A special precaution has to be taken for the Authorization query

parameter. This query parameter shall only be present in the URL if the URL points to the local

server (in addition transport encryption has to be used). This ensures that the security token is

never leaked through external URLs (ExpandedNodeId). All values shall be encoded as string or

string array. Of course, HTTPS has to be used if the Authorization parameter is present. However,

because it is possible that the Authorization query parameter is stored in the web browser history

such a token shall always have a limited lifetime.
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Parameter name DataType HTTP header / Query key New Std.

authenticationToken Session Authorization No Yes
AuthenticationToken

timestamp UtcTime Date No Yes
requestHandle IntegerId UaRequestHandle Yes No
returnDiagnostics UInt32 UaReturnDiagnostic Yes No
auditEntryId String UaAuditEntryId Yes No
timeoutHint UInt32 UaTimeoutHint Yes No
additionalHeader Extensible UaAdditionalHeader Yes No

Parameter
AdditionalHeader

dataEncoding QualifiedName[] Accept No No
String Content-Type No Yes
UInteger Content-Length No Yes
String[] Accept-Encoding No No

localeIds LocaleId[] Accept-Language No No
namespaceUris String[] UaNamespaceUris Yes No
serverUris String[] UaServerUris Yes No
DataValue

statusCode StatusCode UaDataValueStatusCode Yes No
sourceTimestamp UtcTime UaDataValueSourceTimestamp Yes No
sourcePicoSeconds UInteger UaDataValueSourcePicoSeconds Yes No
serverTimestamp UtcTime UaDataValueServerTimestamp Yes No
serverPicoSeconds UInteger UaDataValueServerPicoSeconds Yes No

serviceResult StatusCode UaServiceResult Yes No
serviceDiagnostics DiagnosticInfo UaServiceDiagnostics Yes No

String Content-Encoding No No
serverStartTime UtcTime UaServerStartTime Yes No
diagnosticInfo DiagnosticInfo UaDiagnosticInfo Yes No

Table A.5 – HTTP header and query mapping.

A.1.4 Service Mapping

The goal of this section is to exemplify some of the most important and interesting aspects of the

REST mapping. First, the Read service is detailed in Section A.1.4.1. In the following the Browse

service (Section A.1.4.2) is explained and afterward the newly introduced *Next service (Section

A.1.4.3) is highlighted. The last sections focus on the Call service (Section A.1.4.4) and the newly

introduced ModifyReferences service (Section A.1.4.5).
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HTTP URI Template
Method

GET < URLPREF IX > /{ReadValueId.nodeId}/{At t ributeName}

Table A.6 – URI template for the Read Service.

A.1.4.1 Read Service

The OPC UA Read service can be used to fetch the Attributes of an OPC UA Node like the Value-

Attribute of the Variable-NodeClass. In Table A.6 the URI template for the Read service is shown

(see also Annex A.1.1). The AttributeName is based on the symbolic names of OPC UA-Attributes

(e.g., BrowseName, DisplayName, etc.). To avoid naming conflicts with the ResolvePath service

of Section 4.6.5 the symbolic names of OPC UA-Attributes shall never be used as BrowseNames

within the OPC UA-Namespace. Furthermore, three additional AttributeNames are defined: Re-

questSchema, ResponseSchema, and Events. The RequestSchema and ResponseSchema are

already introduced in Section 4.4.5 and can be used to request schema descriptions for default

forms and Method-Nodes. The Events parameter is used in combination with the HistoryRead

service and is not further detailed in this work.

Table A.7 details the mapping of Read service request parameters to HTTP query arguments. The

Default Value column defines the value for the parameter if the query argument is omitted. The

default values are chosen in such a way that the workload and traffic is reduced for standard web

clients. For example, if a standard web client (like a web browser) accesses the Value-Attribute of a

Variable-Node additional application-specific headers are typically ignored and also not displayed

to the user. Based on that assumption it is reasonable to only return, for example, timestamps if

explicitly requested by the client. The dataEncoding parameter of the ReadValueId shall be extracted

from the Accept-Header. If the Accept-Header does not match any of the known encodings from

the server, the default encoding shall be used (see also Section 4.4.5).

Table A.8 details the mapping of Read service response parameters to HTTP headers and to the

HTTP body. As already explained in Section 4.4.2 the HTTP version of the Read service is designed

OPC UA Arguments Query Arguments Default Value

requestHeader see Section 4.4.2
maxAge maxAge 0
timestampsToReturn timestampsToReturn Neither
ReadValueId

indexRange indexRange null
dataEncoding see Section 4.4.2

Table A.7 – Read service request arguments.
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in a way that it is possible to directly display the content of the Value-Attribute in a web client like

a web browser.

Listing A.1 presents an example HTTP request and the corresponding HTTP response. Line 1

contains the HTTP verb (in this case "GET"), the NodeId (in this case a numeric NodeId with the

value "2005" in the OPC UA Namespace), the symbolic name of the Attribute (in this case with

the value "DisplayName"), and an authentication token as query argument (in this case with the

value "bearerToken"). Lines 2-5 are some headers provided by the client. Line 7 provides the HTTP

response starting with the HTTP status code (in this case 200). Lines 8-12 are some of the headers,

while Line 14 is the content of the Value-Attribute serialized with OPC UA JSON, as requested by

the client through the Accept-Header (Line 4).

A.1.4.2 Browse Service

The OPC UA Browse service can be used to fetch the References of an OPC UA Node. In Table A.9

the URI template for the Browse service is shown (see also Annex A.1.1).

Table A.10 details the mapping of Browse service response parameters to HTTP headers and to

the HTTP body. The resultMask parameter is extended with four additional parameters (not defined

in OPC UA), which are further detailed: Bit 28 BasicAttributes, Bit 29 ExtendedAttributes, Bit

30 Forms, and Bit 31 DefaultForms. If the BasicAttributes bit is set all Attributes with exception

of DisplayName and Description of the source Node is part of the representation. The ExtendedAt-

tributes selects all Attributes. Regardless of the settings of BasicAttributes or ExtendedAttributes

the Value-Attribute is included in the representation as link only. While the BasicAttributes setting

is probably a good setting for automatic clients, the ExtendedAttributes setting might be the

best solution for human-controlled clients. If Forms are selected then the representation contains

forms, as described in Section 4.4.5 for each Method-Node of an Object-Node. The DefaultForms

OPC UA Arguments HTTP Header Name HTTP Body Type

responseHeader see Section 4.4.2
DataValue

statusCode see Table A.5
sourceTimestamp see Table A.5
sourcePicoSeconds see Table A.5
serverTimestamp see Table A.5
serverPicoSeconds see Table A.5
diagnosticInfos see Table A.5
value BaseDataType

Table A.8 – Read service response arguments.
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1 GET / i=2005/DisplayName? opcuaAuthenticat ionToken=bearerToken HTTP/1 . 1
2 Date : 2002−10−10T00 : 00 : 00+05 : 00
3 UaAuditEntryId : <myId>
4 Accept : a p p l i c a t i o n /opcua+j son
5 Accept−Language : de , en−US; q=0 . 7 , en ; q=0 . 3
6

7 HTTP/1 . 1 200 OK
8 UaServ iceResu l t : 0
9 UaDataValueStatusCode : 0

10 Content−Type : a p p l i c a t i o n /opcua . Loca l i zedText+j son
11 Content−Length : nnnn
12 Date : 2002−10−10T00 : 00 : 00+05 : 00
13

14 { " Text " : " Server " , " Loca le " : " en " }

Listing A.1 – Example Read request and response (simplified).

HTTP URI Template
Method

GET < URLPREF IX > /{BrowseDescript ion.nodeId}

Table A.9 – URI template for the Browse service.

enables all default forms for the given NodeClass (see also Section 4.4.5). Table A.11 shows what

kind of default forms are presented based on the NodeClass.

Table A.12 details the mapping of Browse service response parameters to HTTP headers and to

the HTTP body. The NodeRepresentation is explained in greater detail in Section 4.4.5.

OPC UA Arguments Query Arguments Default Value

requestHeader see Section 4.4.2
ViewDescription

viewId viewDescriptionViewId null
timestamp viewDescriptionTimestamp null
viewVersion viewDescriptionViewVersion 0

requestedMaxReferencesPerNode requestedMaxReferencesPerNode 0
BrowseDescription

browseDirection browseDirection Both
referenceTypeId referenceTypeId null
includeSubtypes includeSubtypes true

nodeClassMask nodeClassMask 0
resultMask resultMask 0xFF

Table A.10 – Browse service request arguments.
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NodeManagement
AddNode X X X X X X X X
ModifyReferences X X X X X X X X
DeleteNode X X X X X X X X

View
Browse X X X X X X X X
BrowseNext X X X X X X X X
TranslateBrowsePaths X X X X X X X X
RegisterNode X X X X X X X X
UnregisterNode X X X X X X X X
ResolvePath X X X X X X X X

Query
QueryFirst X X
QueryNext X X

Attribute
Read X X X X X X X X
HistoryRead X X X X
HistoryNext X X X X
Write X X X X X X X X
HistoryUpdate X X X X

Session
Cancel X X X X

Table A.11 – Overview of default forms.

OPC UA Arguments HTTP Header Name HTTP Body Type

responseHeader see Section 4.4.2
diagnosticInfos see Section 4.4.2
results NodeRepresentation

Table A.12 – Browse service response arguments.
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Listing A.2 displays an example HTTP request and the corresponding HTTP response. Line 1

contains the HTTP verb (in this case "GET") and the NodeId (in this case a numeric NodeId with the

value "100" and NamespaceIndex "1"). Lines 2-5 are some headers provided by the client. Line 5

specifies the NamespaceURI for NamespaceIndex "1" exactly as defined by SessionlessInvoke service

of Section 4.2.2. In contrast, Lines 7-10 is equal to the request specified with Lines 1-5. The

difference is, that in this case the UrisVersion is used (see Line 7 with the value of "1"). Lines 12-18

provide the response of the server. An example of a simplified NodeRepresentation can be found

in Section 4.4.5.

A.1.4.3 *Next Service

The OPC UA *Next service can be used to fetch the next results if not all results can be returned

at once. In Table A.13 the URI template for the *Next service is shown (see also Annex A.1.1).

The *Next service is based on a REST paradigm called pagination. This means that the URI to

the next part of the result can be embedded directly into the NodeRepresentation of Section

4.4.5. Furthermore, with this pattern, all Next services of OPC UA can be handled with the same

basic concept (e.g., BrowseNext, QueryNext, and also the Next function which is embedded into

HistoryRead). For a complete stateless approach, the ContinuationPoint can include all necessary

information to generate the corresponding representation. This is especially useful for static

representations but also dynamic representations can be addressed by adding some kind of version

1 GET / i=1 : 100 HTTP/1 . 1
2 Date : 2002−10−10T00 : 00 : 00+05 : 00
3 UaAuditEntryId : <myId>
4 Accept : a p p l i c a t i o n /opcua+j son
5 UaNamespaceUris : h t tp : //myTestNamespace . org/ t e s t /
6

7 GET /1/ i=1 : 100 HTTP/1 . 1
8 Date : 2002−10−10T00 : 00 : 00+05 : 00
9 UaAuditEntryId : <myId>

10 Accept : a p p l i c a t i o n /opcua+j son
11

12 HTTP/1 . 1 200 OK
13 UaServ iceResu l t : 0
14 Content−Type : a p p l i c a t i o n /opcua . NodeRepresentation+j son
15 Content−Length : nnnn
16 Date : 2002−10−10T00 : 00 : 00+05 : 00
17

18 < . . .>

Listing A.2 – Example Browse request and response (simplified).
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HTTP URI Template
Method

GET < URLPREF IX > /{NodeId}{?continuationPoint, releaseContinuationPoint}

Table A.13 – URI template for the *Next service.

OPC UA Arguments Query Arguments Default Value

requestHeader see Section 4.4.2
releaseContinuationPoint releaseContinuationPoint false
continuationPoint continuationPoint
... ... ...

Table A.14 – *Next service request arguments.

1 {
2 " con t inua t ionPo in t " : {
3 " con t inua t i onPo in t Id " : " 345 dfgr " ,
4 " h re f " : "<host>/1/ i=1:100? con t inua t ionPo in t=345dfgr "
5 } ,
6 . . .
7 }

Listing A.3 – Representation of a ContinuationPoint in JSON

1 GET /1/ i=1 : 100? con t inua t ionPo in t=345 dfgr HTTP/1 . 1
2 Date : 2002−10−10T00 : 00 : 00+05 : 00
3 UaAuditEntryId : <myId>
4 Accept : a p p l i c a t i o n /opcua+j son
5

6 HTTP/1 . 1 200 OK
7 UaServ iceResu l t : 0
8 Content−Type : a p p l i c a t i o n /opcua . BrowseNextRepresentat ion+j son
9 Content−Length : nnnn

10 Date : 2002−10−10T00 : 00 : 00+05 : 00
11

12 < . . .>

Listing A.4 – Example *Next request and response (simplified).
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information into the ContinuationPoint. If the version changes the Bad_ContinuationPointInvalid

result code could be returned.

Table A.14 details the mapping of *Next service response parameters to HTTP headers and to

the HTTP body. In comparison to previously introduced services, additional parameters depending

on the underlying Next service (e.g., BrowseNext, QueryNext, ...) can be transferred to the server.

This is, for example, useful if the server does not want to keep any state (e.g., the client-specific

ResultMask of the Browse service). Of course, it would also be possible to encode also all the

additional necessary information in the ContinuationToken itself.

Listing A.3 shows an example representation of the ContinuationPoint in JSON. A Continua-

tionPoint is always embedded in another resource representation, for example, in the NodeRepre-

sentation of Section 4.4.5. The JSON object contains the continuationPointId, which can be used

in combination with the URI template in Table A.13 and the href, which can be directly inserted

into a web browser.

In Listing A.4 an example request and response is depicted. Line 1 contains the HTTP verb (in

this case "GET"), the UrisVersion (in this case "1"), the NodeId (in this case a numeric NodeId with

the value "100" and NamespaceIndex "1"), and the continuationPoint as a query parameter with

the value "345dfgr". Lines 2-4 are some headers provided by the client. Line 7 provides the HTTP

response starting with the status code (in this case 200). Lines 7-10 are some of the headers. Based

on Line 8 it can be inferred that in the background the BrowseNext service was executed due to the

returned resource representation type. This service returns a BrowseNextRepresentation instead

of a NodeRepresentation because otherwise, the client would receive several times a duplicate of

the attributes and forms section of a NodeRepresentation. Of course, in the case of JSON such

information could be removed easily due to the nature of JSON. In other serialization formats,

this might be harder and adds additional overhead (due to some optional handling). Because of

that, a special representation is introduced which is similar to the NodeRepresentation without

the attributes and forms section.

A.1.4.4 Call Service

The OPC UA Call service can be used to invoke OPC UA Methods. In Table A.15 the URI template

for the Call service is shown (without query arguments, see also Annex A.1.1). The Call service

also makes use of the HTTP verb POST.

HTTP URI Template
Method

POST < URLPREF IX > /CallMethodRequest.ob jec t Id

Table A.15 – URI template for the Call service.
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Table A.16 details the mapping of Call service request parameters to HTTP query arguments

and to the HTTP body. OPC UA Part 4 specifies the inputArguments parameter as an array. However,

in this JSON REST mapping, the inputArguments are defined as JSON object. This allows the usage

of JSON schema [168]. JSON schema offers similar capabilities to JSON than XML schema offers

for XML. Based on JSON schema descriptions it is not only possible to allow client-side validation

of JSON documents, furthermore, also web forms can be automatically generated based on such

schema descriptions. This is especially useful if a web client, like a web browser, shall be the

consumer of such a representation. An example JSON schema description for the Method-based

batch version of the Read service can be found in Annex A.1.5.

Table A.17 details the mapping of Call service response parameters to HTTP headers and to

the HTTP body.

Listing A.5 shows the request HTTP body for the Method-based batch version of the Read service.

The JSON schema for the given JSON document can be found in Annex A.1.5. Lines 2-6 contains

the methodId parameter. The Lines 7 to 26 contain the inputArgument parameter for the Read

service like maxAge, timestampsToReturn, and an array of nodesToRead. The JSON schema of Annex

A.1.5 also introduces, for example, schemas for the different JSON representations of NodeIds

based on the type (e.g., numeric).

In Listing A.6 an example request and response is depicted. Line 1 contains the HTTP verb

(in this case "POST") and the NodeId (in this case a numeric NodeId with the value "100" and

NamespaceIndex "1"). Lines 2-6 are some headers provided by the client. Line 8 contains the body

parameter specified in Listing A.5. Lines 10 to 17 expose an identical request compared to Lines

1-8. The only difference is that in this case the namespaceUri parameter is transferred in form of

a query parameter including URL encoding (see also Annex A.1.1). Line 19 provides the HTTP

response starting with the status code (in this case 200). Lines 20-22 are some of the headers,

while Lines 24-29 contains the payload. In contrast, Line 31 shows how a RESTful OPC UA server

can react if the service execution takes some time. In this case, the server returns the HTTP status

code 201 instead of 200. Based on well-known web semantics a web client knows that if this code

is returned also a Location header is provided with further information about the created resource.

In this case, a TaskHandle object is created (see also Section 4.6.3), which allows a client to cancel

the long-running service execution or get notified if the service is finished.

OPC UA Arguments Query Arguments HTTP Body Type

requestHeader see Section 4.4.2
CallRequest application/opcua.CallRequest+json

methodId
inputArguments

Table A.16 – Call service request arguments.
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OPC UA Arguments HTTP Header Name HTTP Body Type

responseHeader see Section 4.4.2
results application/opcua.CallMethodResult

statusCode
inputArgumentsResults[]
inputArgumentDiagnosticInfos[]
outputArguments[]

diagnosticInfos see Section 4.4.2

Table A.17 – Call service response arguments.

1 {
2 " methodId " : {
3 " namespace " : 1 ,
4 " idType " : 1 ,
5 " id " : " ReadBatch "
6 } ,
7 " inputArguments " : {
8 " maxAge " : 0 ,
9 " timestampsToReturn " : 0 ,

10 " nodesToRead " : [
11 {
12 " nodeId " : {
13 " id " : 2255
14 } ,
15 " a t t r i b u t e I d " : 3
16 } ,
17 {
18 " nodeId " : {
19 " namespace " : 1 ,
20 " idType " : 1 ,
21 " id " : " Boolean "
22 } ,
23 " a t t r i b u t e I d " : 13
24 }
25 ]
26 }
27 }

Listing A.5 – Example payload for the Method-based batch Read service.
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1 POST / i=1 : 100 HTTP/1 . 1
2 Date : 2002−10−10T00 : 00 : 00+05 : 00
3 UaAuditEntryId : <myId>
4 Accept : a p p l i c a t i o n /opcua+j son
5 Content−Type : a p p l i c a t i o n /opcua . Ca l lReques t+j son
6 UaNamespaceUris : h t tp : //myTestNamespace . org/ t e s t /
7

8 <Cal lReques t>
9

10 POST / i=1 : 100?opcuaNamespaceUris=%5Bhttp%2F%2example . org%2 F t e s t%2F%5D ↘
HTTP/1 . 1

11 Date : 2002−10−10T00 : 00 : 00+05 : 00
12 UaAuditEntryId : <myId>
13 Accept : a p p l i c a t i o n /opcua+j son
14 Content−Type : a p p l i c a t i o n /opcua . Ca l lReques t+j son
15 Content−Length : nnnn
16

17 <Cal lReques t>
18

19 HTTP/1 . 1 200 OK
20 Content−Type : a p p l i c a t i o n /opcua . Cal lMethodResult+j son
21 Content−Length : nnnn
22 Date : 2002−10−10T00 : 00 : 00+05 : 00
23

24 { " s tatusCode " : 0 , " inputArgumentsResul ts " : {
25 " maxAge " : 0 , " timestampsToReturn " : 0 , " nodesToRead " : 0} ,
26 " outputArguments " : {
27 " r e s u l t s " : [
28 { " value " : { "Name" : " NamespaceArray " } , " s tatusCode " : 0} ,
29 { " value " : " S t r ingVa lue " , " s tatusCode " : 0} ] } }
30

31 HTTP/1 . 1 201 Created
32 Date : 2002−10−10T00 : 00 : 00+05 : 00
33 Locat ion : /1112251125/ i=2 : 101

Listing A.6 – Example Call request and response (simplified).

165



A.1 Technical details for web access to OPC UA information models

A.1.4.5 ModifyReferences Service

The ModifyReferences service is newly created within this thesis and combines most of the features

from the AddReference and DeleteReference service (NodeManagement Service Set). One missing

feature is the bidirectional deletion of References, which is supported by the DeleteReferences

service. However, the other features are covered through the usage of JSON Patch [29]. In

the case of OPC UA, JSON Patch is restricted to the operations "add" and "remove". Native

OPC UA clients can always use the batch versions of the services introduced in Section 4.3.2

if the bidirectional delete is necessary for the use case. The concept around ModifyReferences

is based on the NodeRepresentation of Section 4.4.5, which is returned for Browse requests as

already explained in Section A.1.4.2. The ModifyReferences service is also the main reason why the

NodeRepresentation is compliant to JSON Pointer [30]. Table A.18 exemplifies the URI template

for the ModifyReferences service (without query arguments, see also Annex A.1.1).

Table A.19 details the mapping of ModifyReferences service request parameters to HTTP query

arguments and to the HTTP body, while Table A.20 details the mapping of ModifyReferences

service response parameters to HTTP headers and to the HTTP body. The content format of the

JSON payload is standardized through JSON Patch. However, OPC UA defines different names

for Structure elements of the AddReferencesItem (used by the AddReferences service) and for the

Structure elements of ReferenceDescription, which is the basis for the NodeRepresentation and used

by the Browse service. For the usage of JSON Patch it is, therefore, necessary to unify the names

between both Structures. Table A.21 provides such a harmonization. The only parameter which

is not mapped at all is the sourceNodeId of the AddReferenceItem structure. This is not necessary

because the source NodeId is already defined through the URL of the service execution (see also

Table A.18). Furthermore, the targetServerUri has no counterpart in the ReferenceDescription. The

reason for that is because the ReferenceDescription uses the ServerArray to reference the ServerURI

through an ExpandedNodeId. However, if the referenced server is not yet present in the ServerArray

the client has to provide the ServerURI through this parameter. The server then adds the new

ServerURI to the ServerArray and replaces all parts of the representation through the correct

ServerIndex.

Listing A.7 shows an example request HTTP body for the ModifyReferences service. The

AddReference service is mapped to the JSON patch add operation (Line 3 and Line 21). The path

is based on JSON pointer and is also specified in JSON patch (Line 4, 22, and 43). Lines 2-19

HTTP URI Template
Method

PATCH < URLPREF IX > /{sourceNodeId}

Table A.18 – URI template for the ModifyReferences service.
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OPC UA Arguments Query Arguments HTTP Body Type

requestHeader see Section 4.4.2
ModifyReferences application/json-patch+json

Table A.19 – ModifyReferences service request arguments.

OPC UA Arguments HTTP Header Name HTTP Body Type

responseHeader see Section 4.4.2
results[] StatusCodeArray
diagnosticInfos see Section 4.4.2

Table A.20 – ModifyReferences service response arguments.

JSON Patch Key (Type) AddReferencesItem ReferenceDescription

sourceNodeId
referenceTypeId referenceTypeId referenceTypeId
(ExpandedNodeId)
isForward isForward isForward
(Boolean)
serverUri targetServerUri
(String)
nodeId targetNodeId nodeId
(ExpandedNodeId)
nodeClass targetNodeClass nodeClass
(NodeClass)

Table A.21 – Harmonization of the AddReferecesItem and ReferenceDescription Structure.

add a Reference between two already existing Nodes, while Lines 22-40 demonstrate how external

nodes can be referenced. In this case, the server adds the missing ServerURI to the ServerArray and

automatically updates the ExpandedNodeIds based on the correct ServerIndex. Lines 41-44 depict a

DeleteReference operation. As already explained, it is not possible to remove References bidirectional

because the scope of JSON Patch is clearly limited to the given NodeRepresentation. Furthermore,

Listing A.7 also depicts that AddReferences and DeleteReferences can be combined in one service call.

JSON Patch also defines sequential constraints on the execution, which allows creating a modify

operation based on the combination of remove and add operations. Notice that, OPC UA does

not define any order guarantees for the execution of different items in a single AddReferences or

DeleteReferences service call. Because of that, a special service orchestration is necessary to ensure

the correct service behavior as expected by a standardized JSON Patch implementation.

In Listing A.8 an example request and response is depicted. Line 1 contains the HTTP verb

(in this case "PATCH") and the NodeId (in this case a numeric NodeId with the value "101" and

NamespaceIndex "1"). Lines 2-6 are some headers provided by the client. Line 4 specifies as Content-
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1 [
2 {
3 " op " : " add " ,
4 " path " : " / r e f e r en c e s / ( ! i=10:10) i=1:100 " ,
5 " value " : {
6 " r e f e r e n c e D e s c r i p t i o n " : {
7 " re ferenceTypeId " : {
8 " namespace " : 10 ,
9 " id " : 10

10 } ,
11 " isForward " : f a l s e ,
12 " nodeId " : {
13 " namespace " : 1 ,
14 " id " : 100
15 } ,
16 " nodeClass " : 1
17 }
18 }
19 } ,
20 {
21 " op " : " add " ,
22 " path " : " / r e f e r en c e s /( i=10:11)1s=2:Read " ,
23 " value " : {
24 " r e f e r e n c e D e s c r i p t i o n " : {
25 " re ferenceTypeId " : {
26 " namespace " : 10 ,
27 " id " : 11
28 } ,
29 " isForward " : t rue ,
30 " s e r v e r U r i " : " example . org/opcua " ,
31 " nodeId " : {
32 " namespace " : 2 ,
33 " idType " : 1 ,
34 " id " : " Read " ,
35 " s e r v e r U r i " : 1
36 } ,
37 " nodeClass " : 1
38 }
39 }
40 } ,
41 {
42 " op " : " remove " ,
43 " path " : " / r e f e r en c e s /( i=10:10) i=1:101 "
44 }
45 ]

Listing A.7 – Example payload for the ModifyReferences service.
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Type the registered MIME-Type for the standardized JSON Patch operation. Line 8 contains the

body parameter specified in Listing A.7. Line 10 provides the HTTP response starting with the

status code (in this case 200). Lines 11-13 are some of the headers, while Line 15 contains the

payload. The payload consists of a StatusCode-Array. For each operation in the request, one

StatusCode is provided in the response (the array index of the response and request is identical).

1 PATCH /1/ i=1 : 101 HTTP/1 . 1
2 Date : 2002−10−10T00 : 00 : 00+05 : 00
3 UaAuditEntryId : <myId>
4 Content−Type : a p p l i c a t i o n / j son−patch+j son
5 Content−Length : nnnn
6 Accept : a p p l i c a t i o n /opcua+j son
7

8 < . . .>
9

10 HTTP/1 . 1 200 OK
11 Content−Type : a p p l i c a t i o n /opcua . ModifyReferencesResponse+j son
12 Content−Length : nnnn
13 Date : 2002−10−10T00 : 00 : 00+05 : 00
14

15 < . . .>

Listing A.8 – Example ModifyReferences request and response (simplified)
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A.1.5 Example JSON Schema

This section provides an example for the Read service request schema (Listing A.9) and the

corresponding response schema (Listing A.10) based on JSON schema [168] version 1.4.

1 {
2 " type " : " o b j e c t " ,

3 " p r o p e r t i e s " : {
4 " methodId " : {
5 " type " : " o b j e c t " ,

6 " d e s c r i p t i o n " : " NodeId of the Method to invoke . " ,

7 " p r o p e r t i e s " : {
8 " namespace " : {
9 " type " : " number " ,

10 "enum" : [1] ,

11 " d e f a u l t " : 1

12 } ,

13 " idType " : {
14 " type " : " number " ,

15 "enum" : [1] ,

16 " d e f a u l t " : 1

17 } ,

18 " id " : {
19 " type " : " s t r i n g " ,

20 "enum" : [ " ReadBatch " ] ,

21 " d e f a u l t " : " ReadBatch "

22 }
23 } ,

24 " requ i red " : [ " namespace " , " idType " , " id " ] ,

25 " a d d i t i o n a l P r o p e r t i e s " : f a l s e ,

26 " opt ions " : { " hidden " : t rue }
27 } ,

28 " inputArguments " : {
29 " type " : " o b j e c t " ,

30 " d e s c r i p t i o n " : " The input arguments f o r the s e r v i c e c a l l . " ,

31 " p r o p e r t i e s " : {
32 " maxAge " : {
33 " type " : " number " ,

34 " d e s c r i p t i o n " : "Maximum age of the value to be read in m i l l i s e c o n d s . The [ . . . ] " ,

35 "minimum" : −3 . 40282e1038 ,

36 "maximum" : 3 . 40282e1038 ,

37 " d e f a u l t " : 0

38 } ,

39 " timestampsToReturn " : {
40 " type " : " number " ,

41 " d e s c r i p t i o n " : "An enumeration tha t s p e c i f i e s the Timestamps to be [ . . . ] " ,

42 "enum" : [0 , 1 , 2 , 3] ,

43 " d e f a u l t " : 3

44 } ,

45 " nodesToRead " : {
46 " type " : " a r ray " ,

47 " d e s c r i p t i o n " : " L i s t of Nodes and t h e i r A t t r i b u t e s to read . For each [ . . . ] " ,

48 " minItems " : 1 ,

49 " maxItems " : 1000 ,

50 " i tems " : {
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51 " type " : " o b j e c t " ,

52 " d e s c r i p t i o n " : " I d e n t i f i e r f o r an item to read or to monitor . " ,

53 " p r o p e r t i e s " : {
54 " nodeId " : {
55 " type " : " o b j e c t " ,

56 " d e s c r i p t i o n " : " NodeId of a Node . " ,

57 " oneOf " : [
58 { " $ re f " : "#/d e f i n i t i o n s /NodeId− i " } ,

59 { " $ re f " : "#/d e f i n i t i o n s /NodeId−s " } ,

60 { " $ re f " : "#/d e f i n i t i o n s /NodeId−g " } ,

61 { " $ re f " : "#/d e f i n i t i o n s /NodeId−b " }
62 ]
63 } ,

64 " a t t r i b u t e I d " : {
65 " type " : " number " ,

66 " d e s c r i p t i o n " : " NodeId_1 ; NodeClass_2 ; BrowseName_3 ; [ . . . ] " ,

67 "enum" : [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 ,

68 18 , 19 , 20 , 21 , 22]
69 } ,

70 " indexRange " : {
71 " type " : " s t r i n g " ,

72 " d e s c r i p t i o n " : " This parameter i s used to i d e n t i f y a [ . . . ] "

73 }
74 } ,

75 " requ i red " : [ " nodeId " , " a t t r i b u t e I d " ] ,

76 " a d d i t i o n a l P r o p e r t i e s " : f a l s e

77 }
78 }
79 } ,

80 " requ i red " : [ " nodesToRead " ] ,

81 " a d d i t i o n a l P r o p e r t i e s " : f a l s e

82 }
83 } ,

84 " requ i red " : [ " methodId " , " inputArguments " ] ,

85 " d e f i n i t i o n s " : {
86 " NodeId− i " : {
87 " p r o p e r t i e s " : {
88 " namespace " : {
89 " type " : " number " ,

90 " d e s c r i p t i o n " : " The index f o r a namespace URI . The f i e l d i s omitted [ . . . ] " ,

91 "minimum" : 1 ,

92 "maximum" : 65535 ,

93 " mul t ip leOf " : 1

94 } ,

95 " id " : {
96 " type " : " number " ,

97 " d e s c r i p t i o n " : " UInt32 I d e n t i f i e r encoded as a JSON number f o r a Node [ . . . ] " ,

98 "minimum" : 0 ,

99 "maximum" : 4294967295 ,

100 " mul t ip leOf " : 1

101 }
102 } ,

103 " requ i red " : [ " id " ] ,

104 " a d d i t i o n a l P r o p e r t i e s " : f a l s e

105 } ,

106 " NodeId−s " : {

171



A.1 Technical details for web access to OPC UA information models

107 " p r o p e r t i e s " : {
108 " namespace " : {
109 " type " : " number " ,

110 " d e s c r i p t i o n " : " The index fo r a namespace URI . The f i e l d i s omitted [ . . . ] " ,

111 "minimum" : 1 ,

112 "maximum" : 65535 ,

113 " mul t ip leOf " : 1

114 } ,

115 " idType " : {
116 " type " : " number " ,

117 "enum" : [1] ,

118 " d e f a u l t " : 1 ,

119 " opt ions " : { " hidden " : t rue }
120 } ,

121 " id " : {
122 " type " : " s t r i n g " ,

123 " d e s c r i p t i o n " : "A S t r i ng I d e n t i f i e r encoded as a JSON s t r i n g f o r a [ . . . ] "

124 }
125 } ,

126 " requ i red " : [ " idType " , " id " ] ,

127 " a d d i t i o n a l P r o p e r t i e s " : f a l s e

128 } ,

129 " NodeId−g " : {
130 " p r o p e r t i e s " : {
131 " namespace " : {
132 " type " : " number " ,

133 " d e s c r i p t i o n " : " The index f o r a namespace URI . The f i e l d i s omitted [ . . . ] " ,

134 "minimum" : 1 ,

135 "maximum" : 65535 ,

136 " mul t ip leOf " : 1

137 } ,

138 " idType " : {
139 " type " : " number " ,

140 "enum" : [2] ,

141 " d e f a u l t " : 2 ,

142 " opt ions " : { " hidden " : t rue }
143 } ,

144 " id " : {
145 " type " : " s t r i n g " ,

146 " d e s c r i p t i o n " : "A Guid I d e n t i f i e r encoded as descr ibed in Par t [ . . . ] "

147 }
148 } ,

149 " requ i red " : [ " idType " , " id " ] ,

150 " a d d i t i o n a l P r o p e r t i e s " : f a l s e

151 } ,

152 " NodeId−b " : {
153 " p r o p e r t i e s " : {
154 " namespace " : {
155 " type " : " number " ,

156 " d e s c r i p t i o n " : " The index f o r a namespace URI . The f i e l d i s [ . . . ] " ,

157 "minimum" : 1 ,

158 "maximum" : 65535 ,

159 " mul t ip leOf " : 1

160 } ,

161 " idType " : {
162 " type " : " number " ,
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163 "enum" : [3] ,

164 " d e f a u l t " : 3 ,

165 " opt ions " : { " hidden " : t rue }
166 } ,

167 " id " : {
168 " type " : " s t r i n g " ,

169 " d e s c r i p t i o n " : "A By teS t r ing I d e n t i f i e r encoded as descr ibed [ . . . ] "

170 }
171 } ,

172 " requ i red " : [ " idType " , " id " ] ,

173 " a d d i t i o n a l P r o p e r t i e s " : f a l s e

174 }
175 }
176 }

Listing A.9 – REST call request schema.

1 {
2 " type " : " o b j e c t " ,

3 " p r o p e r t i e s " : {
4 " statusCode " : {
5 " type " : " number " ,

6 " d e s c r i p t i o n " : " StatusCode of the Method executed in the [ . . . ] "

7 } ,

8 " inputArgumentResults " : {
9 " type " : " o b j e c t " ,

10 " d e s c r i p t i o n " : " L i s t of d i a g n o s t i c in format ion [ . . . ] " ,

11 " p r o p e r t i e s " : {
12 " maxAge " : {
13 " type " : " number " ,

14 " d e s c r i p t i o n " : " StatusCode of maxAge "

15 } ,

16 " timestampsToReturn " : {
17 " type " : " number " ,

18 " d e s c r i p t i o n " : " StatusCode of timestampsToReturn "

19 } ,

20 " nodesToRead " : {
21 " type " : " number " ,

22 " d e s c r i p t i o n " : " StatusCode of nodesToRead "

23 }
24 }
25 } ,

26 " inputArgumentDiagnost i c In fos " : {
27 " type " : " o b j e c t " ,

28 " d e s c r i p t i o n " : " L i s t of d i a g n o s t i c in format ion corresponding [ . . . ] " ,

29 " p r o p e r t i e s " : {
30 " maxAge " : {
31 " type " : [ " n u l l " , " o b j e c t " ] ,

32 " d e s c r i p t i o n " : " D i agnos t i c I n fo of maxAge " ,

33 " oneOf " : [
34 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In foNu l l " } ,

35 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In fo " }
36 ]
37 } ,

38 " timestampsToReturn " : {
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39 " type " : [ " n u l l " , " o b j e c t " ] ,

40 " d e s c r i p t i o n " : " D i agnos t i c I n fo of timestampsToReturn " ,

41 " oneOf " : [
42 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In foNu l l " } ,

43 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In fo " }
44 ]
45 } ,

46 " nodesToRead " : {
47 " type " : [ " n u l l " , " o b j e c t " ] ,

48 " d e s c r i p t i o n " : " D i agnos t i c I n fo of nodesToRead " ,

49 " oneOf " : [
50 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In foNu l l " } ,

51 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In fo " }
52 ]
53 }
54 }
55 } ,

56 " outputArguments " : {
57 " type " : " o b j e c t " ,

58 " d e s c r i p t i o n " : " L i s t of output argument va lues . [ . . . ] " ,

59 " p r o p e r t i e s " : {
60 " r e s u l t s " : {
61 " type " : " a r ray " ,

62 " d e s c r i p t i o n " : " L i s t of A t t r i b u t e va lues . [ . . . ] " ,

63 " i tems " : {
64 " type " : " o b j e c t " ,

65 " p r o p e r t i e s " : {
66 " value " : {
67 " type " : [ " s t r i n g " , " number " , " o b j e c t " , " boolean " , " n u l l " ] ,

68 " d e s c r i p t i o n " : " The data value . I f [ . . . ] "

69 } ,

70 " statusCode " : {
71 " type " : " number " ,

72 " d e s c r i p t i o n " : " The StatusCode tha t de f ine s [ . . . ] " ,

73 "minimum" : 0 ,

74 "maximum" : 4294967295 ,

75 " mul t ip leOf " : 1

76 } ,

77 " sourceTimestamp " : {
78 " type " : " s t r i n g " ,

79 " d e s c r i p t i o n " : " The source timestamp f o r the value . "

80 } ,

81 " sourcePicoSeconds " : {
82 " type " : " number " ,

83 " d e s c r i p t i o n " : " S p e c i f i e s the number [ . . . ] " ,

84 "minimum" : 0 ,

85 "maximum" : 18446744073709551615 ,

86 " mul t ip leOf " : 1

87 } ,

88 " serverTimestamp " : {
89 " type " : " s t r i n g " ,

90 " d e s c r i p t i o n " : " The se rve r timestamp f o r the value . "

91 } ,

92 " serverP icoSeconds " : {
93 " type " : " number " ,

94 " d e s c r i p t i o n " : " S p e c i f i e s the number [ . . . ] " ,
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95 "minimum" : 0 ,

96 "maximum" : 18446744073709551615 ,

97 " mul t ip leOf " : 1

98 }
99 }

100 }
101 } ,

102 " d i a g n o s t i c I n f o s " : {
103 " type " : " a r ray " ,

104 " d e s c r i p t i o n " : " L i s t of d i a g n o s t i c [ . . . ] " ,

105 " i tems " : {
106 " type " : [ " n u l l " , " o b j e c t " ] ,

107 " oneOf " : [
108 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In foNu l l " } ,

109 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In fo " }
110 ]
111 }
112 }
113 }
114 } ,

115 " d i a g n o s t i c I n f o s " : {
116 " type " : " o b j e c t " ,

117 " d e s c r i p t i o n " : " D iagnos t i c in format ion f o r the statusCode [ . . . ] " ,

118 " oneOf " : [
119 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In foNu l l " } ,

120 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In fo " }
121 ]
122 }
123 } ,

124 " d e f i n i t i o n s " : {
125 " D iagnos t i c In fo " : {
126 " type " : " o b j e c t " ,

127 " p r o p e r t i e s " : {
128 " symbol ic Id " : {
129 " type " : " number " ,

130 " d e s c r i p t i o n " : "A symbol ic name f o r the s t a t u s code . " ,

131 "minimum" : −2147483648 ,

132 "maximum" : 2147483647 ,

133 " mul t ip leOf " : 1

134 } ,

135 " namespaceUri " : {
136 " type " : " number " ,

137 " d e s c r i p t i o n " : "A namespace tha t q u a l i f i e s the symbol ic id . " ,

138 "minimum" : −2147483648 ,

139 "maximum" : 2147483647 ,

140 " mul t ip leOf " : 1

141 } ,

142 " l o c a l e " : {
143 " type " : " number " ,

144 " d e s c r i p t i o n " : " The l o c a l e used f o r the l o c a l i z e d t e x t . " ,

145 "minimum" : −2147483648 ,

146 "maximum" : 2147483647 ,

147 " mul t ip leOf " : 1

148 } ,

149 " l o c a l i z e d T e x t " : {
150 " type " : " number " ,
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151 " d e s c r i p t i o n " : "A human readable summary of the s t a t u s code . " ,

152 "minimum" : −2147483648 ,

153 "maximum" : 2147483647 ,

154 " mul t ip leOf " : 1

155 } ,

156 " a d d i t i o n a l I n f o " : {
157 " type " : " s t r i n g " ,

158 " d e s c r i p t i o n " : " De ta i l ed a p p l i c a t i o n s p e c i f i c d i a g n o s t i c in format ion . "

159 } ,

160 " innerStatusCode " : {
161 " type " : " number " ,

162 " d e s c r i p t i o n " : "A s t a t u s code provided by an under ly ing system . " ,

163 "minimum" : 0 ,

164 "maximum" : 4294967295 ,

165 " mul t ip leOf " : 1

166 } ,

167 " inn e r D i ag no s t i c I n f o " : {
168 " type " : [ " n u l l " , " o b j e c t " ] ,

169 " d e s c r i p t i o n " : " D iagnos t i c i n fo a s so c i a t e d with the inner s t a t u s code . " ,

170 " oneOf " : [
171 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In foNu l l " } ,

172 { " $ re f " : "#/d e f i n i t i o n s /Diagnos t i c In fo " }
173 ]
174 }
175 } ,

176 " a d d i t i o n a l P r o p e r t i e s " : f a l s e

177 } ,

178 " D iagnos t i c In foNu l l " : {
179 " type " : " n u l l "

180 }
181 }
182 }

Listing A.10 – REST call response schema.

A.2 Technical details for semantics of OPC UA information mod-

els

This chapter is structured as follows:

Section A.2.1 provides a definition and generation rules for OPC UA namespaces.

Section A.2.2 focuses on versioning concepts for OPC UA namespaces.

Section A.2.3 highlights technical details of the XML DataType mapping.

A.2.1 Namespaces

In Annex A.1.1 a concept is introduced to generate URIs for OPC UA Nodes, which can be easily

accessed through a web browser. This concept is the basis to generate URIs, which identify semantic
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concepts in OPC UA as well as domain-specific vocabularies introduced through, for example,

Companion Specifications. In addition to the generation rules of Annex A.1.1, the generation is

further refined and extended to enhance the user experience with different vocabularies. The goal

is to define URIs in such a way that they can be easily used by humans as well as by web-based

autonomous applications. A good example of such an approach can be found on Schema.org.

Founded by Google, Microsoft, Yahoo, and Yandex, Schema.org is an extensible vocabulary, which

is mainly used to standardize the structure and meaning of, for example, data on websites (see

also [135]). The semantics behind Schema.org can be serialized in different formats like JSON-LD

[81], RDFa [126], and Microdata [71]. Based on such vocabularies Google [156, 55] is able to

automatically identify what kind of data set is exposed by a given website and what is the meaning

behind the data without human intervention. For example, someone searches for a recipe of an

Apple Pie and wants the results filtered based on reviews. With classic web, this is particularly hard

for a search engine. While it would be easy for a human search-engine to identify the meaning of

most websites by looking at the content and context, a machine cannot extract the semantics that

easily. To be more concrete, the analysis if this particular website describes a book about Apple

Pies, a recipe, or even a coffee with the name "Apple Pies" is an easy task for a human but nearly

impossible for a machine without semantic annotations. This is exactly where the Semantic Web

offers a solution in providing a syntax on how semantics can be exposed in a machine-readable

way. Of course, a syntax for a language without vocabulary is not very useful. Typically, the

vocabulary is provided by domain experts. An example of such a vocabulary can be found in the

friend of a friend ontology [52]. However, besides the definition of terms, concepts like OWL also

allow to further describe relationships between terms, like the term woman and the term man are

both connected to the concept behind the term person. On top of this logic constructs, tools like

reasoners can be used to simplify the usage of such data sets and identify connections which are

not obvious for humans (e.g., what persons have in common, which are infected by a given virus

like CoVid-19).

OPC UA Part 5 defines two standard NamespaceIndices. NamespaceIndex zero is the OPC UA

Namespace and NamespaceIndex one is the Namespace of the local server. Furthermore, OPC UA

specifies that NamespaceIndex one has to be identical to ServerIndex one. To improve the way how

semantics can be retrieved, the following rules shall be applied (see also Annex A.1.1 for a possible

URL generation schema):

1. Each NamespaceURI has to be a valid and unique URL.

2. The string-part of the BrowseName combined with the NamespaceURI must result in a valid

URL.

177



A.2 Technical details for semantics of OPC UA information models

3. If BrowseNames are used to generate URLs the uniqueness of the resulting URLs has to be

assured.

The analysis of a certain number of Companion Specifications has shown that all previously

mentioned rules are already fulfilled by most of the information models. However, it should be

noticed, that none of these rules is mandatory for OPC UA information models. If for example the

NamespaceURI or the string-part of the BrowseName contains forbidden characters an URL-encoding

could be applied to generate valid URLs. In contrast, the validity of rule three depends mainly on

the mapping itself because in general BrowseNames are often not unique within OPC UA.

If all the above rules can be applied, each Namespace and the corresponding semantic concepts

can be exposed in a similar way to Schema.org with the following rules.

1. Each Namespace shall be exposed by an OPC UA server under the corresponding Names-

paceURL.

2. If the OPC UA server is reachable by a NamespaceURL, the corresponding Namespace shall

be mapped to NamespaceIndex one. The only exception is the server that offers the core

specification of OPC UA, which is always reachable under NamespaceIndex zero.

3. If the URL identifying an entity in the OPC UA information model is constructed with

BrowseNames instead of NodeIds, also the NodeId-based URL should be valid and refer to the

same location.

Table A.22 – Namespace prefixes

Prefix Namespace
opcua, opc http://opcfoundation.org/UA/
cnc http://opcfoundation.org/UA/CNC/
ta http://opcfoundation.org/UA/TA/
ia http://opcfoundation.org/UA/IA/
dt http://opcfoundation.org/UA/DT/
rs, loc http://example.org/UA/
query http://opcfoundation.org/UA/Examples/QueryPart4/
xsd http://www.w3.org/2001/XMLSchema#
owl http://www.w3.org/2002/07/owl#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
opcuashapes http://opcfoundation.org/UA/shapes/
sh http://www.w3.org/ns/shacl#
spin http://spinrdf.org/spin#
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4. If the BrowseName-based URL introduces a naming conflict, the URL shall be generated with

the NodeId.

5. Naming conflicts between Namespaces and generated URLs must be covered through addi-

tional concepts (e.g., if Namespace zero defines a BrowseName with the string-part "CNC",

which is mapped to "http://opcfoundation.org/UA/CNC", the resulting URL would intro-

duce conflicts with the VDW Companion Specification for machine tools).

Based on the above rules different Namespaces can be automatically connected without the

need for additional resolving concepts (e.g., a DiscoveryServer). Furthermore, NamespaceIndex

one could be accepted without a concrete UrisVersion (see also Section 4.2.2) based on this

mapping. For example, the numeric NodeId of NamespaceIndex “1” and the value 1000, where

NamespaceIndex one refers to the URL “http://myLocalServer/OPCUA/” can now be resolved

based on the following URL: "http://myLocalServer/OPCUA/i=1:1000". Throughout this thesis,

the prefixes of Table A.22 are used for Namespaces.

A.2.2 Namespace Versioning

Typically in OPC UA a Namespace is versioned through the NamespaceMetadataType (see OPC UA

Part 5), while the NamespaceURI is unchanged throughout all versions. However, based on several

definitions in OPC UA (e.g., ResponseHeader, ExpandedNodeId, SessionlessInvoke, ...) an OPC UA

server is not able to import two different versions of a Namespace with the identical NamespaceURI.

Finally, this leads to the following implicit rules of the OPC UA versioning concept.

1. The Namespace can only be extended but it is not possible to deprecate concepts.

2. It is not allowed to introduce breaking changes like altering the subtype hierarchy.

These restrictions also apply to each Companion Specification, which uses the same concept as

the OPC Foundation for versioning. In contrast, the Semantic Web reflects the version often as

part of the NamespaceURIs (e.g., "http://www.w3.org/2002/07/owl" or "http://www.w3.org/

1999/02/22-rdf-syntax-ns"). If this concept is transferred to OPC UA, the NamespaceURIs

could be automatically extended with the PublicationDate of the given Namespace (e.g., "http://

opcfoundation.org/UA/NamespaceVersion/2013-12-02"), while the standard NamespaceURIs

(e.g. "http://opcfoundation.org/UA/") would always point to the latest version available to

the given server. Nevertheless, if a new Namespace has to be generated because, for example, the

subtype hierarchy has to be altered a lot of additional questions arise. One question would be:
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What kind of concepts are semantically equal in the two different Namespaces and what kind of

concepts are new or have altered semantics? For a machine, it is nearly impossible to determine if

the semantics of a Node has changed only because certain Attributes (e.g., Description-Attribute to fix

a sentence) have changed. The same problem arises also if different information models introduce

the same concepts with different names and in their own distinct Namespace. During the writing

of this thesis, the OPC Foundation tries to tackle this problem with a so-called "Harmonization"

working group. This working group has the task to identify common concepts and standardize

them in one place, instead of standardizing the same concept in different Companion Specifications.

However, this working group only covers Companion Specifications but cannot monitor user-specific

information models. Furthermore, OPC UA mappings of already existing other standards might

also proof rather difficult to be addressed with this concept. Finally, as the vocabulary increases

further and further, the identification and harmonization of common concepts become more and

more difficult. Of course, the same problem is present in ontologies of the Semantic Web. However,

in the Semantic Web several concepts are introduced to address this problem (e.g., the equivalent

class axiom of OWL). Based on these concepts a reasoner is able to automatically infer that two

concepts of two different ontologies are equal. Even due to the fact that this is a very promising

concept the authors of [66] identified some open questions around this topic. In the end it depends

on the given problem what kind of concept could be used to solve the problem.

A.2.3 XML DataType mapping

Table A.23 depicts the mapping of OPC UA-DataTypes (first column) to an OWL compatible format

(second column). OWL data types represent a subset of XML data types [125]. The mapping of

most of the data types is similar to the already existing mapping of OPC UA-DataTypes to XML

data types (see also OPC UA Part 6). However, some of the OPC UA-DataTypes must be mapped in

a different way to allow better handling in the OWL ecosystem. The NodeId, ExpandedNodeId,

and QualifiedName are mapped to an URI data type as already explained in Section A.2.1. This

is necessary because OPC UA defines its own concept of how Namespaces are encoded in XML

and how they shall be embedded into these DataTypes. The proprietary nature of this concept

makes it unusable in the OWL XML representation. The ExtensionObject, DataValue, Variant,

DiagnosticInfo, and Decimal are modeled as a string. These DataTypes are mapped to XML

complex types in OPC UA. As already mentioned previously, the OWL XML representation only

supports a subset of XML data types and some of the data types of the OPC UA XML representation

are not supported in the OWL XML representation like the complex type of XML. The solution

approach in such cases is to map the data type to a string data type and expose the structure of

the objects through OWL properties (the two columns on the right side). Based on this solution

the value can be always accessed in a single transaction context in form of one large string.
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Table A.23 – OPC UA DataType to OWL DataType mapping.

OPC UA DataType OWL DataType OPC UA Structure OWL Structure
Boolean xs:boolean - -
Sbyte xs:byte - -
Int16 xs:short - -
UInt16 xs:unsignedShort - -
Int32 xs:int - -
UInt32 xs:unsignedInt - -
Int64 xs:long - -
UInt64 xs:unsingedLong - -
Float xs:float - -
Double xs:double - -
String xs:string - -
DateTime xs:dateTime - -
Guid xs:string - -
ByteString xs:base64Binary - -
XmlElement xs:string - -

NamespaceIndex
IdentifierType

NodeId xs:anyUri Identifier see Section A.2.1
ServerIndex
NamespaceIndex
IdentifierType

ExpandedNodeId xs:anyUri Identifier see Section A.2.1
StatusCode xs:unsignedInt - -

NamespaceIndex
QualifiedName xs:anyUri Name see Section A.2.1

Locale
LocalizedText rdf:PlainLiteral Text -

TypeId dt:typeId
Encoding dt:encoding

ExtensionObject xs:string Body dt:body
Variant dt:variant
Status dt:status
SourceTimestamp dt:sourceTimestamp
SourcePicoSeconds dt:sourcePicoSeconds
ServerTimestamp dt:serverTimestamp

DataValue xs:string ServerPicoSeconds dt:serverPicoSeconds
Type dt:type
Body dt:body

Variant xs:string Dimensions dt:dimension
SymbolicId dt:symbolicId
NamespaceUri dt:namespaceUri
Locale dt:locale
LocalizedText dt:localizedText
AdditionalInfo dt:additionalInfo
InnerStatusCode dt:innerStatusCode

DiagnosticInfo xs:string InnerDiagnosticInfo dt:innerDiagnosticInfo
Scale dt:scale

Decimal xs:string Value dt:value
Enumerations xs:int - -
Arrays xs:string - -
Structures xs:string - -
Structures (with optional fields) xs:string - -
Unions xs:string - -
Messages xs:string - - 181
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Nevertheless, in most cases, it might prove very useful to make the substructures of a data type

directly accessible in RDF (e.g., the Scale value as XML unsingedShort of the Decimal-DataType).

This also applies to, for example, the Structure-DataType (see also Section 5.3.2) and to Arrays

(see also [6] for an OWL-based Array example).

A.3 Details of the OPC UA Specification

This chapter is structured as follows:

Section A.3.1 summarizes the mandatory and optional Attributes of the eight different NodeClasses.

Section A.3.2 focuses on the most important operators and operands of the Query service. In

addition, the example OPC UA information model of OPC UA Part 4 Annex B is presented.

A.3.1 OPC UA Attributes

Table A.24 depicts an overview of all mandatory and optional OPC UA Attributes for the eight

different NodeClasses.
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AccessLevel M

AccessLevelEx O

ArrayDimensions O O

AccessRestrictions O O O O O O O O

BrowseName M M M M M M M M

ContainsNoLoops M

DataType M M

DataTypeDefinition O

Description O O O O O O O O

DisplayName M M M M M M M M

EventNotifier M M

Executable M

Historizing M

InverseName O

IsAbstract M M M M

MinimumSamplingInterval O

NodeClass M M M M M M M M

NodeId M M M M M M M M

RolePermissions O O O O O O O O

Symmetric M

UserAccessLevel M

UserExecutable M

UserRolePermissions O O O O O O O O

UserWriteMask O O O O O O O O

Value M O

ValueRank M M

WriteMask O O O O O O O O

Table A.24 – Overview of Attributes (M = Mandatory, O = Optional) [77].
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A.3.2 OPC UA Query

This section details some of the aspects of the Query service of OPC UA Part 4. Section A.3.2.1

starts with the introduction of selected operators and operands, which are necessary to understand

this thesis. The following Section A.3.2.2 explains the OPC UA specific conversion and precedence

rules. Finally, Section A.3.2.3 depicts the example information model of OPC UA Part 4 Annex B,

which is used throughout this thesis to exemplify the Query service.

A.3.2.1 Query Service Operators and Operands

The RelatedTo filter operator contains up to six operands and is used to model the relations between

different Nodes (see Table A.25). The first column represents the operand number, while the

second column differentiates between the possible inputs for the given operand. For example,

Operand[0] accepts a Node as a value but also another RelatedTo operator is allowed. In the end,

this allows the chaining of RelatedTo operators to express more complex graph patterns. Finally,

the third column gives a brief explanation of the operand and how the corresponding value is used

in detail.
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Operand value Definition

0 Node The Instances of the given Type will be used as source

Nodes of the RelatedTo operator. Only VariableTypes or

ObjectTypes are allowed.

RelatedTo The filtered Instances of the other RelatedTo operator

will be used as source Nodes of the RelatedTo operator.

1 Node The Instances of the given Type will be used as target

Nodes of the RelatedTo operator. Only VariableTypes or

ObjectTypes are allowed.

RelatedTo The filtered Instances of the other RelatedTo operator

will be used as target Nodes of the RelatedTo operator.

2 Node The Reference which shall connect Operand[0] with

Operand[1]. Only ReferenceTypes are allowed.

3 0 An undefined number of hops shall be followed in a for-

ward direction. Each Node shall be of the Type specified

by Operand[1].
1 The Instances for Operand[0] shall be directly related

to the Instances of Operand[1].
>1 The exact number of hops defined by Operand[3] shall

be followed to reach the Instances of Operand[1] from

the Instances of Operand[0]. The Type of the interme-

diate Node(s) is undefined.

4 True The Instances of Operand[0] and Operand[1] should

include also subtypes.

False The Instances of Operand[0] and Operand[1] should

not include subtypes.

5 True Operand[0] and Operand[1] can also be connected

through a subtype of Operand[2].
False Operand[0] and Operand[1] can only be connected

through a Reference of the Type defined by Operand[2]
(no subtypes are allowed).

Table A.25 – OPC UA Part 4 - RelatedTo operator definition (simplified) [77].

Table A.26 highlights the most complex FilterOperand of the Query service, which is called

AttributeOperand. The first column defines the element names, while the second column specifies

the DataType. Finally, the third column provides an explanation for each of the elements.
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Name Type Comment

nodeId NodeId The NodeId of a Node from the type

system.

alias String A symbolic name which can be

reused in other locations in the fil-

ter structure (optional).

browsePath RelativePath The browse path which should be

followed. Defined in-line.

elements[] RelativePathElement Array of elements to define the

browse path. Each entry represents

exactly one hop in the browse path.

referenceTypeId NodeId The NodeId of the ReferenceType to

follow.

isInverse Boolean If the value is TRUE the inverse Ref-

erence shall be followed.

includeSubtypes Boolean If the value is TRUE also subtypes

of the given ReferenceType should

be followed.

targetName QualifiedName The BrowseName of the Node which

shall be the target. It is also al-

lowed to include a Type NodeId in-

stead of a BrowseName. In this

case the target Node shall be of the

given Type. Finally, if this parame-

ter is empty all Nodes are connected

through the referenceTypeId are

valid targets.

attributeId IntegerId The Id of the Attribute.

indexRange NumericRange Used to access arrays.

Table A.26 – OPC UA Part 4 - AttributeOperand (simplified) [77].

A.3.2.2 Query Service conversion rules

The OPC UA Query service does not only define different operands and operators, instead, also

data conversion rules have to be defined if different DataTypes are used within operators. Table

A.27 presents these OPC UA specific conversion rules. Each row shows how a given DataType can
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be converted to another DataType (columns). Furthermore, the "I" stands for an implicit conversion

while the "E" marks explicit conversions. If a conversion is not possible the corresponding cell is

marked with an "X" (see also Table A.27). It should be noted that some of the implicit conversion

rules are quite exclusive for OPC UA like the implicit conversion of a String to a Double. This is

also the reason for Table A.28, which provides an order for all implicit conversions. For example, if

an operand of DataType String shall be compared with an operand of DataType Double, the String

operand would be implicitly converted to Double (if possible) because the Double DataType has

higher precedence (see Table A.28). Another interesting fact is, that the StatusCode DataType

cannot be converted to String but it is possible to convert the StatusCode DataType to, for example,

the Int64 DataType, which can be converted to String.
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Target Type

(To)

Source Type

(From)

Boolean - I X X I X I X I I I X I X E

Byte E - X X I X I X I I I X I X E

ByteString X X - X X X X E X X X X X X X

DateTime X X X - X X X X X X X X X X E

Double E E X X - X E X E E E X E X E

ExpandedNodeId X X X X X - X X X X X E X X I

Float E E X X I X - X E E E X E X E

Guid X X E X X X X - X X X X X X E

Int16 E E X X I X I X - I I X E X E

Int32 E E X X I X I X E - I X E E E

Int64 E E X X I X I X E E - X E E E

NodeId X X X X X I X X X X X - X X i

SByte E E X X I X I X I I I X - X E

StatusCode X X X X X X X X X I I X X - X

String I I X E I E I I I I I E I X -

Table A.27 – OPC UA Part 4 - Conversion Rules (not complete) [77].

187



A.3 Details of the OPC UA Specification

Rank DataType Rank DataType Rank DataType

1 Double 7 StatusCode 13 Guid

2 Float 8 Int16 14 String

3 Int64 9 UInt16 15 ExpandedNodeId

4 UInt64 10 SByte 16 NodeId

5 Int32 11 Byte 17 LocalizedText

6 UInt32 12 Boolean 18 QualifiedName

Table A.28 – OPC UA Part 4 - Data Precedence Rules [77].

A.3.2.3 OPC UA Query example information model

OPC UA Part 4 Annex B defines an example information model. Several different Types are

introduced (see Figure A.3): The PersonType, including the Properties Lastname, FirstName, Stree-

tAddress, City, and ZipCode; The AnimalType, including the Property Name and subtypes like

CatType, DogType, and PigType; The CatType, including the properties NickName and CatBreed.

The DogType, including the Properties NickName, DogBreed, and License. The PigType, includ-

ing the Property PigBreed. The ScheduleType, including the Property Period and the subtype

FeedingScheduleType. The FeedingScheduleType, including the Properties Food and Amount.

In addition, also several ReferenceTypes are introduced: The HasChild-ReferenceType to connect

a parent to its child; The HasSchedule-ReferenceType to connect an animal to its schedule; The

HasAnimal-ReferenceType to connect a person to its animal including the two subtype-ReferenceTypes

HasFarmAnimal and HasPet to further refine the connection type. Finally, to structure the In-

stances the AreaType is introduced. Moreover, OPC UA defines several Instances for the previously

introduced Types. Figure A.4 depicts the full information model, including five Instances of the

PersonType, four Instances of the AnimalType, two Instances of the AreaType, and two Instances of

the ScheduleType. Finally, also a View is introduced (blue box in Figure A.4).
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Figure A.3 – OPC UA Part 4 Annex B - Example Type-Nodes [77].
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Figure A.4 – OPC UA Part 4 Annex B - Example Instance-Nodes [77].
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